TEMA 2 EL AGUA. SECCION 01 MARTES 5 A 6:30PM MIERCOLES SECCION 02 DE 5 A 6:30 PM. DEBE DAR UN TEMA SEMANAL. El agua estructurara química, propiedades y funciones. Concepto de acido y álcali. Concepto de ph y pk. Soluciones tampón o amortiguadores. 1. indicar mediante un cuadro, la distribución porcentual del agua en el compartimiento intra y extracelular 2. Propiedades físicas del agua: Polaridad, capacidad calórica, constante dieléctrica, Cohesividad, interacciones hidrofobias, hidrofilias 3. Definir electrolitos y no electrolitos. 4. Funciones del agua 5. Fuentes de ingreso 6. Citar vías de egreso 7. Explicar la constante de ionización del agua 8. Definir soluciones acidas, alcalinas y neutras 9. Definir pH, pk y formula 10. Explicar importancia biológica del pH 11. Sistemas amortiguadores 12. Nombrar los principales sistemas amortiguadores 13. Explicar porque el acido carbónico-bicarbonato es el principal tampón 15. Ecuación de henderson-hasselbach TEMA II EL AGUA El agua es el principal e imprescindible componente del cuerpo humano. El ser humano no puede estar sin beberla más de cinco o seis días sin poner en peligro su vida. El cuerpo humano tiene un 75 % de agua al nacer y cerca del 60 % en la edad adulta. Aproximadamente el 60 % de este agua se encuentra en el interior de las células (agua intracelular). El resto (agua extracelular) es la que circula en la sangre y baña los tejidos. ESTRUCTURA DEL AGUA La molécula de agua está formada por dos átomos de H unidos a un átomo de O por medio de dos enlaces covalentes. GEOMETRÍA DEL AGUA La molécula de agua está constituida por dos átomos de hidrógeno unidos por sendos enlaces covalentes al átomo de oxígeno. Cada enlace covalente implica la compartición de dos electrones entre los átomos de hidrógeno, en que cada átomo aporta un electrón. Por lo tanto, los electrones puestos en juego en ambos enlaces covalentes son cuatro. Estos electrones enlazantes, se suelen representar por pares de puntos o trazos, de manera que la molécula de agua puede representarse por los símbolos de los elementos de hidrógeno y oxígeno unidos por trazos: H-O-H. Esta fórmula insinúa una estructura lineal. Además existen en el átomo de oxígeno dos pares de electrones, que no participan en enlace, situados en un nivel de menor energía, o última capa. Al considerar todos los 8 electrones situados en la última capa del oxígeno, 2 pares enlazantes y 2 pares no enlazantes, la teoría de Repulsión de Pares Electrónicos del Nivel de Valencia, predice la forma de la molécula de agua. Esta teoría establece que los pares electrónicos del nivel de valencia, que corresponden a la última capa energética, se sitúan en el espacio de manera que entre ellos exista la mínima repulsión ocasionada por su carga negativa. Si los cuatro pares fuesen de igual naturaleza se podría predecir una estructura tetraédrica regular para el agua, porque la mejor manera de acomodar cuatro cargas negativas en el espacio, para que exista entre ellas la mínima interacción, es situándolas en los vértices de un tetraedro, cuyos lados subtienden un ángulo de 109,5°. Puesto que sólo dos pares de electrones son enlazantes, éstos están compartidos entre los núcleos de O e H y por lo tanto estos electrones están mas cerca a ambos núcleos. Los dos pares no enlazantes están sólo localizados sobre el átomo de O por lo que tienden a ocupar mayor espacio alrededor de este átomo y en consecuencia a restarle espacio a los pares enlazantes. Por lo tanto, el ángulo que subtiende las dos uniones oxígeno-hidrógeno es 104,5°, menor que el ángulo tetraédrico. Si sólo se considera los núcleos de los átomos de la molécula de agua, esta especie debería tener una estructura plana, puesto que tres puntos, que no están en línea, definen un plano. Si ahora se considera a los electrones enlazantes y no enlazantes de la molécula de agua, su estructura es la de un tetraedro irregular. Cabe deducir que si la molécula de agua no es lineal, tampoco será una especie a polar. Una molécula polar presenta dos polos o centros de gravitación de carga negativa y positiva que resultan de la diferente concentración de electrones en el espacio. Aquel sitio donde exista una mayor concentración da origen a un centro donde gravita carga negativa y en el otro extremo de ese espacio gravitará, por consecuencia, carga positiva. Al existir un dipolo en tal molécula, ésta puede atraer a sus vecinas por fuerzas de atracción entre cargas de diferente signo. . Estas fuerzas se denominan atracción dipolo-dipolo, las cuales son importantes en sustancias al estado líquido o sólido donde la cercanía molecular es muy grande. POLARIDAD DEL AGUA La polaridad de la molécula de agua no sólo es consecuencia de su geometría tetraédrica irregular, sino que también de la naturaleza de sus átomos: hidrógeno, el átomo más pequeño de la Química, y oxígeno, un átomo pequeño, pero principalmente de alta electronegatividad. Este término denota a los átomos que presentan gran capacidad de atraer electrones de enlace hacia sí. Por lo tanto, el átomo de oxígeno de la molécula de agua atrae hacia sí los electrones de los enlaces covalentes con los hidrógenos; hecho que da lugar a una polaridad de enlace. Si la polaridad de enlace se representa por la letra , con su correspondiente signo, entonces la molécula de agua podrá representarse como el dibujo. Además el oxígeno es más electronegativo que el hidrógeno y atrae con más fuerza a los electrones de cada enlace. El resultado es que la molécula de agua aunque tiene una carga total neutra (igual número de protones que de electrones), presenta una distribución asimétrica de sus electrones, lo que la convierte en una molécula polar, alrededor del oxígeno se concentra una densidad de carga negativa, mientras que los núcleos de hidrógeno quedan desnudos, desprovistos parcialmente de sus electrones y manifiestan, por tanto, una densidad de carga positiva. Por eso en la práctica la molécula de agua se comporta como un dipolo Así se establecen interacciones dipolo-dipolo entre las propias moléculas de agua, formándose enlaces o puentes de hidrógeno, la carga parcial negativa del oxígeno de una molécula ejerce atracción electrostática sobre las cargas parciales positivas de los átomos de hidrógeno de otras moléculas adyacentes. PUENTE HIDRÓGENO Dado que el átomo de oxígeno es pequeño y bastante electronegativo, la concentración de electrones en su entorno es elevada, por lo que las cargas negativa sobre oxígeno y positiva entre los átomos de hidrógeno son considerables. Se deduce que las atracciones dipolo-dipolo entre moléculas de agua son importantes, en realidad muy fuertes, porque las moléculas polares de agua, siendo pequeñas, pueden acercarse mucho más que moléculas mayores y pueden atraerse fuertemente por su gran polaridad. Esta atracción dipolo-dipolo que es inusualmente fuerte y en la que participa el átomo de hidrógeno se denomina puente de hidrógeno. Esta asociación intermolecular que se da en el agua líquida y en el hielo, se suele representar por una línea de puntos. En el hielo, la longitud del enlace de hidrógeno es de 1,77 Å que se compara con la longitud del enlace covalente H-O de 0,99 Å. Esta estructura muestra que cada átomo de oxígeno de las moléculas de agua que forman una masa de hielo está unido por dos enlaces covalentes a sendos átomos de hidrógeno y por puente de hidrógeno a moléculas vecinas. La energía de los puentes de hidrógeno es aproximadamente un 1% del enlace covalente. Esta gran diferencia de energía hace la distinción entre el enlace covalente, que es un enlace químico y por lo tanto muy fuerte, y el mal llamado enlace de hidrógeno, que sólo es una asociación física, porque es una atracción dipolo-dipolo. Se explicó que en la molécula de agua los pares electrónicos enlazantes y no enlazantes están orientados hacia los vértices de un tetraedro irregular, por lo que al considerar una masa de hielo, sus moléculas forman una inmensa red tridimensional altamente ordenada que evita que las moléculas se acerquen mucho entre sí. El puente de hidrógeno que se establece, hace que las moléculas de agua adopten una estructura que deja huecos hexagonales que forman una especie de canales a través de la red tridimensional. PROPIEDADES DEL AGUA Propiedades físicas del agua Es un líquido incoloro, inodoro e insaboro. Se transforma fácilmente en los tres estados de agregación (sólido, líquido y gaseoso). A 100º C se produce su ebullición en condiciones normales de presión (es decir, al nivel del mar a 760 mm de Hg). Se solidifica a 0º C en forma de hielo. Es un compuesto con elevada capacidad calorífica, esto es, requiere mucho calor para elevar su temperatura. A 4º C adquiere su mayor densidad, que se considera con valor de 1 (es la base para la densidad). Si su temperatura baja a partir de 4º C su densidad se eleva, pues la solubilidad decrece inversamente con la densidad; ésta es la razón por la que el hielo flota, pues ocupa más volumen. Es el disolvente universal por excelencia; todos los gases, así como numerosos sólidos y líquidos se disuelven en ella. En estado químicamente puro, es mala conductora del calor y la electricidad. Su densidad y fluidez permiten que su energía potencial, al ser almacenada en presas, se aproveche en las caídas de agua para producir energía eléctrica. Principales propiedades químicas del agua 1) Reacciona con los óxidos ácidos 2) Reacciona con los óxidos básicos 3) Reacciona con los metales 4) Reacciona con los no metales 5) Se une en las sales formando hidratos Muchas de estas reacciones que exponemos a continuación ya son existentes en la naturaleza: 1) Los anhídridos u óxidos ácidos reaccionan con el agua y forman ácidos oxácidos. 2) Los óxidos de los metales u óxidos básicos reaccionan con el agua para formar hidróxidos. Muchos óxidos no se disuelven en el agua, pero los óxidos de los metales activos se combinan con gran facilidad. 3) Algunos metales descomponen el agua en frío y otros lo hacían a temperatura elevada. 4) El agua reacciona con los no metales, sobre todo con los halógenos, dando los siguientes compuestos: Haciendo pasar carbón al rojo sobre el agua se descompone y se forma una mezcla de monóxido de carbono e hidrógeno (gas de agua): 5) El agua forma combinaciones complejas con algunas sales, denominándose hidratos, como son: En algunos casos los hidratos pierden agua de cristalización cambiando de aspecto, y se dice que son eflorescentes, como le sucede al sulfato cúprico, que cuando está hidratado es de color azul, pero por pérdida de agua se transforma en sulfato cúprico anhidro de color blanco. Por otra parte, hay sustancias que tienden a tomar el vapor de agua de la atmósfera y se llaman hidrófilas y también higroscópicas; la sal se dice entonces que delicuesce, tal es el caso del cloruro cálcico. Es un compuesto muy estable; sin embargo, se ha observado que el hidrógeno y oxígeno se descomponen por encima de 1 600º C. Su molécula está formada por hidrógeno y oxígeno en proporción de 1:8 en masa y de 2:1 en volumen. Su fórmula química es H2O; es decir, el oxígeno está unido a cada hidrógeno por medio de un enlace covalente sencillo (existe un par de electrones que los unen). Su masa molecular es 18.016. El agua se descompone con un voltámetro por medio de la corriente eléctrica, empleando un electrólito (disolución que conduce la electricidad y contiene iones positivos y negativos). En el cátodo (electrodo negativo) se desprende hidrógeno y en el ánodo (electrodo positivo) el oxígeno. En la síntesis volumétrica del agua (preparación de compuestos químicos a partir de sustancias más sencillas) se observa que el hidrógeno y el oxígeno se combinan siempre en proporción de 2:1. Reacciona con algunos metales como el sodio, el potasio (produciendo una reacción violenta) y el calcio dando el hidróxido del metal correspondiente e hidrógeno que se desprende en forma de gas. Se combina con los anhídridos formando ácidos (oxácidos). Reacciona con los metales produciendo óxidos (corrosión) FUNCIONES DEL AGUA 1-. Disolver: El agua disuelve sustancias. Ej. Azúcar + agua 2-. Bioquímica: El agua disuelve sustancias dentro del cuerpo. 3-. Transporte: Transporta sustancias en nuestro cuerpo. 4-. Estructural: El agua da forma a las células 5-. Termorregulador: El agua regula y mantiene la temperatura corporal. Homotermos (37 grados Celsius). 6-. Amortiguadora: liquido amniótico (agua que rodea el embrión). Liquido cefalorraquídeo (agua que rodea el cerebro y medulas). Las funciones del agua , íntimamente relacionadas con las propiedades anteriormente descritas , se podrían resumir en los siguientes puntos: En el agua de nuestro cuerpo tienen lugar las reacciones que nos permiten estar vivos. Forma el medio acuoso donde se desarrollan todos los procesos metabólicos que tienen lugar en nuestro organismo. Esto se debe a que las enzimas (agentes proteicos que intervienen en la transformación de las sustancias que se utilizan para la obtención de energía y síntesis de materia propia) necesitan de un medio acuoso para que su estructura tridimensional adopte una forma activa. Gracias a la elevada capacidad de evaporación del agua, podemos regular nuestra temperatura, sudando o perdiéndola por las mucosas, cuando la temperatura exterior es muy elevada es decir, contribuye a regular la temperatura corporal mediante la evaporación de agua a través de la piel. Posibilita el transporte de nutrientes a las células y de las sustancias de desecho desde las células. El agua es el medio por el que se comunican las células de nuestros órganos y por el que se transporta el oxígeno y los nutrientes a nuestros tejidos. Y el agua es también la encargada de retirar de nuestro cuerpo los residuos y productos de desecho del metabolismo celular. Puede intervenir como reactivo en reacciones del metabolismo, aportando hidrogeniones (H3O+) o hidroxilos (OH -) al medio. Ionización del agua El agua pura tiene la capacidad de disociarse en iones, por lo que en realidad se puede considerar una mezcla de : Agua molecular (H2O ) Protones hidratados (H3O+ ) e Iones hidroxilo (OH-) En realidad esta disociación es muy débil en el agua pura, y así el producto iónico del agua a 25º es: Este producto iónico es constante. Como en el agua pura la concentración de hidrogeniones y de hidroxilos es la misma, significa que la concentración de hidrogeniones es de 1 x 10 -7. Para simplificar los cálculos Sörensen ideó expresar dichas concentraciones utilizando logaritmos, y así definió el pH como el logaritmo decimal cambiado de signo de la concentración de hidrogeniones. Según esto: Disolución neutra pH = 7 Disolución ácida pH < 7 Disolución básica pH =7 Necesidades diarias de agua El agua es imprescindible para el organismo. Por ello, las pérdidas que se producen por la orina, las heces, el sudor y a través de los pulmones o de la piel, han de recuperarse mediante el agua que bebemos y gracias a aquella contenida en bebidas y alimentos. Es muy importante consumir una cantidad suficiente de agua cada día para el correcto funcionamiento de los procesos de asimilación y, sobre todo, para los de eliminación de residuos del metabolismo celular. Necesitamos unos tres litros de agua al día como mínimo, de los que la mitad aproximadamente los obtenemos de los alimentos y la otra mitad debemos conseguirlos bebiendo. Por supuesto en las siguientes situaciones, esta cantidad debe incrementarse: Al practicar ejercicio físico. Cuando la temperatura ambiente es elevada. Cuando tenemos fiebre Cuando tenemos diarrea. En situaciones normales nunca existe el peligro de tomar más agua de la cuenta ya que la ingesta excesiva de agua no se acumula, sino que se elimina. Recomendaciones sobre el consumo de agua Si consumimos agua en grandes cantidades durante o después de las comidas, disminuimos el grado de acidez en el estómago al diluir los jugos gástricos. Esto puede provocar que los enzimas que requieren un determinado grado de acidez para actuar queden inactivos y la digestión se ralentize. Los enzimas que no dejan de actuar por el descenso de la acidez, pierden eficacia al quedar diluidos. Si las bebidas que tomamos con las comidas están frías, la temperatura del estómago disminuye y la digestión se ralentiza aún más. CONCEPTO DE HOMEOSTASIS. EQUILIBRIO HIDROELECTROLÍTICO. COMPARTIMIENTOS LÍQUIDOS DEL ORGANISMO. AGUA CORPORAL: GANANCIA Y PÉRDIDA, REGULACIÓN; SOLUTOS; DESPLAZAMIENTO ENTRE COMPARTIMIENTOS DE LÍQUIDOS. HOMEOSTASIS. El fisiólogo francés Claude Bernard, en 1850 postuló que los organismos multicelulares prosperan porque viven en un medio interno que se mantiene en condiciones relativamente uniformes, a pesar de los cambios en el ambiente exterior. Alrededor de 1930, el fisiólogo norteamericano Walter Cannon usó la palabra homeostasis (del griego homo, igual; stasis, detención) para designar a: “El estado de equilibrio en que se mantiene el ambiente corporal interno y que se debe a la incesante interacción entre todos los procesos reguladores del cuerpo.” Constituye una condición dinámica, que responde a circunstancias cambiantes; el punto de equilibrio corporal puede modificarse dentro de límites estrechos compatibles con el mantenimiento de la vida. Por ejemplo, la concentración de la glucosa en la sangre normalmente nunca desciende por debajo de los 70 mg de glucosa por 100 ml de sangre, ni se eleva por arriba de los 110mg/100ml. Cada estructura del cuerpo, desde el nivel celular hasta el sistémico, contribuye de algún modo a conservar el ambiente interno dentro de los límites normales. Para conservar la homeostasis deben producirse numerosos procesos complejos, denominados mecanismos homeostáticos, que se desencadenan en respuesta a un cambio inicial del ambiente interno. Esas respuestas se denominan respuestas adaptativas. Permiten al cuerpo adaptarse a los cambios de su ambiente de manera que tiendan a conservar la homeostasia y a fomentar la supervivencia saludable. Adaptación sin buen éxito significa enfermedad o muerte. Agua corporal total El contenido líquido o acuoso del organismo humano es del 40-60% de su peso total. Sin embargo, los valores normales del volumen líquido varían considerablemente, sobre todo en relación con el contenido en grasa del organismo. Los obesos tienen un menor contenido de agua por kilogramo de peso que los delgados. Las mujeres tienen una cantidad de agua relativamente inferior que los hombres, ya que el cuerpo femenino tiene una mayor proporción de grasa. El volumen líquido total y la distribución del mismo también varían con la edad. En los niños, el agua corporal total constituye alrededor del 75% del peso corporal. Este porcentaje desciende rápidamente durante los primeros diez años de vida. A medida que el individuo envejece, la cantidad de agua corporal continúa descendiendo, de forma que el líquido en los ancianos constituye un pequeño tanto por ciento del peso corporal. En los adultos jóvenes, el porcentaje de agua representa el 57% del peso corporal en los hombres y el 47% en las mujeres. Distribución porcentual de los diferentes compartimientos líquidos corporales. Compartimientos líquidos del organismo Un aspecto importante de la homeostasis consiste en el mantenimiento del volumen de la composición de los líquidos corporales, Líquidos corporales: son soluciones acuosas que se encuentran en el interior o alrededor de las células. Líquidos corporales son el agua y los solutos disueltos en cada uno de los compartimientos corporales de fluidos. El principal componente es el agua. En adultos delgados, el líquido corporal constituye alrededor del 55% y 60% de la masa corporal total en mujeres y varones, respectivamente. El líquido que está en el interior de las células se denomina liquido intracelular (LIC), y el exterior se llama líquido extracelular (LEC). Todas las sustancias necesarias para el mantenimiento de la vida, como el O, nutrientes, proteínas y una variedad de partículas químicas con carga eléctrica que se denominan iones, están disueltas en estos fluidos. El LEC está formado por líquido intersticial que baña las células; y el que está dentro de los vasos sanguíneos, llamado plasma. Los 2/3 del líquido del cuerpo está dentro de las células (LIC). El restante 1/3 es el LEC. Cerca del 80% del LEC es intersticial, y ocupa los espacios microscópicos entre las células de los tejidos, y el 20% es plasma, o sea la porción líquida de la sangre. El LEC también incluye la linfa en los vasos linfáticos; LCR en el SN; gastrointestinal en el aparato digestivo; sinovial en las articulaciones; humor acuoso y cuerpo vítreo en el ojo; endolinfa y perilinfa en los oídos; líquidos pleurales, pericárdico y peritoneal entre las membranas serosas, y filtrado glomerular en los riñones. La membrana plasmática de cada célula separa su LIC del intersticial, en tanto que las paredes de los vasos sanguíneos lo separan del plasma. Sólo en los capilares, las paredes son lo suficientemente delgadas y permeables para que sea posible el intercambio de agua y solutos entre el plasma y el líquido intersticial. El LEC constituye el ambiente interno del organismo y su utilidad reside en proporcionar a las células un ambiente relativamente constante y en trasportar sustancias hasta y desde ellas. El LIC, el ser un buen solvente, facilita las reacciones químicas necesarias para la vida. Equilibrio hídrico Es sinónimo de homeostasia de los líquidos. Afirmar que el cuerpo está en estado de equilibrio hídrico, equivale a decir que el volumen global de agua del cuerpo es normal y permanece relativamente constante. Pero equilibrio hídrico significa algo más: es la constancia relativa de la distribución de agua en los tres compartimientos del cuerpo En consecuencia, desequilibrio hídrico significa aumento o disminución en relación con los límites normales del volumen global de agua en el cuerpo y de la cantidad en uno o más de los compartimientos líquidos. El cuerpo se mantiene en equilibrio hídrico o de líquidos; esto significa que tiene las cantidades requeridas de agua y solutos y que estas se hallan en proporción correcta en los diversos compartimientos. Hay un continuo intercambio de agua y solutos entre los compartimientos de líquidos, el cual se realiza por filtración, reabsorción, difusión y ósmosis; sin embargo, el volumen del líquido en cada compartimiento permanece bastante estable (equilibrio dinámico). La mayoría de los solutos que se encuentran en los líquidos corporales son electrolitos, o sea, compuestos inorgánicos que se disocian en iones. Electrolito es un compuesto iónico (es decir aquello que están unidos por enlace iónico en el que un elemento pierde electrones y otro los recibe) que se disocia en iones positivos y negativos al disolverse en agua; se los llama electrolitos porque sus soluciones conducen la corriente eléctrica. La medicina actual le da gran importancia al equilibrio hídrico y de electrolitos, ya que en la actualidad muchos pacientes hospitalizados reciben alguna clase de tratamiento con líquidos y electrolitos. Equilibrio hidroelectrolítico La expresión equilibrio hidroelectrolítico implica la homeostasis o constancia de los líquidos corporales y de los niveles de electrolitos. Quiere decir que tanto la cantidad como la distribución de los líquidos corporales y de los electrolitos son normales y se mantienen constantes. Para que se mantenga la homeostasia, el aporte de agua y electrolitos al organismo debe estar equilibrado con la salida de los mismos. Si entran en el organismo más agua y electrolitos de los requeridos, deben ser eliminados de forma selectiva, y si hubiese una pérdida excesiva, deberían reponerse rápidamente. El volumen de líquidos y los niveles electrolíticos de las células, espacio intersticiales y vasos sanguíneos permanecen relativamente constantes si existe homeostasis. Por lo tanto, el desequilibrio hidroelectrolítico significa que el volumen total de agua o el nivel de electrolitos del organismo o las cantidades que existen en uno o más de sus compartimientos líquidos han aumentado o disminuido por encima de los límites normales. Se conocen como electrolitos a los compuestos que permiten la rotura o disociación de su molécula en partículas separadas denominadas iones y que tienen carga eléctrica. Por ejemplo. El NaCl se disocia en Na+ y Cl-, el tipo de unión se denomina iónica. La glucosa, que es una sustancia orgánica, tiene otro tipo de enlace que impide que el compuesto se rompa o se disocie en una solución. Estos compuestos se conocen como no electrolitos y su unión es de tipo covalente. Muchos electrolitos y sus iones disociados tienen gran importancia en el equilibrio hídrico. Este último y el electrolito son tan dependientes entre sí que si uno se desvía de los normal, también lo hace el otro. Así pues, el hecho de explicar uno de ellos significa comentar también el otro. Vías corporales para ganancia y pérdida de agua. El agua es el mayor componente del organismo, pues constituye el 45 a 75% del total de masa corporal, según la edad y sexo de la persona. Los lactantes tienen el más alto porcentaje de agua (hasta el 75% de la masa corporal); el porcentaje disminuye al avanzar la edad hasta alrededor de los dos años. A partir de esta etapa y hasta la pubertad, tanto en los adolescentes como en las jovencitas al agua constituye alrededor del 60%. El tejido adiposo casi no tiene agua, de modo que las personas obesas poseen menos proporción de este líquido que las delgadas. En varones adultos delgados, el agua comprende el 60% de la masa corporal. En promedio, hasta las mujeres delgadas tienen más grasa subcutánea que los varones, por lo que su contenido total del agua en el cuerpo es menor pues representa alrededor del 55%. El cuerpo puede obtener agua por dos medios: ingestión y síntesis metabólica. Las principales fuentes hídricas del cuerpo son los líquidos ingeridos (1600ml) y las comidas con alto contenido de humedad (700ml), de las cuales extrae agua el aparato gastrointestinal en una cantidad aproximada de 2300ml por día. La otra fuente es la del agua metabólica (alrededor de 200ml/día) que se producen en el cuerpo principalmente cuando el oxígeno capta electrones durante la respiración celular aeróbica, y un poco menos, durante las reacciones sintéticas de deshidratación. La ganancia total de agua al día es de aproximadamente 2500ml. Normalmente se pierde agua y gana agua en igual proporción, de modo que el volumen de líquido corporal permanece constante. La eliminación de líquido se realiza por cuatro vías. Los riñones excretan diariamente alrededor de 1500ml en la orina; la piel evapora unos 600ml (400ml por transpiración insensible y 200ml en sudor); los pulmones exhalan alrededor de 300ml como vapor de agua; y el aparato gastrointestinal excreta más o menos 100ml en las heces. Con el flujo menstrual, las mujeres en edad reproductora tienen una vía adicional de pérdida de agua. En promedio, el cuerpo elimina unos 2500ml al día. La cantidad de agua que se excreta por una vía determinada puede variar mucho con el tiempo. Por ejemplo, durante el ejercicio muy intenso el agua puede literalmente escurrir por la piel en forma de sudor; en otras circunstancias, hay pérdida de líquido por diarrea durante las infecciones gastrointestinales. Volúmenes comparativos de los tres líquidos corporales en un varón adulto joven promedio. Algunos principios generales sobre el equilibrio hidro -electrolítico El principio fundamental sobre el equilibrio hidroelectrolítico es el siguiente: sólo puede mantenerse si la ingesta es igual a la pérdida. Como es lógico, si se elimina una mayor o menor cantidad de agua de la que entra, se producirá un desequilibrio. Si se produce esta situación, el volumen líquido total se incrementará o disminuirá, pero no permanecerá constante. Los mecanismos cruciales para el mantenimiento del equilibrio hídrico, están formados por los dispositivos que pueden modificar la eliminación de líquido para que esta se ajuste a la ingesta, aunque también actúan los mecanismos que ajustan la ingesta a la eliminación. Regulación de las pérdidas de agua y solutos. Son dos factores los que, en conjunto, determinan el volumen urinario: la tasa de filtración glomerular y la tasa de reabsorción de agua por los túbulos renales. La tasa de filtración glomerular, excepto en condiciones anómalas, permanece constante, de modo que el volumen urinario no suele fluctuar. La tasa de reabsorción de agua, por el contrario, varía considerablemente. Debido a ello, la tasa de reabsorción tubular ajusta el volumen urinario a la ingesta de líquido en mayor medida que la tasa de filtración glomerular. La cantidad de hormona antidiurética (ADH) y de aldosterona que se secretan regulan la cantidad de agua que es reabsorbida por los túbulos renales. O sea que el volumen urinario se regula sobre todo por las hormonas secretadas por el lóbulo posterior de la hipófisis (ADH) y por la corteza suprarrenal (aldosterona). La secreción de aldosterona está regulada a su vez por el sistema renina-angiotensina. Aunque los cambios en el volumen de líquido eliminado a través de la piel, los pulmones y el intestino también afectan la proporción ingestaeliminación de líquido, estos volúmenes no se ajustan automáticamente a la ingesta líquida, como sucede con el volumen urinario. Las pérdidas de agua y solutos a través de la sudación y exhalación aumentan durante el ejercicio; sin embargo, los excesos de agua y solutos corporales se eliminan principalmente por la orina. Bajo ciertas circunstancias, algunos otros factores, influyen en la pérdida urinaria de agua. Cualquier gran disminución en el volumen de la sangre se detecta en los barorreceptores (receptores de la presión) de la aurícula izquierda y de vasos sanguíneos, lo que también estimula la liberación de hormona antiduirética. En casos de deshidratación intensa, la velocidad de filtración glomerular disminuye a causa de la caída en la presión arterial, con lo que se reducen las pérdidas de líquidos en la orina. Al contrario, con el consumo de demasiada agua aumenta la presión arterial, se eleva la velocidad de filtración glomerular y las pérdidas hídricas en la orina son mayores. Con la hiperventilación aumentan las pérdidas de líquido mediante la exhalación de más vapor de agua. También el vómito y la diarrea ocasionan pérdidas de agua del conducto gastrointestinal. Por último, con la fiebre, el sudor intenso y la destrucción de extensas áreas de piel por quemaduras se produce eliminación excesiva de agua a través de la piel. Factores que alteran la pérdida de líquidos en condiciones anormales La frecuencia respiratoria y la cantidad de sudor pueden afectar en gran medida la eliminación de líquidos si existen determinadas situaciones anómalas. Por ejemplo, un paciente que está hiperventilando durante mucho tiempo pierde gran cantidad de agua a través del aire que espira. Si, como sucede con frecuencia, el paciente ingiere además poca agua por vía oral, la eliminación de líquido excede la ingesta y se produce un desequilibrio líquido denominado deshidratación (es decir, un descenso en la cantidad de agua corporal total). En otras situaciones anormales, también se produce una excesiva eliminación de líquidos y electrolitos, que excede a la ingesta, con lo que se llega al desequilibrio hidroelectrolítico. Regulación de la ingesta o ganancia de líquidos Los fisiólogos no coinciden sobre los detalles del mecanismo que controla la ingesta de líquidos y que hace que esta aumente cuando aumenta la eliminación y disminuye cuando lo hace esta última. La ganancia de agua se regula principalmente mediante ajustes del volumen de agua ingerida. El hipotálamo tiene un área conocida como centro de la sed, que regula la necesidad de beber. Cuando la pérdida de agua es mayor que la ganancia, la deshidratación (una disminución del volumen y un aumento en la osmolaridad de los líquidos corporales) estimula la sed. Se dice que la deshidratación es leve cuando la masa corporal disminuye en 2 % a causa de pérdida de líquidos. La reducción del volumen de sangre ocasiona que baje la presión arterial. Este cambio estimula a los riñones que liberan renina, lo cual promueve la formación de angiotensina II, la que estimula el centro de la sed en el hipotálamo. Otras señales que la provocan son las que se originan en las neuronas de la boca, las cuales detectan sequedad debido al menor flujo de saliva y las señales que generan los barorreceptores debido a la presión reducida en el corazón y vasos sanguíneos. Con todo esto aumenta la sensación de sed, lo que normalmente promueve mayor consumo de líquidos, con lo que se restaura su volumen normal. Hay veces que la sensación de sed no se produce con la suficiente rapidez o el acceso al agua está restringido, con lo cual ocurre una deshidratación importante. Este problema se observa con mayor frecuencia en ancianos, lactantes y quienes sufren alteraciones mentales. Cuando hay pérdida de líquidos por sudación intensa, diarrea o vómito, es conveniente iniciar el reemplazo de líquidos corporales mediante consumo de agua, aún antes de que se sienta sed. Si una persona no ingiere nada durante días, no es posible mantener el equilibrio hídrico, a pesar de todos lo esfuerzos de los mecanismos homeostáticos para compensar la ingesta nula. En esta situación, la única solución para mantener el equilibrio sería que la eliminación también disminuyese hasta cero, pero esto no es posible, debe haber necesariamente algo de eliminación. ¿Por qué? Porque mientras que continúe la respiración, siempre se elimina algo de agua a través del aire espirado, al igual que, mientras que haya vida, se elimina una mínima e irreductible cantidad de agua a través de la piel. Normalmente, los LIC e intersticial tienen la misma osmolaridad, de modo que las células no se encogen ni se hinchan, pero una variación en su osmolaridad puede causar desequilibrio de líquidos entre estos compartimentos. La elevación de la osmolaridad del líquido intersticial ocasiona que el agua salga de las células, que se encogen ligeramente; en cambio, cuando disminuye, las células se hinchan. Casi siempre, las modificaciones en la osmolaridad se deben cambios en la concentración de Na+ . Por lo regular, su descenso en el líquido intersticial inhibe la secreción de hormona antidiurética. Entonces, si funcionan normalmente, los riñones excretan los excesos de agua en la orina, lo cual incrementa la presión osmótica de los líquidos corporales hasta su nivel normal. Por tanto, las células del cuerpo sólo se hinchan ligeramente y sólo por un tiempo breve. Pero, cuando una persona persiste en consumir agua con una rapidez mayor a la que sus riñones pueden excretarla (la velocidad máxima de flujo urinario es de aproximadamente 15 ml/min) o cuando su función renal es deficiente, podrá padecer intoxicación por agua, un estado en el que el agua corporal excesiva ocasiona que las células se vuelvan hipotónicas y se hinchen de manera peligrosa. Cuando hay pérdida de agua corporal y Na+ por hemorragia, sudor excesivo, vómito o diarrea y se reemplaza la perdida con agua pura, los líquidos corporales se diluyen más. Esto puede ocasionar que la concentración de sodio plasmática, y por lo tanto, del líquido intersticial, disminuyan por debajo de los límites normales (hiponatremia). Al reducirse el nivel de este ión en el líquido interticial también desciende la osmolaridad de este, lo que ocasionará desplazamiento osmótico de agua hacia el líquido intracelular. Cuando el agua entra a las células las vuelve hipotónicas y hace que se hinchen, con lo que ocasiona convulsiones, coma y a veces la muerte. Composición química, distribución y medida de los electrolitos corporales. Hemos definido al electrolito como el compuesto que, en contacto con una solución, se rompe o disocia en partículas cargadas denominadas iones. El cloruro de sodio (NaCl), cuando se disuelve en agua, da lugar a un ión sodio (Na+) con carga positiva y a un ión cloro (Cl-) con carga negativa. Si se colocan dos electrodos cargados con una débil corriente en una solución electrolítica, los iones se moverán o migrarán en direcciones opuestas según sus cargas. Los iones positivos como el Na+ son atraídos por el electrodo negativo (cátodo) y se llaman cationes; los negativos como el Cl-, migrarán hacia el electrodo positivo (ánodo) y se denominan aniones. Algunos aniones y cationes tienen una función nutritiva o reguladora en el organismo. Entre los cationes más importantes tenemos el sodio (Na+), el calcio (Ca++), el potasio (K+) y el magnesio (Mg++). Entre los aniones se destacan el cloro (Cl-), el bicarbonato (HCO3-), el fosfato (HPO4=) y numerosas proteínas. Líquidos extracelulares e intracelulares Si se les compara químicamente, el plasma y el líquido intersticial (los dos líquidos extracelulares) son casi idénticos. Por el contrario, el LIC muestra notables diferencias con respecto a cualquiera de los dos LEC. La primera diferencia entre los dos LEC es que la sangre contiene una cantidad ligeramente superior de electrolitos (iones) que los líquidos intersticiales. Si se comparan ambos líquidos, ión por ión, se notará la diferencia más importante entre el plasma sanguíneo y el líquido intersticial. Mirando los aniones (iones negativos) de estos dos LEC, se observa que la sangre tiene una cantidad apreciable de aniones proteicos. El líquido intersticial, por el contrario, apenas contiene aniones proteicos. Esta es la única diferencia funcionalmente importante entre la sangre y el líquido intersticial. Se debe a que la membrana capilar suele ser prácticamente impermeable a las proteínas. De ahí que casi todos los aniones proteicos permanezcan en la sangre en lugar de filtrarse hacia el líquido intersticial. Dado que las proteínas permanecen en la sangre, también existen otras diferencias esta esa y el líquido intersticial; la sangre contiene muchos más iones sodio y menos iones cloro que el líquido intersticial. Ácidos & Bases Desde hace miles de años se sabe que el vinagre, el jugo de limón y muchos otros alimentos tienen un sabor ácido. Sin embargo, no fue hasta hace unos cuantos cientos de años que se descubrió por qué estas cosas tenían un sabor ácido. El término ácido, en realidad, proviene del término Latino acere, que quiere decir ácido. Anque hay muchas diferentes definiciones de los ácidos y las bases, en esta lección introduciremmos los fundamentos de la química de los ácidos y las bases. En el siglo XVII, el escritor irlandés y químico amateur Robert Boyle primero denominó las substancias como ácidos o bases (llamó a las bases alcalis) de acuerdo a las siguientes características: Los Ácidos tienen un sabor ácido,corroen el metal, cambian el litmus tornasol (una tinta extraída de los líquenes) a rojo, y se vuelven menos ácidos cuando se mezclan con las bases. Las Bases son resbaladizas, cambian el litmus a azul, y se vuelven menos básicas cuando se mezclan con ácidos. Aunque Boyle y otros trataron de explicar por qué los ácidos y las bases se comportan de tal manera, la primera definición razonable de los ácidos y las bases no sería propuesta hasta 200 años después. A finales de 1800, el científico sueco Svante Arrhenius propuso que el agua puede disolver muchos compuestos separándolos en sus iones individuales. Arrhenius sugirió que los ácidos son compuestos que contienen hidrógeno y pueden disolverse en el agua para soltar iones de hidrógeno a la solución. Por ejemplo, el ácido clorhídrico (HCl) se disuelve en el agua de la siguiente manera: H2 HC O H+ + Cll (aq) (aq) Arrhenius definió las bases como substancias que se disuelven en el agua para soltar iones de hidróxido (OH-) a la solución. Por ejemplo, una base típica de acuerdo a la definición de Arrhenius es el hidróxido de sodio (NaOH): H2 NaO O Na+ + OHH (aq) (aq) La definición de los ácidos y las bases de Arrhenius explica un sinnúmero de cosas. La teoría de Arrhenius explica el por qué todos los ácidos tienen propiedades similares (y de la misma manera por qué todas las bases son similares). Por que todos los ácidos sueltan H+ ia la solución (y todas las bases sueltan OH-). La definición de Arrhenius también explica la observación de Boyle que los ácidos y las bases se neutralizan entre ellos. Esta idea, que una base puede debilitar un ácido, y vice versa, es llamada neutralización. La Neutralización Tal como puede ver arriba, los ácidos sueltan H+ en la solución y las bases sueltan OH-. Si fuésemos a mezclar un ácido y una base, el ión H + se combinaría con el ión OH- ion para crear la molécula H2O, o simplemente agua: H+ + OHH2 (aq) (aq) O La reacción neutralizante de un ácido con una base siempre producirá agua y sal, tal como se muestra abajo : Ácid Bas Agu Sal o e a HCl HBr + NaO H + KOH H2O H2O + NaC l + KBr Aunque Arrhenius ayudó a explicar los fundamentos de la química sobre ácidos y bases, lastimosamente sus teorías tenían límites. Por ejemplo, la definición de Arrhenius no explica por qué algunas substancias como la levadura común (NaHCO3) puede actuar como una base, a pesar de que no contenga iones de hidrógeno. En 1923, el científico danés Johannes Brønsted y el inglés Thomas Lowry publicaron diferentes aunque similares trabajos que redefinieron la teoría de Arrhenius. En las palabras de Brønsted's words, "... los ácidos y las bases son substancias que tiene la capacidad de dividirse o tomar iones de hidrógeno respectivamente." La definición de Brønsted-Lowry ampliar el concepto de Arrhenius sobre los ácidos y las bases. La definición de Brønsted-Lowry sobre los ácidos es muy similar a la de Arrhenius, cualquier substancia que pueda donar un ión de hidrógeno, es un ácido (en la definición de Brønsted, los ácidos son comúnmente referidos como donantes de protones porque un ión- hidrógeno H+ menos su electrón - es simplemente un protón). Sin embargo, la definición de Brønsted de las bases es bastante diferente de la definición de Arrhenius. La base de Brønsted es definida como cualquier substancia que puede aceptar un ión de hidrógeno. Esencialmente, la base es el opuesto de un ácido. El NaOH y el KOH, tal como vimos arriba, segruirían siendo consideradas bases porque pueden aceptar un H+ de un ácido para formar agua. Sin embargo, la definición de Brønsted-Lowry también explica por que las substancias que no contienen OH- pueden actuar como bases. La levadura (NaHCO3), por ejemplo, actua como una base al aceptar un ión de hidrógeno de un ácido tal como se ilustra siguientemente: Aci d HCl Base Sal t + NaHC H2CO + NaC O3 l 3 En este ejemplo, el acido carbónico formado (H2CO3) pasa por descomposición rápida a agua y dióxido de carbono gaseoso, y también las burbujas de solución como el gas CO 2 se liberan. pH En la definición de Brønsted-Lowry, ambos los ácidos y las bases están relacionados con la concentración del ión de hidrógeno presente. Los ácidos aumentan la concentración de iones de hidrógeno, mientras que las bases disminuyen en la concentración de iones de hidrógeno (al aceptarlos). Por consiguiente, la acidez o la alcalinidad de algo puede ser medida por su concentración de iones de hidrógeno. En 1909, el bioquímico danés Sören Sörensen inventó la escala pH para medir la acidez. La escala pH está descrita en la fórmula: pH = -log [H+] Nota: la concentración es comúmente abreviada usando logaritmo, por consiguiente H+] = concentración de ión de hidrógeno. Cuando se mide el pH, [H+] es una unidad de moles H+ por litro de solución Por ejemplo, una solución con [H+] = 1 x 10-7 moles/litro tiene un pH = 7 (una manera más simple de pensar en el pH es que es igual al exponente del H+ de la concentración, ignorando el signo de menos). La escala pH va de 0 a 14. Las substancias con un pH entre S 0 o menos de 7 son ácidos (pH y [H+] están inversamente relacionados, menor pH significa mayor [H+]). Las substancias con un pH mayor a 7 y hasta 14 son bases (mayor pH significa menor [H+]). Exactamente en el medio, en pH = 7, están las substancias neutra s, por ejemplo, el agua pura. La relación entre [H+] y pH está mostrada en la tabla de abajo, junto algunos comunes ejemplos de ácidos y base de la vida cotidiana. Ecuación de Henderson-Hasselbalch. La ecuación de Henderson-Hasselbalch (frecuentemente mal escrito como Henderson-Hasselbach) fórmula química que se utiliza para calcular el pH, de una solución buffer, o tampón, a partir del pKa (la constante de disociación del ácido) y de las concentraciones de equilibrio del ácido o base, del ácido o la base conjugada. Donde: S es la sal o especie básica, y A es el ácido o especie ácida En la última ecuación x puede ser a o b indistintamente. La ecuación implica el uso de las concentraciones de equilibrio del ácido y su base conjugada. Para el cálculo del pH en soluciones buffer, generalmente se hace una simplificación y se utilizan las concentraciones iniciales del ácido y la sal, por lo tanto se debe tener en cuenta que el valor obtenido es una aproximación y que el error será mayor cuanto mayor sea la diferencia de las concentraciones de equilibrio con las de partida (constante de equilibrio alta). En la misma aproximación, tampoco se considera el aporte del agua, lo cual no es válido para soluciones muy diluidas. Supóngase un ácido AH con disociación parcial. El equilibrio es: Y la constante de disociación asociada será: Despejando [H3O +] de la constante de disociación: Tomando logaritmos a ambos lados y aplicando la propiedad de los logaritmos para un producto se llega a: E invirtiendo el cociente: Aplicación Farmacológica La fórmula de Henderson-Hasselbalch es empleada para medir el mecanismo de absorbción de los fármacos en la economía corpórea. Dicho de otra manera, la absorción es la transferencia de un fármaco desde un sitio de administración hacia la sangre. Los rangos de rapidez y eficacia de la absorción farmacológica dependen de una ruta específica de administración, sea esta en su disposición farmacológica traslocarse al interior de la membrana celular para estimular el efecto organísmico deseado, por lo que la administración farmacéutica por diferentes rutas mucosas depende de su biodisponibilidad farmacológica. Para ello se requiere que para la translocación del fármaco se necesite que este desde su formulación farmacéutica no se disocie al llegar a la membrana celular, sea de carácter liposoluble, y de bajo peso molecular por lo que debe de ser de características de ácidos y bases débiles. El efecto del pH en la absorción farmacológica se media estudiando el pH de las presentaciones farmacéuticas: Fármacos Ácidos Débiles [HA]: Liberan un [H+] causando una carga aniónica [A-], para formar: [HA] [H+] + [A-]. Fármacos Alcalinos Débiles [BH+]: Liberan también un [H+]. La forma ionizada de los fármacos base son usualmente cargados, y pierden un protón que produce una base sin carga [B], para formar: [BH+] [B] + [H+]. Tomando el pH de ciertas mucosas, por ejem: Cavidad Oral: 5 a 6 pH. Mucosa Gástrica: 1 a 3 pH. Mucosa Intestinal: 4 a 5 pH. Y Tomando el pK de ciertos fármacos, por ejem: Morfina: (Base) 9 pK. Acetaminofen: (Ácido) 8 pK. Diazepam: (Ácido) 4 pK. Aspirina: (Ácido) 3 pK. Ejecutando la fórmula de Henderson-Hasselbalch para el ejemplo de: Aspirina administrada vía enteral, absorbida en la mucosa gástrica: Despeje: 3= 1+log [AH]/[A][H+] 3-1= log [AH]/[A][H+] 2= log [AH]/[A][H+] Antilog 2= [AH]/[A][H+] 100= [AH]/[A][H+] 100/1= [AH]/[A][H+] 101-100% 100-x% res x= 99% Quiere decir, que la administración enteral de la aspirina, alcanza una absorción casi al 100%, logrando una efctividad de translocación mayor. .