Utilizarea Filtrelor Active

May 2, 2018 | Author: Anonymous | Category: Documents
Report this link


Description

Calitatea Energiei si Compatibilitatea Electromagnetica UTILIZAREA FILTRELOR ACTIVE Aşa cum s-a evidenţiat, performanţele filtrelor pasive sunt limitate. Principalele dezavantaje se referă la dependenţa caracteristicilor de filtrare de nivelul sarcinii, pericolul de supraîncărcare şi filtrarea defectuoasă în regim dinamic. Dezvoltarea electronicii de putere şi a celei de comandă, în special apariţia elementelor semiconductoare de putere rapide (MOSFET, IGBT) şi a procesoarelor de semnal, a condus la apariţia unui concept nou, cel al filtrării active. Filtrul activ este o soluţie convenabilă în special în instalaţiile în care conţinutul de armonici nu poate fi prevăzut din cauza schimbării frecvente a locaţiei şi tipului echipamentelor. Principiul de funcţionare Filtrele active sunt convertoare statice bidirecţionale atât în curent, cât şi în tensiune, realizate cu elemente semiconductoare de putere rapide şi comandate astfel încât să absoarbă din reţea armonicile ce trebuie eliminate. Există mai multe modalităţi de a calcula curentul ce trebuie realizat de filtrul activ, dar toate urmăresc obţinerea în reţeaua de alimentare a unui curent cât mai apropiat de o sinusoidă. Pentru acesta, din curentul de sarcină sunt extrase componentele armonice pe care trebuie să le compenseze filtrul. În plus, există posibilitatea de a comanda şi faza curentului şi, în consecinţă, de a realiza şi o compensare a puterii reactive. Datorită obiectivului lor particular, de îmbunătăţire a formei de undă a curentului şi nu de comandă a puterii transferate, în literatura de limbă engleză, filtrele active au fost numite “Active Harmonics Conditioners” (AHC). În practică există mai multe topologii de filtre active, cu metode specifice de comandă şi dimensionare. Majoritatea acestor structuri utilizează convertoare sursă de tensiune care au conectat pe partea de curent continuu un condensator, ca sursă de stocare a energiei (fig. 1). Deşi comanda acestui convertor ar putea fi cu undă plină, respectiv un puls pe alternanţă, cele mai multe aplicaţii necesită performanţe dinamice bune, motiv pentru modulaţia în durată este absolut necesară. Principiul de funcţionare poate fi ilustrat cel mai bine pe o structură de filtru paralel (Fig.2). Curentul de sarcină este măsurat cu traductorul de curent TC şi analizat de un procesor de semnal (DSP) pentru a determina spectrul de armonici al acestuia. Această informaţie este utilizată de generatorul de curent (GC), care va produce reziduul armonic Ih cerut de sarcină pentru următoarea perioadă de funcţionare corespunzătoare frecvenţei fundamentale. Astfel, sursa de impedanţă Zs este parcursă numai de fundamentala curentului de sarcină (I1). În practică, reziduul armonic este redus în proporţie de aproximativ 90%. Tipuri de filtre active În funcţie de aplicaţia concretă, respectiv de modul în care convertorul static bidirecţional este conectat cu sarcina neliniară care produce regimul deformant, filtrele active pot fi implementate în structură serie, paralel, serie-paralel, fiecare dintre acestea putând fi combinată cu filtre pasive rezultând filtre hibride. Filtre active serie Acest tip de filtru activ (Fig. 3), conectat în serie cu reţeaua de distribuţie şi sarcina neliniară, compensează atât armonicile de curent generate de sarcină, cât şi distorsiunea tensiunii, deja prezentă în sistemul de alimentare. Deoarece filtrul este parcurs de întregul curent de sarcină, puterea filtrului este aceeaşi cu a sarcinii, fapt ce constituie un dezavantaj esenţial al acestei structuri. De aceea, utilizarea unui filtru activ serie este indicată când se impune şi filtrarea tensiunii . În multe situaţii, filtrele active serie lucrează în topologii hibride, cu filtre LC pasive (Fig. 4). Dacă filtrul pasiv este conectat în paralel cu sarcina, filtrul activ serie se comportă ca un izolator de armonici, forţând curentul de sarcină să circule în cea mai mare parte prin acesta şi mai puţin în sistemul de distribuţie. Avantajul principal al acestei structuri hibride este puterea redusă a filtrului activ, uzual 5% din puterea sarcinii. Filtre active paralel Frecvent utilizat în practică, filtrul paralel (Fig. 5) are avantajul că, fiind conectat în paralel cu sarcina, este dimensionat la o putere determinată doar de componentele armonice ale curentului de sarcină. De aceea, filtrele active paralel, eventual hibride, permit obţinerea celor mai bune performanţe preţ-calitate. Pentru menţinerea “curată” a reţelei de alimentare este indicat ca filtrele active să se monteze în paralel cu fiecare sarcină deformantă. Dacă furnizorul de energie electrică sau proprietarul reţelei de distribuţie trebuie să “cureţe” reţeaua, este obligatorie montarea unui filtru activ sau a mai multora în paralel, în punctul comun de conectare. În cazul în care puterea corespunzătoare armonicilor ce trebuie filtrate este mare, se pot conecta filtre în cascadă, şi în alte puncte de conectare ale reţelei. Filtrul activ paralel compensează armonicile de curent ale curentului de sarcină prin injectarea în reţea a unui curent de compensare iF egal ca valoare, dar defazat cu 180( faţă de curentul armonic (fig. 6). Întrucât structura filtrelor active este cea a invertoarelor de tensiune, printr-o comandă adecvată, este permisă existenţa ambelor polarităţi ale curentului, indiferent de polaritatea tensiunii. Astfel, filtrul activ poate sintetiza orice formă de undă a curentului, în aşa fel încât curentul debitat de sursa de alimentare să fie sinusoidal. Deoarece filtrul nu furnizează putere activă, el nu necesită o sursă de alimentare şi funcţionează atât ca un redresor a cărui sarcină este condensatorul C, cât şi ca invertor alimentat de la condensatorul C. Pentru a se sintetiza curentul dorit, tensiunea pe condensatorul C trebuie să fie mai mare decât valoarea maximă a tensiunii de linie. Conectarea filtrului, pe partea de curent alternativ, se face prin intermediul unui filtru pasiv de interfaţă format din bobinele Lf1 şi Lf2 şi condensatoarele Cf, care are rolul de a decupla filtrul activ faţă de sursa de alimentare şi de a converti tensiunea comutată de pe condensator, într-un curent cu variaţie impusă. În acelaşi timp, inductanţele fac posibilă încărcarea condensatorului C la o tensiune mai mare decât valoarea de vârf a tensiunii de linie, iar Lf2, împreună cu condensatorul Cf de capacitate mică, formează un filtru pasiv de ordinul doi, care nu permite componentelor de înaltă frecvenţă să se închidă prin sursa de alimentare. Componentele de înaltă frecvenţă sunt generate de comutaţia, cu frecvenţă ridicată, a invertorului. Precizia de obţinere a unei forme de undă impuse este limitată de frecvenţa de comutaţie a tranzistoarelor filtrului şi de tensiunea permisă pe bobina Lf2 a filtrului pasiv. Această tensiune determină valoarea maximă a pantei de variaţie a curentului prin tranzistoare. Astfel, căderea de tensiune pe inductivitatea Lf2 este . (1) Din structura filtrului, se observă că această tensiune este dată de diferenţa dintre tensiunea pe condensatorul C şi tensiunea pe condensatoarele Cf (tensiunea de linie ul), respectiv . (2) Dacă se presupune că tensiunea pe condensatorul C este constantă şi se ţine seama că tensiunea de linie este practic sinusoidală, iar comutaţia tranzistoarelor poate fi oriunde în intervalul 0 - 180(, se obţin valorile extreme ale pantei de variaţie a curentului prin filtru: ; (3) . (4) Aceste relaţii arată că fidelitatea compensării depinde nu numai de forma de undă a curentului prescris, ci şi de poziţia relativă a acestuia faţă de tensiunea de linie. În plus, adoptându-se în relaţia (4) valoarea maxim admisibilă a pantei de variaţie a curentului printr-un tranzistor, se obţine valoarea necesară a inductivităţii Lf2. Astfel de filtre pasive, numite filtre de interfaţă, sunt disponibile în module compacte. Filtre active serie - paralel Aşa cum sugerează numele, filtrul activ serie – paralel este o combinaţie între un filtru serie şi unul paralel. O topologie reprezentativă o constituie aşa numitul filtru activ unificat („Unified Power Quality Conditioner”), în care filtrul serie este plasat lângă sursa de alimentare pentru a compensa armonicile de tensiune şi nesimetriile acesteia, iar filtrul paralel este plasat în vecinătatea sarcinii neliniare pentru compensarea armonicilor curentului şi a puterii reactive (fig. 7). De asemenea, este controlată şi tensiunea la bornele condensatorului din circuitul de curent continuu. Puterea absorbită sau furnizată de filtrul paralel este puterea necesară compensatorului serie şi cea necesară acoperirii pierderilor. Filtre hibride Această structură combină un filtru activ paralel cu unul pasiv, care poate fi de tip serie sau de tip paralel (fig. 8). De regulă, filtrul pasiv face o filtrare de bază, pentru primele cele mai importante armonici, iar filtrul activ se foloseşte pentru obţinerea unei filtrări fine şi în regim dinamic. Indici de performanţă ai filtrelor active Pentru a aprecia calitatea filtrării în corelaţie cu aspectele economice, în principal comparativ cu filtrele pasive, se definesc trei indici de performanţă. 1. Eficacitatea filtrării (EF) se defineşte ca raportul dintre factorii de distorsiune armonică ai curentului furnizat de sursa de alimentare fără filtrul activ şi, respectiv, cu filtrul activ. Este o măsură a eficacităţii filtrului activ şi se doreşte a fii cât mai mare. Este evident că eliminarea tuturor armonicilor (THDi=0 după filtrare) conduce la o valoare infinită a eficacităţii. 2. Capacitatea filtrării (CF) este definită ca raportul dintre puterea aparentă a filtrului activ şi puterea aparentă a sarcinii. Acest indice de performanţă indică puterea pe care trebuie să o aibă filtrul, pentru a putea compensa, din punct de vedere al armonicilor, sarcina respectivă. 3. Capacitatea filtrului de interfaţă (CFI) se defineşte ca raportul dintre puterea condensatorului filtrului pasiv de interfaţă şi puterea aparentă totală aferentă filtrului activ. Este o măsură a mărimii filtrului pasiv de interfaţă necesar pentru sarcina respectivă. Comanda filtrelor active Strategiile de comandă PWM aplicate invertorului de tensiune din structura unui filtru activ constau în “chopparea” (decuparea) tensiunii de la bornele condensatorului din circuitul de curent continuu pentru a produce o tensiune alternativă cu o formă de undă arbitrară. Principial, orice metodă de modulare specifică invertoarelor de tensiune poate fi aplicată şi în cazul filtrelor active. Acestea diferă prin modul în care este folosită eroarea de curent (iref – ireal) pentru generarea semnalelor de comandă ale convertorului. Astfel, spre exemplu: · pentru modulaţia cu semnale de comandă variabile, eroarea de curent este comparată cu un semnal de referinţă triunghiular cu amplitudine şi frecvenţă fixate, similar modulaţiei sinusoidale clasice; · pentru modulaţia cu bandă de histerezis, elementele semiconductoare comută când eroarea de curent depăşeşte aşa-numita bandă de histerezis (fig. 9). Figura 10 evidenţiază faptul că modulaţia cu bandă de histerezis este mai performantă întrucât urmăreşte mai fidel curentul de referinţă al filtrului. În general, pentru obţinerea curentului de referinţă, se folosesc două metode: · metoda curentului instantaneu; · metoda puterii instantanee. Acestea prezintă particularităţi în funcţie de tipul filtrului (serie sau paralel). a) Metoda curentului instantaneu Prin metoda curentului instantaneu, curentul de referinţă se obţine direct din curentul deformat absorbit de sarcină. Deşi controlul este rapid şi volumul de calcul relativ redus, comportarea este mai slabă în regim dinamic, când curentul de sarcină este variabil. a1) Cazul filtrelor serie Dacă filtrul activ este de tip serie, respectiv este montat înaintea sarcinii deformante, curentul prescris trebuie să fie sinusoidal. În consecinţă, se generează un curent sinusoidal, de aceeaşi frecvenţă şi fază ca şi tensiunea de alimentare şi de valoare efectivă egală cu valoarea efectivă a fundamentalei curentului cerut de sarcină (fig. 11). În acest fel, se compensează atât armonicile, cât şi puterea reactivă, deoarece curentul prescris pentru filtru, care este şi curentul furnizat de sursa de alimentare, este sinusoidal şi în fază cu tensiunea de alimentare (fig. 12). Dacă se doreşte numai compensarea armonicilor, fără compensarea energiei reactive, curentul de referinţă sinusoidal coincide ca fază şi amplitudine cu fundamentala curentului de sarcină. a2) Cazul filtrelor paralel În cazul filtrelor paralel, armonicile de curent pot fi compensate global sau selectiv (numai anumite armonici). Pentru compensarea tuturor armonicilor, curentul de referinţă este extras din curentul total, ca un curent sinusoidal, de amplitudine egală cu cea a fundamentalei şi în fază cu aceasta sau cu tensiunea de alimentare (fig. 13). Pentru a anula toate componentele armonice ale curentului sarcinii, curentul de referinţă conţine toate armonicile, defazate cu 180(, respectiv: . (5) Compensarea bună a armonicilor este ilustrată de formele de undă ale curentului nefiltrat şi filtrat (fig. 14). Se observă cum filtrul determină un curent practic sinusoidal şi în avans faţă de fundamentala curentului nefiltrat. Pentru a compensa selectiv numai anumite armonici, curentul prescris este constituit din suma acestor armonici, extrase din curentul de sarcină şi defazate cu 180(. Deşi, în acest caz, nu mai este necesară achiziţionarea tensiunii, volumul de calcul poate fi mult mărit. Obţinerea unui curent sinusoidal şi “curat” depinde de mai mulţi factori, printre care: · rapiditatea elementelor semiconductoare folosite; · regulatorul bipoziţional cu histerezis să fie corespunzător; · filtrul de interfaţă să fie de calitate şi corect dimensionat; · calculul fidel al curentului prescris. b) Metoda puterii instantanee O altă modalitate de calcul al curenţilor de referinţă ai filtrului activ constă în utilizarea puterii instantanee, respectiv a componentelor acesteia. În funcţie de curenţii de referinţă, filtrul activ poate compensa: - numai factorul de putere pe fundamentală; - numai curenţii armonici; - atât factorul de putere pe fundamentală, cât şi curenţii armonici. Dacă, într-un sistem generalizat de coordonate “d-q”, ud şi uq sunt componentele fazorului tensiunilor (u) la bornele sarcinii, iar isd şi isq sunt componentele fazorului curenţilor deformaţi (is), puterea complexă instantanee are expresia: , (6) în care: ; (7) ; (8) . (9) Din relaţia (6) se pot exprima componentele fazorului curenţilor de sarcină, . (10) Similar, dacă sF este puterea complexă instantanee la intrarea filtrului activ, componentele fazorului curenţilor prin acesta sunt date de relaţia: . (11) Puterile instantanee activă (p) şi reactivă (q) pot fi considerate ca o suprapunere a două componente, una continuă (P şi Q) şi cealaltă alternativă ( , ) , respectiv: ; (12) . (13) Puterea activă P este puterea consumată de sarcină. Componenta alternativă a puterii active instantanee şi puterea reactivă instantanee trebuie compensate de filtrul activ. Astfel, puterea complexă instantanee a filtrului poate fi exprimată ca: (14) sau , (15) după cum se doreşte compensarea factorului de putere şi a curenţilor armonici sau numai compensarea curenţilor armonici. În aceste condiţii, fazorul curenţilor de referinţă ai filtrului activ poate fi calculat, iar pentru calculul curenţilor de referinţă pe fiecare fază, se foloseşte transformarea inversă, respectiv: , (16) în care . (17) Pentru cazul compensării totale (a factorului de putere şi a curenţilor armonici), modul de calcul al curenţilor de referinţă este ilustrat în schema bloc din figura 15. Pentru calculul componentelor continue ale puterilor instantanee activă şi reactivă, în literatura de specialitate există mai multe metode, între care calculul valorii medii prin integrarea pe o perioadă. Plecând de la relaţia de definiţie a puterii active, . (18) este evident că valoarea obţinută este corectă numai după prima perioadă. Există următoarele situaţii: 1. Dacă se compensează numai componentele alternative ale puterilor instantanee activă şi reactivă, curentul absorbit din reţea este sinusoidal, dar are aceeaşi fază ca şi curentul la intrarea redresorului (fig.16 şi 17). Rezultă că, prin compensarea celor două componente alternative ale puterilor instantanee activă şi reactivă, se compensează toate armonicile de curent. Aceasta sugerează că, cele două componente alternative ale puterilor instantanee activă şi reactivă corespund la ceea ce literatura de specialitate numeşte „putere deformantă”. De asemenea, componenta continuă a puterii reactive instantanee reprezintă „puterea reactivă”, deoarece, fără compensarea ei, curentul de la reţea este sinusoidal, dar este întârziat faţă de tensiune cu un unghi egal cu unghiul de comandă al redresorului. 2. Compensarea întregii puteri reactive instantanee conduce la obţinerea unui curent sinusoidal şi în fază cu tensiunea (fig. 18 şi 19), ceea ce înseamnă lucrul cu factor de putere unitar. Performanţele de filtrare ale filtrelor active depind esenţial de tensiunea de pe condensatorul de sarcină a filtrului. Din acest motiv, în structura de reglare şi comandă se prevede şi o buclă de menţinere a acestei tensiuni la o valoare medie impusă. Comparativ cu filtrele pasive, filtrele active au câteva avantaje esenţiale: · nu se pot supraîncărca datorită curenţilor armonici transmişi în reţea de către alte sarcini deformante; · se pot selecta curenţii ce se doreşte a fi compensaţi; · se pot compensa, simultan sau independent, distorsiunea armonică şi/sau factorul de putere; · precizia compensării este mai ridicată. Deşi prezintă dezavantajul unui preţ mai mare, datorită avantajelor enumerate, filtrele active sunt utilizate pe scară tot mai mare. UD C iF A C B Fig.1 Structura sursă de tensiune a convertorului pentru filtre active Fig. 4 Filtru activ serie în topologie hibridă cu filtru pasiv Filtru pasiv armonica 7 Filtru pasiv armonica 5 Filtru activ serie Lc Lb La Cc Cb Ca C2 C1 Sarcina neliniară Filtru activ Sursa Fig. 3 Filtru activ serie - principiu Tc Tb Cf7 Cf7 Cf7 Cf5 Cf5 Cf5 Lf7 Lf7 Lf7 Lf5 Lf5 ia ua ub uc Lf5 Ta ic ib Sarcina neliniară Sursa Filtru activ Sarcina neliniară Fig. 5 Filtru activ paralel - principiu TC C7 I a) I1 DSP ~ ZL Consumatori Filtru activ paralel Sursa de alimentare Ih GC I7 Zs I5 I3 Fig. 2 Schema de principiu a unui filtru activ paralel Fig. 6 Filtru activ paralel ua ub uc isa isc isb � EMBED Equation.3 ��� � EMBED Equation.3 ��� � EMBED Equation.3 ��� Bloc de comandă filtru paralel Cf Lf2 Lf2 Lf2 Lf1 Lf1 iFa iFc iFb isa isc isb Calcul curenţi de referinţă Lf1 C Cf ia ua ub uc ic ib Sarcina neliniară ib ic Ta uc ub ua ia Tb Tc C1 C2 Ca Cb Cc Las Lbs Lcs Filtru activ serie Sarcina neliniară Lap Lbp Lcp Filtru activ paralel Fig. 7 Filtru activ unificat SA FA SN Ls Cs Fig. 8 Filtrul hibrid cu filtru pasiv serie - principiu T- T+ DC- DC+ - + ireal iref Fig. 9 Principiul de comandă a tranzistoarelor de pe o fază a) a) b) Fig. 10 Formele de undă ale curentului injectat de un filtru paralel pentru două strategii de modulaţie: a) modulaţie cu semnale de comandă variabile; b) modulaţie cu bandă de histerezis Generare curent de referinţă � EMBED Equation.3 ��� Calcul pulsaţie şi fază Fig. 11 Principiul metodei curentului instantaneu la filtrele active serie Calcul valoare efectivă u is  ( t iref If t us iref Fig. 12 Curentul de referinţă şi tensiunea aceleiaşi faze în cazul filtrului serie ub ua 2/3A isc Fig. 13 Principiul metodei curentului instantaneu la filtrele active paralel Calcul pulsaţie şi fază Generare curent de referinţă � EMBED Equation.3 ��� Calcul amplitudine pe fundamentală u is  ( t iref + - I1max isb isa 2/3A Fig. 15 Schema bloc pentru calculul curenţilor de referinţă ai filtrului activ, utilizând puterea complexă instantanee t t is ir Fig. 14 Curentul de fază prin sarcina deformantă (ir) şi curentul preluat de la sursă (is), în cazul utilizării unui filtru activ paralel uc isd isq ud uq CALCULUL PUTERII INSTANTANEE COMPLEXE CALCULUL PUTERII ACTIVE -1 p q CALCULUL COMPONENTELOR d-q ALE CURENŢILOR DE REFERINŢĂ B P iFd iFq i*Fa i*Fb i*Fc pF qF + - isa usa Fig. 16 Curentul şi tensiunea pe fază, fără compensarea componentei continue a puterii reactive t ired iF is Fig. 17 Curenţii pe fază fără compensarea componentei continue a puterii reactive: la redresor (ired); la filtrul activ (if); la reţea (is) t ired iF is Fig. 19 Curenţii pe o fază, cu compensarea puterilor deformantă şi reactivă: la redresor (ired); la filtrul activ (if); la reţea (is) t isa usa Fig. 18 Curentul şi tensiunea pe fază, la compensarea puterii reactive instantanee şi a componentei alternative a puterii active instantanee Fig. 7.43 Curentul şi tensiunea pe fază, la compensarea puterii reactive instantanee şi a componentei alternative a puterii active instantanee usa isa t PAGE 1 _1155614409.unknown _1160655957.unknown _1188578502.unknown _1188578711.unknown _1227811260.unknown _1227812129.unknown _1188578684.unknown _1188419287.unknown _1188570466.unknown _1188419235.unknown _1188419133.unknown _1155617441.unknown _1155617481.unknown _1155981814.unknown _1155614720.unknown _1155614748.unknown _1155614415.unknown _1145979285.unknown _1155565434.unknown _1155614396.unknown _1155565590.unknown _1155565223.unknown _1145979253.unknown _1145979266.unknown _1145979223.unknown


Comments

Copyright © 2025 UPDOCS Inc.