wopho-v1-2011

April 5, 2018 | Author: Anonymous | Category: Documents
Report this link


Description

Cuộc thi Vật lí quốc tế cho học sinh trung học từ năm 2011 Như chúng ta đã biết, Olympic Vật lý Quốc tế (IPhO) là một cuộc thi Vật lí quốc tế cho học sinh trung học, lần đầu tiên được tổ chức tại Warsaw (Ba Lan) năm 1967. Năm nay, có thêm một cuộc thi có qui mô trên toàn thế giới như IphO nhưng hình thức và tên gọi thì có một chút khác biệt, cuộc thi mang tên World Physics Olympiad (WoPhO) – Olympic Vật lí Thế giới là một cuộc thi mới dành cho học sinh trung học trên toàn thế giới và Indonesia là nước đăng cai WoPhO lần đầu tiên. Cuộc thi WoPhO được tiến hành trong một năm, bao gồm ba vòng: 1. Vòng tuyển lựa (từ ngày 05 tháng 01 đến ngày 30 tháng 6 năm 2011) tạo cơ hội cho đông đảo học sinh trung học toàn thế giới tham gia cuộc thi thông qua Internet. Có mười bài toán lí thuyết, không có bài thí nghiệm, đề bài được viết bằng tiếng Anh và tiếng của nước đăng cai. Đề có thể tải tại website WoPhO.Org (hoặc tại đây). Bài giải cần được gửi về Ban Tổ chức trước ngày 30 tháng 6. Ngôn ngữ gửi bài cho vòng thi này là một trong số tiếng Anh, Indonesia, Nga, hay Trung Quốc . Có 10 câu hỏi, mỗi câu hỏi tối đa 10 điểm. Những người tham gia đạt trên 78% số điểm và qua được buổi phỏng vấn sẽ có thể được tham dự Vòng chung kết, với tổng số tối đa là 100 người. Nếu học sinh sử dụng một chương trình máy tính để giải quyết bất kỳ vấn đề, mã của chương trình sau đó phải được gắn liền với các cách giải và kèm theo mô tả (tức là ngôn ngữ máy tính được sử dụng, hướng dẫn sử dụng chương trình, các thông số và ký hiệu được sử dụng, và cách giải thích đầu ra số liệu và đồ thị, vv.) Một Hội đồng Giám khảo Quốc tế, được lựa chọn từ những giáo sư, giảng viên, các lãnh đạo đoàn APhO, IPhO và những người đạt huy chương vàng APhO, IPhO, tham gia lựa chọn đề và chấm điểm cho bài thi Vòng tuyển lựa, phỏng vấn thí sinh đạt điểm trên 78%, giới thiệu 100 thí sinh tham dự vòng chung kết. 2. Vòng thảo luận trên internet (từ 1 tháng 6 đến 27 tháng 12, bằng tiếng Anh) là dịp để mọi người tham gia thảo luận về lời giải của các bài toán trong Vòng tuyển lựa cùng với các bài toán khác ở trình độ Olympic vật lí. Đây cũng là diễn đàn của các nhà vật lí tương lai. Giải thưởng sẽ được trao cho người tham dự tích cực nhất hoặc/và có lời giải sáng tạo nhất. 3. Vòng chung kết sẽ được tiến hành trên hòn đảo du lịch nổi tiếng Bali, từ 28/12/2011 đến 5/1/2012), đây là thử thách cuối cùng với những người tham gia, một dịp để thi tài với các nhà vô địch về vật lí, những người đạt huy chương vàng APhO và IPhO. Vòng chung kết gồm vòng thi lí thuyết với ba bài thi, được làm trong năm giờ, và vòng thi thí nghiệm với hai bài thi, được làm trong năm giờ. Tổng số điểm tối đa cho vòng thi lí thuyết là 30 điểm, cho vòng thi thí nghiệm là 20 điểm. Điểm số cao nhất được lấy làm 100%. Giới hạn dưới về điểm cho huy chương vàng là 90% , cho huy chương bạc là 78% và cho huy chương đồng là 65%. Không có giải khuyến khích. Thí sinh nào đạt điểm cao nhất và đạt điểm cao hơn mọi thí sinh huy chương vàng APhO và IPhO sẽ nhận học bổng trị giá 20 000 USD và danh hiệu “Người chiến thắng của Olympic Vật lí”. Nếu điểm cao nhất thuộc về thí sính huy chương vàng APhO và IPhO, thì thí sính này sẽ nhận 15 000 USD và danh hiệu trên. Ngoài ra, sẽ có giải thưởng cho thí sính đạt điểm cao nhất riêng về lí thuyết và về thí nghiệm, cũng như một số giải đặc biệt. Mong rằng có nhiều học sinh của Trường Chuyên Hùng Vương Gia Lai nói riêng và của Việt Nam nói chung tham gia cuộc thi này ngay từ vòng tuyển chọn. Olympic Vật lý quốc tế lần thứ 42 năm 2011 (IPhO 42) sẽ được tổ chức tại Đại học Chulalongkorn ở thủ đô Bangkok Thái Lan ngày 10-18 tháng 7 năm 2011. Trước đó, IPhO 41 được tổ chức tại Croatia, đề bài và lời giải các học sinh có thể tải về: Theoretical exam: • Cover sheet • Problem 1: text, answer sheet, solution • Problem 2: text, answer sheet, solution • Problem 3: text, answer sheet, solution Experimental exam: • Cover sheet • Problem 1: text, answer sheet, solution • Problem 2: text, answer sheet, solution Nguồn: http://wopho.org SAU ĐÂY LÀ 10 CÂU HỎI CỦA CUỘC THI WOPHO VÒNG 1 NĂM 2011 Charged Discs Two thin metal discs of radius 5 cm each are suspended by electrically insulating threads such that the discs are parallel (see Fig. 1a) and close to each other (for example their distance could be 2 mm). 1. Calculate the force between the two discs if they are charged with small charges +q and −q respectively. As q is small, the displacement of the discs and the possibility of electric discharge can be neglected. 2. Now consider only one disc; calculate the surface charge distribution on a metal disc of radius R having total charge +q. (This charge distribution might be useful to answer the next question.) After this, the two original discs are each charged +q. A third metal disc of radius R∗ > 5 cm is carefully inserted between the two discs; the third disc is neutral and is suspended by an electrically insulating thread. The three discs are all parallel to each other and their centers lie along the same horizontal line (so that when viewed head-on the discs are concentric circles). The resulting set-up is shown in Fig. 1c. 3. Find the radius R∗ of the third disc such that the net electrostatic force acting on each charged disc is zero. (The fringing effect is neglected in this problem). Figure 1: Charged discs set-up Cylinder Collision A hollow cylinder with mass M and radius R is at rest on a horizontal plane. In the interior of this cylinder, there is a solid disk with mass m and radius r. Initially, the center of the disk is at a distance l from the center of the cylinder and moves with velocity v y as shown ˆ in Fig. 1. Unless otherwise specified, all collisions are elastic and frictions can be ignored. Figure 1: 1. Determine the velocity (the x and the y components of the velocity) of the disk and ˆ ˆ the cylinder immediately after the first collision. Write your answer in terms of m, M , v and θ. 2. Determine the velocity (the x and the y components of the velocity) of the disk and ˆ ˆ the cylinder immediately after the second collision. Write your answer in terms of m, M , v and θ. 3. If initially the disk is placed at l = (R − r)/2, determine the velocity of the disk and the cylinder immediately after the n-th collision. 4. What is the condition for l such that immediately after the n-th collision m moves with velocity v y and M is at rest? Determine the distance between two successive positions ˆ of the center of M when it is at rest. 5. For this part, the friction between the the disk and the cylinder cannot be ignored. As in part (a), initially the cylinder is at rest, while the center of the disk is at a distance l < (R − r) from the center of the cylinder and moves with velocity v y as shown in ˆ Fig. 1. If during the collision process the point of contact does not slide, determine the angular velocity of the disk and the cylinder immediately after the first collision. Dielectric Slab Waveguide 1 Total Internal Reflection The electric field of a polarized monochromatic plane wave can be generally represented as E(r, t) = E exp i(k.r − ωt), where E is the amplitude of the wave, k the wavenumber, and ω the frequency. Suppose that a monochromatic plane wave with frequency ω travels in the medium of refractive index n1 , and is incident on the boundary of another medium of refractive index n2 . The incoming wave forms an angle θi with respect to the normal of the boundary. Throughout this problem, we only consider transverse electric (TE) polarized wave where the electric field is perpendicular to the plane of incidence and all media are non-magnetic. 1. In the case of n1 > n2 , there exists a critical angle θc where the incoming wave will be totally reflected for θi > θc (total internal reflection or TIR). The phase of the reflected wave lags by δ with respect to the incident wave. Derive δ and state it in terms of n1 , n2 , and θi . 2. Using the necessary boundary conditions, derive the reflectance R for the case of TIR. Show that the wave is perfectly reflected for all θi > θc . 2 Constructive Phase Matching The most simple dielectric waveguide is a planar slab with thickness d and refractive index n1 located in a homogeneous background medium with refractive index n2 (n2 < n1 ). In the case of TIR, the slab can be used to guide waves without loss, with the additional condition that the waves interfere constructively. In other words, the wavefronts should be preserved as the waves travel inside the waveguide. The wavenumbers for the vacuum, medium n1 , and medium n2 are taken to be k0 , k1 , and k2 , respectively. 1. Find the necessary condition for the constructive phase matching. 2. The wave can only be guided without loss for certain values of θ. Show that in these cases, θ must satisfy the equations: k1 d cos θ − δ = mπ; m = 0, 1, 2, 3, .... (1) Verify that the equations above can also be written as: √ u2 + v 2 = k0 d 2 n2 − n2 , 2 1 − u cot u = v, (2) (3) u tan u = v with u = k1 d 2 or cos θ and v = d 2 2 2 k1 sin2 θ − k2 . 3 Maxwell’s Equations The Maxwell wave equation for the electric field in a dielectric medium of relative permittivity ε is ∂2 ∂2 ∂2 ∂ 2 E(r, t) + 2 + 2 E(r, t) = µ0 εε0 . (4) ∂x2 ∂y ∂z ∂t2 In the case of the slab waveguide shown in the figure above, ε = n2 for 0 < z < d, and 1 ε = n2 for z < 0 or z > d. Taking the system coordinates such that the wave travels in the 2 xz-plane, the electric field can be generally written as E(r, t) = E(x, z, t) = E(z) exp i(βx − ωt), (5) where β is the effective propagation constant along the waveguide due to the translational symmetry of the structure in the x-direction. In the case of waveguiding the TE polarized wave (E(z) = E(z)ˆ), E(r, t) should be simple harmonic inside the slab and decay y exponentially outside. 1. What is the relation of β to k1 and θ? 2. From the boundary conditions at z = 0 and z = d, derive from the Maxwell equations the condition for waveguiding as found in Part 2. Page 2 4 Mode Solutions The waveguide mode solutions are solutions of θ where waveguiding occurs inside the slab. The solution for m = 0 (see Part 2) is commonly called the fundamental mode (the lowest mode or the first mode), the m = 1 mode is called as the second mode, and so on. 1. Sketch curves in (u, v) coordinates that represent Eqs. (2)-(3). Determine the necessary condition for only one mode solution to exist. 2. Show that the maximum number of modes supported by the dielectric slab is M= k0 d π n2 − n2 , 2 1 (6) where the symbol denotes the ceiling function for which the expression inside is increased to the nearest integer. 3. Verify that the number of mode solutions is incremented by one for every increase of frequency: πc ∆ω = . (7) d n2 − n2 1 2 4. From eq.1, show that the group velocity (dω/dβ) of each supported mode solution is vg = d tan θ + n1 d c cos θ ∂δ ∂β ∂δ ∂ω − . (8) 5. Show that the maximum time disparity for different modes in the dielectric slab waveguide to travel a distance L is τ= L (n1 − n2 ). c (9) 6. For n1 = 1.7, n2 = 1.5, λ = 800 nm (in vacuum), and d = 1 µm, find all the mode solutions for θ (with θ > θc ). Plot the electric field E(z) for these solutions. Page 3 Magnetic Dipole Oscillation A magnetic dipole with magnetic moment m1 is placed at the coordinate origin parallel to the x-axis. 1. Determine the resulting magnetic field in all space. 2. Another dipole is placed at a distance r from the origin at an angle θ to the x-axis. The magnetic moment of the second dipole, m2 , forms an angle α to the x-axis. The whole set-up can be seen in Fig. 1. Determine the torque on the second dipole. 3. Determine the interaction energy between the two dipoles. 4. Determine the force on the second dipole. 5. The second dipole is tied to the first dipole via a massless string such that the distance between the two is fixed at r. While the orientation of the first dipole at the coordinate origin is fixed, the orientation of the second dipole may change. It is also allowed to move freely in the xy-plane around the first dipole. Write down the equation of motion of the second dipole. The mass and moment of inertia of the second dipole are taken to be m and I respectively. 6. Initially the second dipole is at rest on the x-axis, with the magnetic moment forming an angle α0 to the x-axis (α0 Lr /cr in this problem. As the wave front of fr (cr t − x) arrives at point B, a new reflected wave, gr (cr t + x), emerges. The same event also occurs in the left spring at point C. Now back in the right spring, when the wave front of gr (cr t + x) arrives at the end of the spring (x = 0, at point D in the diagram), a new reflected wave hr (cr t − x) and a new transmitted wave hl (cl t + x) are generated. These phenomena always occur when a wave front arrives at the border; a new reflected wave or new reflected and transmitted waves are generated. 4. Write down the wave function y(x, t) in the region I, II, III, IV, V, VI and VII in terms of y0 , fr , fl , gr , hr and hl . Page 1 of 2 x Figure 1: Space-time diagram 5. Using the boundary condition(s), determine the form of fr (cr t − x) and fl (cl t + x) in terms of the springs’ properties and initial velocity. 6. Determine the velocity of the contact point (x = 0) immediately after the initial contact. 7. Using the boundary condition(s), determine the form of gr (cr t + x) in terms of the springs’ properties and initial velocities. Now consider a case where both springs are identical except in its length. In this case, ρl = ρr = ρ, Kl = Kr = K. Take Lr < Ll . 8. Determine y(x, t) in region III and IV. Draw a graph for y(x) at t = 0.4 L . For drawing c the graph, you may use Lr = 0.6L, Ll = L and v0 = 0.5c. 9. Determine y(x, t) in region V. Draw a graph for y(x) at t = 0.8 L , use the same Lr , Ll c and v0 as in the previous question. 10. When will the two springs separate? Draw a graph for y(x), use the same Lr , Ll and v0 as in the previous question. 11. Calculate the coefficient of restitution e between the springs. 12. Calculate the ratio of the translational kinetic energy of the springs after the collision to the kinetic energy before the collision. Page 2 of 2 Lagrange Points Stability In a system that rotates with the Earth around the Sun, there are five equilibrium points (where the sum of the forces is zero). These 5 points are known as Lagrange Points (named after Joseph Lagrange, the first person to study this three-body system). Exact analysis of this system is very complicated and chaotic. In the following problem, the mass of the two bodies (M1 and M2 ) are taken to be much larger than that of the third body (m). The distance between M1 and M2 is taken to be R. m rm 1 r rm 2 M2 M1 r1 R 1. Basic equations of the system (a) Write down the vector of the total gravitational forces Fg on m. (b) By assuming M1 , M2 >> m, determine the angular velocity of the M1 and M2 system (Ω). (c) In a frame that rotates with the system, there are fictitious forces on m. Write down the vector of the total forces on this mass (FΩ ) in this frame. (d) Choose a coordinate system where the three masses are in the xy-plane and the angular velocity Ω is in the positive z-axis. The center of the coordinate is set at the center of mass of M1 and M2 on the x-axis. Write the position of m as r = x(t)ˆ + y(t)ˆ In this rotating frame, write down the total forces on m in the i j. x- and y-axis using parameter α = M1M2 2 and β = M1M1 2 when the velocity of m +M +M is zero. 2. Identifying Lagrange Points There are 5 points with zero net forces in this rotating system. Three of them (call them L1 , L2 and L3 ) lie on the line connecting M1 and M2 (the x-axis) and the other two (call them L4 and L5 ) lie on the xy-plane on symmetric positions above and below the x-axis; that is, y4 = −y5 . r2 (a) First consider the case of finding the position of L1 , L2 and L3 . Use x = (ν − α)R, with ν the distance of m from M1 in units of R. Write down the equation of force that must be satisfied to identify these points. Express this equation in terms of ν and α. (b) The equation above gives rise to three cases (each for L1 , L2 and L3 ) to consider, ν < a, a < ν < b and b < ν. Determine the values of a and b. From here on, we will also assume that α is small (in the Earth-Sun system, α is 3.0 × 10−6 ). Use only the lowest order non-zero term in α, ignore all higher order terms in α. The following three questions will help you determine the three Lagrange points on the x-axis. (c) For the first case, ν < a, write ν = −1 + δ1 with δ1 a small positive number that depends on α. This value of ν will determine the position of the first Lagrange point at x = −R(1 + ξ1 ). Determine ξ1 as a function of α. (d) For the second case, a < ν < b, write ν = 1 − δ2 with δ2 a small positive number that depends on α. This value of ν will determine the position of the second Lagrange point at x = R(1 − ξ2 ). Determine ξ2 as a function of α. (e) For the third case, b < ν, write ν = 1 + δ3 with δ3 a small positive number that depends on α. This value of ν will determine the position of the third Lagrange point at x = R(1 + ξ3 ). Determine ξ3 as a function of α. Determining the fourth and fifth Lagrange points requires a more complicated method. First decompose the gravitational force on m into components parallel and perpendicular to the vector r. (f) Find the unit vector parallel to the vector r, ˆ . Find also the unit vector e perpendicular to the vector r on the xy-plane, ˆ⊥ . e (g) Find the component of the force on m parallel to the vector r, FΩ , and find the ⊥ component perpendicular to the vector r, FΩ . (h) Specify the condition that must be satisfied by the force component perpendicular to the vector r in order that mass m be in equilibrium. With this condition, determine the relation between rm1 and rm2 . (i) Specify the condition that must be satisfied by the force component parallel to the vector r in order that mass m be in equilibrium. With this equation, determine the relation between rm1 and R. (j) Now determine the position of the fourth Lagrange point (x4 , y4 ) and the fifth Lagrange point (x5 , y5 ). 3. Lagrange Point Stability To test the stability of these Lagrange points, small perturbation are given to the mass m around its equilibrium points. Because the forces in this system depend on the Page 2 position (x, y) and the velocity (vx , vy ) of the mass m, the restoring forces must be calculated for variations in position and velocity. Expand the total force as follows: Fx (x0 + δx, y0 + δy, vx,0 + δvx , vy,0 + δvy ) = ∂Fx ∂Fx ∂Fx ∂Fx δx + δy + δvx + δvy ∂x ∂y ∂vx ∂vy ∂Fy ∂Fy ∂Fy ∂Fy Fy (x0 + δx, y0 + δy, vx,0 + δvx , vy,0 + δvy ) = δx + δy + δvx + δvy . ∂x ∂y ∂vx ∂vy This force has taken into account the contribution of the velocity of the mass m. All the partial derivatives are evaluated at the point (x0 , y0 , vx,0 , vy,0 ). (a) Write down the general form for (b) Calculate 1 ∂Fx 1 ∂Fx 1 ∂Fy 1 ∂Fy , m ∂y , m ∂x , m ∂y . m ∂x Show that ∂Fy ∂x = ∂Fx . ∂y 1 ∂Fx 1 ∂Fx 1 ∂Fy 1 ∂Fy , , , . m ∂vx m ∂vy m ∂vx m ∂vy These eight coefficients should act as a restoring constant (analog to the spring constant). Now we are ready to check the stability of the five Lagrange points. Consider only the lowest order term in α, ignore all higher order terms. (c) The first Lagrange Point 1 i. Show that m ∂Fx = c1 Ω2 . Determine c1 . ∂x ii. Show that iii. Show that ∂Fy = ∂Fx = 0. ∂x ∂y 1 ∂Fy = c2 αΩ2 . m ∂y λt Determine c2 . iv. By substituting δx = Ae and δy = Beλt , with A and B nonzero, determine λ as a function of α and Ω only. v. There are four solutions to λ. Write down the condition that these solutions must satisfy in order that the first Lagrange point is stable and then determine the stability of this point. vi. For the Earth-Sun system α is 3.0 × 10−6 and Ω is 2π/year. If this point is stable, determine its period of oscillation (in days), if not, determine its time constant 1/λ (in days also). (d) The second Lagrange Point 1 i. Show that m ∂Fx = c3 Ω2 . Determine c3 . ∂x ii. Show that iii. Show that ∂Fy = ∂Fx = 0. ∂x ∂y 1 ∂Fy = c4 Ω2 . Determine m ∂y λt c4 . iv. By substituting δx = Ae and δy = Beλt , with A and B nonzero, determine λ as a function of α and Ω only. v. There are four solutions to λ. Write down the condition that these solutions must satisfy in order that the second Lagrange point is stable and then determine the stability of this point. Page 3 vi. For the Earth-Sun system: if this point is stable, determine its period of oscillation (in days), if not, determine its time constant 1/λ (in days also). The third Lagrange point is similar to the second Lagrange point hence it need not be considered. (e) The fourth Lagrange Point 1 i. Show that m ∂Fx = c5 Ω2 . Determine c5 . ∂x ii. Show that iii. Show that 1 ∂Fy m ∂x 1 ∂Fy m ∂y = 1 ∂Fx m ∂y = (c6 + c7 α)Ω2 . Determine c6 and c7 . = c8 Ω2 . Determine c8 . iv. By substituting δx = Aeλt and δy = Beλt , with A and B nonzero, determine λ as a function of α and Ω only. v. Define M1 /M2 = ξ. Find the range of value of ξ for the fourth Lagrange point to be stable. The fifth Lagrange point has the same behavior as the fourth Lagrange point, hence it need not be considered. Page 4


Comments

Copyright © 2025 UPDOCS Inc.