Nonnegative Matrices in the Mathematical Sciences || Back Matter

May 10, 2018 | Author: Anonymous | Category: Documents
Report this link


Description

REFERENCES Aharoni, A. [1979]. Combinatorial Problems in Matrix Theory, Ph.D Thesis, Technion, Israel Institute of Technology, Haifa, Israel Alefeld, G., and Varga, R. S. [1976]. Zur Konvergenz der symmetrischen relaxationsverfahrens, Numer. Math. 25, 291-295. Alexandroff, P., and Hopf, H. [1935]. Topologie. Springer, New York. Almon. C., Jr., Buckler, M. B., Horowitz, L. M., and Reimbold, T. C. [1974]. "1985 Inter- industry Forecasts of the American Economy." Heath, Lexington, Massachusetts. Araki, M. [1975]. Applications of M-matrices to the stability problems of composite dynamical systems, J. Math. Anal. Appl. 52, 309-321. Barker, G. P. [1972]. On matrices having an invariant cone, Czech. Math. J. 22, 49-68. Barker, G. P. (1973]. The lattice of faces of a finite dimensional cone, Linear Algebra and Appl. 7,71-82. Barker, G. P. [1974]. Stochastic matrices over cones, Linear and Multilinear Algebra 1, 279-287. Barker, G. P., and Carlson, D. [1975]. Cones of diagonally dominant matrices, Pacific J. Math. 57, 15-32. Barker, G. P., and Foran, J. [1976]. Self dual cones in Euclidean spaces, Linear Algebra and Appl. 13, 147-155. Barker, G. P., and Loewy, R. [1975]. The structure of cones of matrices, Linear Algebra and Appl. 12, 87-94. Barker, G. P., and Schneider, H. [1975]. Algebraic Perron-Frobenius Theory, Linear Algebra and Appl. 11,219-233. Barker, G. P., and Turner, R. E. L. [1973]. Some observations on the spectra of cone preserving maps, Linear Algebra and Appl. 6, 149-153. Barker, G. P., Berman, A., and Plemmons, R. J. [1978]. Positive diagonal solutions to the Lyapunov equations, Linear and Multilinear Algebra 5, 249-256. Beauwens, R. [1976]. Semi-strict diagonal dominance, STAM J. Numer. Anal. 13, 104 -112. Beckenbach, E. F., and Bellman, R. [1971]. "Inequalities," 3rd ed. Springer-Verlag, Berlin and New York. Bellman, R. [1960]. "Introduction to Matrix Analysis." McGraw-Hill, New York. Ben-Israel, A. [1969]. Linear equations and inequalities on finite dimensional, real or complex, vector spaces: A unified theory, J. Math. Anal. Appl. 27, 367-389. Ben-Israel, A., and Greville, T. N. E. [1973]. "Generalized Matrix Inverses: Theory and Applications." Wiley, New York. Berge, C. [1976]. "Graphs and Hypergraphs," 2nd ed. North-Holland Publ., Amsterdam. 322 D ow nl oa de d 09 /1 3/ 13 to 1 8. 7. 29 .2 40 . R ed ist rib ut io n su bje ct to SIA M lic en se or co py rig ht; se e h ttp ://w ww .si am .or g/j ou rna ls/ ojs a.p hp References 323 Berman, A. [1973]. "Cones, Matrices and Mathematical Programming," Lecture Notes in Economics and Mathematical Systems 79. Springer-Verlag, Berlin and New York. Berman, A. (1974a]. Complementarity problem and duality over convex cones, Canad. Math. Bull. 17, 19-25. Berman, A. [1974bJ. Nonnegative matrices which are equal to their generalized inverse, Linear Algebra and Appl. 9, 261-265. Berman, A. 11978]. The Spectral radius of a nonnegative matrix, Canad. Math. Bull. 21, 113-114. Berman, A., and Ben-Israel, A. [1971]. More on lincar inequalities with applications to matrix theory, J. Math. Anal. Appl. 33, 482-496. Berman, A., and Gaiha, P. [1972). Generalization of irreducible monotonicity, Linear Algebra and Appi. 5, 29-38. Berman, A., and Neumann, M. [1976a]. Proper splittings of rectangular matrices, STAM J. Appl. Math. 31, 307 -312. Berman, A., and Neumann, M. [1976b]. Consistency and splittings, SIAM J. Numer. Anal. 13, 877-888. Berman, A., and Plemmons, R. J. [1972]. Monotonicity and the generalized inverse, SIAM J. Appl. Math. 22, 155-161. Berman, A., and Plemmons, R. J. [1974a]. Cones and iterative methods for best least squares solutions to linear systems, SIAM J. Numer. Anal. 11, 145-154. Berman, A., and Plemmons, R. J. [1974b]. Inverses of nonnegative matrices, Linear and Multi- linear Algebra 2, 161-172. Berman, A., and Plemmons, R. J. [1974c]. Matrix group monotonicity, Proc. Amer. Math. Soc. 46, 355-359. Berman, A., and Plemmons, R. J. [1976]. Eight types of matrix monotonicity, Linear Algebra and Appl. 13, 115-123. Berman, A., Varga, R. S., and Ward, R. C. [1978]. ALPS: Matrices with nonpositive off- diagonal entries, Linear Algebra and Appl. 21, 233-244. Birkhoff, G. [1946]. Tres observaciones sobre el algebra lineal, Univ. Nac. Tucuman Reu. Ser. A5, 147-150. Birkhoff, G. [1967a]. "Lattice Theory," 3rd ed. Amer. Math. Soc. Colloq. Publ. 25, Providence, Rhode Island. Birkhoff, G. [1967b]. Linear transformations with invariant cones, Amer. Math. Monthly 72, 274-276. Birkhoff, G., and Varga, R. S. [1958]. Reactor criticality and nonnegative matrices, J. Soc. Ind. Appl. Math. 6, 354-377. Boedwig, E. [1959]. "Matrix Calculus." Wiley (Interscience), New York. Borosh, I., Hartfiel, D. J., and Maxson, C. J. [1976]. Answers to questions posed by Richman and Schneider, Linear and Multilinear Algebra 4, 255-258. Bramble, J. H., and Hubbard, B. E. [1964]. On a finite difference analogue of an elliptic bound- ary value problem which is neither diagonally dominant nor of nonnegative type, J. Math. Phys.43, 117-132. Brauer, A. [1957a]. The theorems of Ledermann and Ostrowski on positive matrices, Duke Math. J. 24, 265-274. Brauer, A. [1 957b]. A new proof of theorems of Perron and Frobenius on nonnegative matrices, 1. Positive matrices, Duke Math. J. 24, 367-378. Brown, D. R. [1964]. On clans of nonnegative matrices, Proc. Amer. Math. Soc. 15, 671-674. Brualdi, R. A. [1968]. Convex sets of nonnegative matrices, Canad. J. Math. 20, 144-157. Brualdi, R. A. [1974]. The DAD theorem for arbitrary row sums, Proc. Amer. Math. Soc. 45, 189-194. D ow nl oa de d 09 /1 3/ 13 to 1 8. 7. 29 .2 40 . R ed ist rib ut io n su bje ct to SIA M lic en se or co py rig ht; se e h ttp ://w ww .si am .or g/j ou rna ls/ ojs a.p hp 324 References Brualdi, R. A. [1976]. Combinatorial properties of symmetrie nonnegative matrices, Proc. Internat. Conf. Combinatorial Theory, Rome, September, 1973 pp. 99-120. Academia Nazionale dei Lincei, Roma. Brualdi, R. A., Parter, S. V., and Schneider, H. [1966]. The diagonal equivalence of a non- negative matrix to a stochastic matrix, J. Math. Anal. Appi. 16, 31-50. Buzbee, B. L., Golub, G. H., and Nielson, C. W. [1970]. On direct methods for solving Poisson's equations, SIAM J. Numer. Anal. 7, 627-656. Carlson, D. [1963]. A note on M-matrix equations, J. Soc. Ind. Appl. Math. 11, 1027-1033, Carlson, D. [1976]. Generalizations of matrix monotonicity, Linear Algebra and Appl. 13, 125-131. Chakravarti, T. M. [1975]. On a characterization of irreducibility of a nonnegative matrix, Linear Algebra and Appl. 10, 103-109. Chandrasekaran, R. [1970]. A special case of the complementarity pivot problem, Opsearch 7, 263-268. Chen, Y. T. [1975]. Iterative methods for linear least squares problems, PhD Thesis. Univ. of Waterloo, Ontario, Canada. Chung, K. L. [1967]. "Markov Chains with Stationary Transition Probabilities," 2nd ed. Springer, New York. Ciarlet, P. G. [1968]. Some results in the theory of monnegative matrices, Linear Algebra and lts Applications 1, 139-152. Cinlar, E. [1975]. "Introduction to Stochastic Processes." Prentice-Hall, Englewood Cliffs, New Jersey. Clifford, A. H., and Preston, G. B. [1961]. "The Algebraic Theory of Semigroups, Vol. I," Math. Surveys No. 7. American Mathematical Society, Providence, Rhode Island. Collatz, L. [1942]. Einschliessungenssatz für die charakterischen Zahlen von Matrizen, Math. Z. 48, 221-226. Collatz, L. [1952]. Aufgaber monotoner Art, Arch. Math. 3, 366-376. Collatz, L. [1966]. "Functional Analysis and Numerical Mathematics." Academie Press, New York. Converse, G., and Katz, M. [1975]. Symmetrie matrices with given row sums, J. Combinatorial Theory Ser. A, 18, 171-176. Cooper, D. H. [1973]. On the maximum eigenvalue of a reducible nonnegative real matrix, Math. Z. 131, 213-217. Cottle, R. W. [1966]. Nonlinear programs with positively bounded Jacobians, SIAM J. Appi. Math. 14, 147-158. Cottle, R. W. [1972]. Monotone solutions of the parametric linear complementarity problem, Math. Progr. 3, 210-224. Cottle, R. W. [1975]. On Minkowski matrices and the linear complementarity problem, In "Optimization and Optimal Control" (Proc. Conf. Oberwolfach) (R. Burlisch, W. Oettli, and J. Stoer, eds.), pp. 18-26. Lecture Notes in Mathematics 477. Springer-Verlag, Berlin and New York. Cottle, R. W., and Dantzig, G. B. [1968]. Complementary pivot theory of mathematical programming, Linear Algebra and Appi. 1, 103-125. Cottle, R. W., and Dantzig, G. B. [1970]. A generalization of the linear complementarity problem, J. Combinatorial Theory 8, 79-90. Cottle, R. W., and Pang, J. S. [1978]. On solving linear complementarity problems as linear programs, In "Complementarity and Fixed Points" (M. L. Balinski and R. W. Cottle, eds.), pp. 88-107, Mathematical Programming Study 7. North-Holland Publ., Amsterdam. Cottle, R. W., and Pang, J. S. [ 1978]. A least-element theory of solving linear complementarity problems as linear programs, Math. Prog. Study 7, 88-107. D ow nl oa de d 09 /1 3/ 13 to 1 8. 7. 29 .2 40 . R ed ist rib ut io n su bje ct to SIA M lic en se or co py rig ht; se e h ttp ://w ww .si am .or g/j ou rna ls/ ojs a.p hp References 325 Cottle, R. W., and Sacher, R. S. [1977]. On the solution of large, structured linear comple- mentarity problems: the tridiagonal case, Appl. Math. Opt. 4, 321-340. Cottle, R. W., and Veinott, A. F. Jr. [1972]. Polyhydral sets having a least element, Math Progr. 3, 238-249. Cottle, R. W., Golub, G. H., and Sacher, R. S. [1978]. On the solution of large, structured linear complementarity problems: the block tridiagonal case, Applied Math. Opt., to appear. Crabtree, D. E. [1966a]. Applications of M-matrices to nonnegative matrices, Duke J. Math. 33, 197-208. Crabtree, D. E. [1966b]. Characteristic roots of M-matrices, Proc. Amer. Math. Soc. 17, 1435-1439. . Cruse, A. B. [1975a]. A note on symmetric doubly stochastic matrices, Discrete Math. 13, 109-119. Cruse, A. B. [1975b]. A proof of Fulkerson's characterization of permutation matrices, Linear Algebra and Appl. 12, 21-28. Cryer, C. W. [19711. The solution of a quadratic programming problem using systematic over- relaxation, STAM J. Control 9, 385-392. Csima, J., and Datta, B. N. [1972]. The DAD theorem for symmetric nonnegative matrices, J. Combinatorial Theory Ser. Al2, 147-152. Dantzig, G. B. [19511. Application of the simplex method to a transportation problem, In "Activity Analysis of Production and Allocation" (T. C. Koopmans, ed.), Cowles Com- mission Monograph 13, Chapter 23. Wiley, New York. Dantzig, G. B. [1963]. "Linear Programming and Extensions." Princeton Univ. Press, Princeton, New Jersey. Dantzig, G. B., and Cottle, R. W. [1967]. Positive (semi) definite programming, In "Nonlinear Programming" (J. Abadie, cd.), pp. 55-73. North-Holland Publ., Amsterdam. Debreau, G., and Herstein, 1. N. [1953]. Nonnegative square matrices, Econometrica 21, 597-607. De Marr, R. [19741. Nonnegative idempotent matrices, Proc. Amer. Math. Soc. 45, 185-188. de Oliveira, G. N. [1972]. On the characteristic veetors of a matrix, Linear Algebra and Appl. 5, 189--196. Djokovic, D. 2. [1970]. Note on nonnegative matrices, Proc. Amer. Math. Soc. 25, 80-82. Dmitriev, N. A., and Dynkin, E. B. [1945]. On the characteristic numbers of stochastic matrices, Doklady Akad. Nauk SSSR 49, 159-162. Doob, J. L. [1942]. Topics in the theory of finite Markov chains, Trans. Amer. Math. Soc. 52, 37-64. Dorfman, R., Samuelson, P. A., and Solow, R. M. [1958]. "Linear Programming and Economie Analysis." McGraw-Hill, New York. Eaves, B. C. [1971]. The linear complementarity problem, Management Sci. 17, 68-75. Eberlein, P. [1969]. Remarks on the van der Waerden conjecture I1, Linear Algebra and Appl. 2,311-320. Eberlein, P. J., and Mudholkar, G. S. [1968]. Some remarks on the van der Waerden conjecture, J. Combinatorial Theory 5, 386-396. Elsner, L. [ 1976a]. A note on ch@racterizations of irreducibility of nonnegative matrices, Linear Algebra and Its Applications 14, 187-188. Elsner, L. [1976b]. Inverse iteration for calculating the spectral radius of a nonnegative irre- ducible matrix, Linear Algebra and Appl. 15, 235-242. Engel, G., and Schneider, H. [1977]. The Hadamard-Fischer inequality for a class of matrices defined by eigenvalue monotonicity, Linear Multilinear Algebra 4, 155-176. Erdös, P., and Minc, H. [1973]. Diagonals of nonnegative matrices, Linear Multilinear Algebra 1, 89-93. D ow nl oa de d 09 /1 3/ 13 to 1 8. 7. 29 .2 40 . R ed ist rib ut io n su bje ct to SIA M lic en se or co py rig ht; se e h ttp ://w ww .si am .or g/j ou rna ls/ ojs a.p hp 326 References Fadeev, D' K., and Fadeeva, V. N. [1963]. "Computational Methods of Linear Algebra." Freeman, San Francisco, California. Fan, K. [1958]. Topological proofs for certain theorems on matrices with nonnegative elements, Monatsh. Math. 62, 219-237. Fan, K. [1964]. Inequalities for M-matrices, Indag. Math. 26, 602-610. Fan, K. [1969]. "Convex Sets and Their Applications." Lecture Notes, Argonne National Laboratory. Farahat, H. K. [1966]. The semigroup of doubly stochastic matrices, Proc. Glasgow Math. Assoc. 7, 178-183. Fiedler, M. [1972]. Bounds for eigenvalues of doubly stochastic matrices, Linear Algebra and Appl. 5, 299-310. Fiedler, M. [1974a]. Eigenvalues of nonnegative symmetrie matrices, Linear Algebra and Appl. 9, 119-142. Fiedler, M. [1974b]. Additive compound matrices and an inequality for eigenvalues of sym- metric stochastic matrices, Czech. Math. J. 24(99), 392-402. Fiedler, M. [1975]. A property of eigenvectors of nonnegative symmetrie matrices and its application to graph theory, Czech. Math. J. 25(100), 619-633. Fiedler, M., and Haynsworth, E. [1973]. Cones which are topheavy with respect to a cone, Linear and Multilinear Algebra 1, 203-211. Fiedler, M., and Ptak, V. [1962]. On matrices with nonpositive off-diagonal elements and positive principal minors, Czech. Math. J. 12, 382-400. Fiedler, M., and Ptak, V. [1966]. Some generalizations of positive definiteness and monotonicity, Numer. Math. 9, 163-172. Fischer, P., and Holbrook, J. A. R. [1977]. Matrices doubly stochastic by blocks, Canad. J. Math. 29, 559-577. Flor, P. [1969]. On groups of nonnegative matrices, Compositio Math. 21, 376-382. Forsythe, G. E. [ 1953]. Tentative classification of methods and bibliography on solving systems of linear equations, Nat. Bur. Sid. Appl. Math. Ser. 29, 11 -28. Forsythe, G. E., and Wasow, W. R. [1960]. "Finite Difference Methods for Partial Differential Equations." Wiley, New York. Frechet, M. [1938]. "Methods des Fonctions Arbitraires. Theórie des Événements en Chaine dans les cas d'un Nombre Fini d'Etats Possibles." Gauthier Villars, Paris. Friedland, S. [1974]. Matrices satisfying the van der Waerden Conjecture, Linear Algebra and Appl. 8, 521-528. Friedland, S. [1977]. Inverse eigenvalue problems, Linear Algebra and Appl. 17, 15-51. Friedland, S. [1978]. On an inverse problem for nonnegative and eventually nonnegative matrices, Israel J. Math. 29, 43-60. Friedland, S. [ 1979]. The reconstruction of a symmetrie matrix from the spectra] data, preprint. Friedland, S., and Karlin, S. [ 1975]. Some inequalities for the spectral radius of nonnegative matrices and applications, Duke Math. J. 42, 459-490. Friedland, S., and Melkman, A. A. [1979]. On the eigenvalues of nonnegative Jacobi Matrices, Linear Algebra and Appl. 25, 239-254. Frobenius, G. [1908]. Uber Matrizen aus positiven Elementen, S.-B. Preuss. Akad. Wiss. (Berlin) 471-476. Frobenius G. [1909]. Ober Matrizen aus positiven Elementen, II, S.-B. Preuss. Akad. Wiss. (Berlin) 514-518. Frobenius G. [1912]. Ober Matrizen aus nicht negativen Elementen, S.-B. Preuss. Akad. Wiss. (Berlin) 456-477. Frobenius, G. [1917]. Ober zerlegbare Determinanten, S.-B. Preuss. Akad. Wiss. (Berlin) 274-277. Fulkerson, D. R. [1956]. Hitchcock transportation problem, Rand. Corp. Rep. P890.Do w nl oa de d 09 /1 3/ 13 to 1 8. 7. 29 .2 40 . R ed ist rib ut io n su bje ct to SIA M lic en se or co py rig ht; se e h ttp ://w ww .si am .or g/j ou rna ls/ ojs a.p hp References 327 Gaddum, J. W. (1952]. A theorem on convex cones with applications to linear inequalities, Proc. Amer. Math. Soc. 3, 957--960. Gale D. [1960]. "The Theory of'Linear Economie Models," McGraw-Hill, New York. Gale, D., and Nikaido, H. [1965]. The Jacobian matrix and global univalence mappings, Math. Ann. 19,81-93. Gantmacher, F. R. [1959]. "The Theory of Matrices, Vols. 1 and II," Chelsea, New York. Gantmacher, F. R., and Krein, M. G. [1950]. "Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems" (English translation, 1961). Office of Technical Services, Dept. of Commerce, Washington D.C. Gauss, C. F. [1823]. Brief und Gerling, Werke 9, 278-281 (translated by G. E. Forsythe, Math. Tables Aids Comput. 5 (1951), 255-258). Glazman, 1. M., and Ljubic, Ju I. [1974). "Finite Dimensional Linear Analysis." MIT Press, Cambridge, Massachusetts. Graves, R. L. [1967]. A principal pivoting simplex algorithm for linear and quadratic pro- gramming, Operarions Res. 15, 482-494. Grunbaum, B. [1967]. "Convex Polytopes." Wiley, New York. Gutmanis [1971]. Environmental implications of economie growth in the United States, 1970 to 2000; An input-output analysis, Proc. IEEE Conf. Decision and Control, New Orleans. Habetler, G. J., and Price, A. L. [1971]. Existence theory for generalized nonlinear comple- mentarity problems, J. Opt. Theory and Appl. 7, 223-239. Hall, M., Jr. [1967]. "Combinatorial Theory." Ginn (Blaisdell), Boston, Massachusetts. Hall, P. [1935]. On representatives of subsets, J. London Math. Soc. 10, 26-30. Hansen, B. [1970]. "A Survey of General Equilibrium Systems." McGraw-Hill, New York. Harary, F. [1969]. "Graph Theory." Addison-Wesley, Reading, Massachusetts. Harary, F., and Minc, H. [1976]. Which nonnegative matrices are self-inverse, Math. Mag. 44, 91-92. Hardy, G. H., Littlewood, J. E., and Polya, G. [1929]. Some simple inequalities satisfied by convex functions, Messenger of Math. 58, 145-152. Hardy, G. H., Littlewood, J. E., and Polya, G. [1952]. "Inequalities," 2nd ed. Cambridge Univ. Press, London and New York. Hartfiel, D. J. [1974]. Concerning spectral inverses of stochastic matrices, SIAM J. Appl. Math. 27, 281-292. Hartfiel, D. J. [1975]. Results on measures of irreducibility and full indecomposability, Trans. Amer. Math. Soc. 202, 357-368. Hartfiel, D. J., Maxson, C. J., and Plemmons, R. J. [1976]. A note on the Green's relations on the semigroup .A'1', Proc. Amer. Math. Soc. 60, 11 -15. Hawkins, D., and Simon, H. A. [1949]. Note: Some conditions of macroeconomie stability, Econometrica 17, 245-248. Haynsworth, E., and Hoffman, A. J. [1969]. Two remarks on copositive matrices, Linear Algebra and Appl. 2, 387-392. Haynsworth, E., and Wall, J. R. [1979]. Group inverses of certain non-negative matrices, Linear Algebra and Appi. 25, 271-288. Hensel, K. [19261. Uber Potenzreihen von Matrizen, J. Reine Angew. Math. 155, 107-110. Hershkowitz, D. [ 1978]. "Existence of Matrices Satisfying Prescribed Conditions," M.S. Thesis, Technion-Israel Inst. of Technology, Haifa, Israel. Hibbs, N. [1972]. An introduction to NARM, Memorandum, Center for Naval Analysis, Arlington, Virginia. Hitchcock, F. L. [1941]. Distribution of a product from several sources to numerous localities, J. Math. Phys. 20, 224-230. D ow nl oa de d 09 /1 3/ 13 to 1 8. 7. 29 .2 40 . R ed ist rib ut io n su bje ct to SIA M lic en se or co py rig ht; se e h ttp ://w ww .si am .or g/j ou rna ls/ ojs a.p hp 328 References Hoffman, A. J. [1967], Three observations on nonnegative matrices, J. Res. Nat. Bur. Std. 718, 39-4L Hoffman, A. J. [1972]. On limit points of spectral radii of nonnegative symmetric integral matrices, Graph. Theory and Appl. (Proc. Conf. Western Michigan Univ. Kalamazoo, 165-172). Lecture Notes in Math. 303, Springer-Verlag, Berlin and New York. Hofman, K. H., and Mostert, P. S. [1966]. Elements of Compact Semigroups. Merril Research and Lecture Series, Columbus, Ohio. Holladay, J. C., and Varga, R. S. [1958]. On powers of nonnegative matrices, Proc. Amer. Math. Soc. 9, 631-634. Hopf, E. [ 1963]. An inequality for positive integral linear operators, J. Math. and Mech. 12, 683- 692. Horn, A. [1954]. Doubly stochastic matrices and the diagonal of a rotation matrix, Amer. J. Math. 76, 620-630. Householder, A. S. [1958]. The approximate solution of a matrix problem, J. Assoc. Comput. Mach. 5, 204-243. Householder, A. S. [1964]. "The Theory of Matrices in Numerical Analysis." Ginn (Blaisdell), Waltham, Massachusetts. Isaacson, D. L., and Madsen, R. W. [1976]. "Markov Chains: Theory and Applications." Wiley, New York. Jain, S. K., Goel, V. K., and Kwak, E. K. [1979a]. Nonnegative matrices having same nonnega- tive Moore-Penrose and Drazin inverses, Linear and Multilinear Algebra Jain, S. K., Goel, U. K., and Kwak, E. K. [1979b). Nonnegative m -th roots of nonnegative 0-symmetric idempotent matrices, Linear Algebra and Its Applic. 23, 37-52. Jain, S. K., Goel, U. K., and Kwak, E. K. [1979c]. Decompositions of nonnegative group- monotone matrices, Transactions of the A.M.S. James, K. K., and Riha, W. [1974]. Convergence criteria for successive overrelaxation, SIAM J. Numer. Anal. 12, 137-143. Johnson, C. R. [1974a]. A sufficient condition for matrix stability, J. Res. Nat. Bur. Std. 73B, 103-104. Johnson, C. R. [1974b]. Sufficiency conditions for D-stability, J. Econ. Theory 9, 53-62. Johnson, C. R. [1977]. A Hadamard product involving M-matrices, Linear Multilinear Algebra 4, 261-264. Johnson, C. R., Leighotn, F. T., and Robinson, H. A. [1979]. Sign patterns of inverse-positive matrices. Linear Algebra and Appl. 24, 75-84. Jurkat, W. B., Ryser, H. J. [1966]. Matrix factorizations of determinants and preminants, J. Algebra 3, 1 -27. Kahan, W. [1958]. Gauss-Seidel methods for solving large systems of linear equations, Ph.D. Thesis, Univ. of Toronto, Toronto, Canada. Kakutani, S. [1941]. A generalization of Brouwer's fixed point theorem, Duke Math. J.8, 457-459. Kammerer, W. J., and Plemmons, R. J. [1975]. Direct iterative methods for least squares solutions to singular operator equations, J. Math. Anal. Appl. 49, 512-526. Kaneko, K. [1978]. Linear complementarity problems and characterizations of Minkowski matrices, Linear Algebra and Appl. 20, 111 -130. Karamardian, S. [1969a]. The nonlinear complementarity problem with applications, Part 1, J. Optimization Theory Appl. 4, 87-98. Karamardian, S. [1969b]. The nonlinear complementarity problem with applications, Part II, J. Optimization Theory Appl. 4, 167-181. Karamardian, S. [1972]. The complementarity problem, Math. Progr. 2, 107-129. Karamata, Y. [1932]. Sur une inégalité relative aux foncitons convexes, Publ. Math. Univ. Belgrade 1, 145-148.D ow nl oa de d 09 /1 3/ 13 to 1 8. 7. 29 .2 40 . R ed ist rib ut io n su bje ct to SIA M lic en se or co py rig ht; se e h ttp ://w ww .si am .or g/j ou rna ls/ ojs a.p hp References 329 Karlin, S. [19681. "Total Positivity." Stanford Univ. Press, Stanford, California. Karpelevich, F. I. [1951]. On the characteristic roots of matrices with nonnegative elements (in Russian), Isv. Akad. Nauk SSSR Ser. Mat. 15, 361-383. Katz, M. [1970]. On the extreme points of a certain convex polytope, J. Combinatorial Theory 8,417-423. Katz, M. [1972]. On the extreme points of a set of substochastic and symmetric matrices, J. Math. Anal. Appl. 37, 576-579. Keilson, J. H., and Styan, G. P. H. [1973]. Markov chains and M-matrices: inequalities and equalities, J. Math. Anal. Appl. 41, 439-459. Keller, H. B. [1965]. On the solution of singular and semidefinite linear systems by iteration, SIAM J. Numer. Anal. 2,281-290. Kellog, R. B. [1971]. Matrices similar to a positive or essentially positive matrix, Linear Algebra and Appl. 4, 191-204. Kemeny, J. G., and Snell, J. L. [1960]. "Finite Markov Chains." Van Nostrand-Reinhold, Princeton, New Jersey. Keynes, J. M. [1936]. "General Theory of Employment, Interest and Money." Macmillan, New York. Klee, V. L. [1959]. Some characterizations of convex polyhedra, Acta Math. 102, 79-107. Koopmans, T. C. [1949]. Optimum utilization of the transportation system, Econometrica 17, Supplement. Krasnoselskii, M. A. [1964]. "Positive Solutions of Operator Equations." Noordhoff, The Netherlands. Krein, M. G., and Rutman, M. A. [1948]. Linear operators leaving invariant a cone in a Banach space (in Russian), Usp. Mat. Nauk (N.S.) 3, 3-95 (English trans!.: Amer. Math. Soc. Trans!. Ser. 1 10 (1962), 199-325.) Kuo, I-wen [1977]. A note on factorizations of singular M-matrices, Linear Algebra and Appl. 217-220. Kuttier, J. R. [1971]. A fourth order finite-differente approximation for the fixed membrance eigenproblem, Math. Comp. 25, 237-256. Lawson, L. M. [1975]. Computational methods for generalized inverse matrices arising from proper splittings, Linear Algebra and Appl. 12, 111 -126. Lederman, W. [1950]. Bounds for the greatest latent root of a positive matrix, J. London Math. Soc. 25, 265 -268. Leff, H. S. [ 1971]. Correlation inequalities for coupled oscillations, J. Math. Phys. 12, 569-578. Lemke, C. E. [1965]. Bimatrix equilibrium points and mathematica) programming, Manage- ment Sci. 11, 681-689. Lemke, C. E. [1968]. On complementary pivot theory, In "Mathematics of the Decision Sciences" (G. B. Dantzig and A. F. Veinott, Jr., eds.). American Mathematical Society, New York. Lemke, C. E., and Howson, J. T., Jr. [1964]. Equilibrium points of bimatrix games, SIAM J. 12, 413-423. Leontief, W. W. [1936]. Quantitative input and output relations in the economic system of the United States, Rev. Econ. Statist. 18, 100-125. Leontief, W. W. [1941]. "The Structure of the American Economy." Harvard Univ. Press, Cambridge, Massachusetts. Leontief, W. W. [1953]. "Studies in the Structure of the American Economy." Oxford Univ. Press, London and New York. Leontief, W. W. [1966]. "Input-Output Economics." Oxford Univ. Press, London and New York. Levinger, B. W. [1970]. An inequality for nonnegative matrices, Notices Amer. Matte. Soc. 17, 260.D ow nl oa de d 09 /1 3/ 13 to 1 8. 7. 29 .2 40 . R ed ist rib ut io n su bje ct to SIA M lic en se or co py rig ht; se e h ttp ://w ww .si am .or g/j ou rna ls/ ojs a.p hp 330 References Lewin, M. [1971a]. On exponents of primitive matrices, Numer. Math. 18, 154-161. Lewin, M. [1971b]. On nonnegative matrices, Pacic J. Math. 36, 753-759. Lewin, M. [1974]. Bounds for exponents of doubly stochastic primitive matrices, Math. Z. 137, 21-30. Lewin, M. [1977]. On the extreme points of the polytope of symmetrie matrices with given row sums, J. Combinatorial Theory Ser. A23, 223-231. Loewy, R., and London, D. [1978], A note on an inverse problem for nonnegative matrices, Linear and Multilinear Algebra, 6, 83-90. Loewy, R., and Schneider, H. [1975a]. Indecomposable Cones, Linear Algebra and Appl. 11, 235-245. Loewy, R., and Schneider, H. [1975b]. Positive operators on the n-dimensional ice cream cone, J. Math. Anal. Appl. 49, 375-392. London, D. [1964]. Nonnegative matrices with stochastic powers, Israel J. of Math. 2, 237-244. London, D. [1966a]. Inequalities in quadratic forms, Duke Math. J. 33, 511-522. London, D. [1966b]. Two inequalities in nonnegative symmetrie matrices, Pacific J. Math. 16, 515-536. London, D. [1971]. On matrices with a doubly stochastic pattern, J. Math. Anal. Appl. 34, 648-652. Lyapunov, A. [1892]. Problème géneral de la stabilite du mouvement, Comm. Matte. Soc. Kharkou, reproduced in Ann. Matte. Stud. 7, Princeton Univ. Press, Princeton, New Jersey, 1947. Lynn, M. S. [1964]. On the Schur product of H-matrices and nonnegative matrices and related inequalities, Proc. Cambridge Philos. Soc. 60, 425-431. Lynn, M. S., and Timlake, W. P. [1969]. Bounds for Perron eigenvectors and subdominant eigenvalues of positive matrices, Linear Algebra and Appl. 2, 143-152. Maier, G. [1970]. A matrix structural theory of piecewise linear elastoplasticity with interacting yield planes, Mechanica 5, 54-66. Maier, G. [1972]. Problem 72-2, A parametric linear complementarity problem, SIAM Rev. 14, 364-365. Mangasarian, 0. L. (I%6j. Charme, riatrors of real mat-ricrs of monotone kind, SIAM Rev. 10, 439-441. Mangasarian, O. L. [1970]. A convergent splitting for matrices, Numer. Mat!. 15, 351-353. Mangasarian, O. L. [1976a]. Linear complementarity problem solvable by a single linear program, Math. Progr. 10, 263-270. Mangasarian, O. L. [1976b]. Solution of linear complementarity problems by linear program- ming, In "Numerical Analysis Dundee 1975." (G. A. Watson, cd.). Lecture notes in mathematics 506. Springer-Verlag, Berlin, 166-175. Mangasarian, O. L. [1978]. Characterizations of linear complementarity problems as linear programs, 74-87. Mathematical Programming Study 7. North-Holland Publ., Amsterdam. Marchuk, G. I., and Kuznetzov, Yu. A. [1972]. "Stationary Iterative Methods for the Solutions of Systems of Linear Equations With Singular Matrices." Science Press, Novosibirsk. Marcus, M., and Minc, H. [1964]. "A Survey of Matrix Theory and Matrix Inequalities." Allyn and Bacon, Rockleigh, New Jersey. Marcus, M., and Newman, M. [1959]. On the minimum of the permanent of a doubly stochastic matrix, Duke Matte. J. 26, 61-72. Marcus, M., and Newman, M. [1962]. The sum of the elements of the powers of a matrix, Paci ic J. Math. 12, 627-635. Marcus, M., and Newman, M. [1965]. Generalized functions of symmetrie matrices, Proc. Amer. Mat!. Soc. 16, 826-830. Marcus, M., and Ree, R. [1959]. Diagonals of doubly stochastic matrices, Quart. J. Mat!. Oxford Ser. (2) 10, 295-302. D ow nl oa de d 09 /1 3/ 13 to 1 8. 7. 29 .2 40 . R ed ist rib ut io n su bje ct to SIA M lic en se or co py rig ht; se e h ttp ://w ww .si am .or g/j ou rna ls/ ojs a.p hp References 331 Marcus, M., Mine, H., and Moyls, B. [1961]. Some results on nonnegative matrices, J. Res. Nat. Bur. Sid. 65B, 205-209. Marek, 1. [1966]. Spektrale eigenschaften der K-positiven operatoren und einschliessungssatze für der spectralradius, Czechoslovak. Math. J. 16, 493-517. Marek, 1. [1970]. Frobenius theory of positive operators; comparison theorems and applica- tions, SIAM J. Appl. Math. 19, 607-628. Marek, 1. [1971). A note on K-stochastic operators, Casopis Pest. Mat. 96, 239-244. Markham, T. L. [1972]. Factorizations of nonnegative matrices, Proc. Amer. Math. Soc. 32, 45-47. Markov, A. A. [1908]. Limiting distribution theorem for computing the probability of a sum of variables forming a chain (in Russian), Izbrannye Tr. (1951), 365-397. Maxfield, J. E., and Minc, H. [1962]. A doubly stochastic matrix equivalent to a given matrix, Notices Anter. Marlt. Soc. 9, 309. Maybee, J. S., and Quirk, J. [1969]. Qualitative problems in matrix theory, SIAM Rev. 11, 30-51. McCallum, C. J., Jr. [1970]. The linear complementarity problem in complex space, Ph.D. Thesis, Stanford Univ. Mehmke. R. [1892]. Über das Seidelsche Verfahren, um lineare Gleichungen bei Einer sehr grossen Anzahl der Unbekannten durch sukzessive Annaherungauflisen, Moskor. Matte. Samrnl. 16, 342-345. Melendez, G. [ 1977]. "Block Iterative SOR Methods for Large Sparse Least Squares Problems," M.S. Thesis, Univ. of Tennessee. Menon, M. V. (1968]. Matrix links, an extremization problem, and the reduction of a non- negative matrix to one with prescribed row and column sums, Canad. J. Math. 20, 225-232. Menon, M. V., and Schneider, H. [1969). The spectrum of a nonlinear operator associated with a matrix, Linear Algebra and Appl. 2, 321-344. Meyer. C. D.. Jr. [1975]. The role of the group generalized inverse in the theory of finite Markov chains. SIAM Ret'. 17, 443-464. Meyer, C. D., Jr. [1978]. An alternative expression for the first passage matrix, Linear Algebra and lis Applic. 22, 41-48. Meyer. C. D., Jr.. and Plemmons. R. J. [ 1977]. Convergent powers of a matrix with applications to iterative methods for singular linear systems, SIAM J. Numer. Anal. 14, 699-705. Meyer, C. D.. Jr., and Stadelmaier. M. W. [1978]. Singular M-matrices and inverse-positivity, Linear Algebra and.4ppl. 22, 139-156. Micchelli. C. A. and Willoughby, R. A. (1979]. On functions which preserve the class of Stieltjes matrices. Linear Algebra and Appl. 23, 141-156. Miernyk. W. H. [1965]. "The Elements of Input Ouput Analysis." Random House, New York. Mínc. H. [1970]. On the maxima) eigenvector of a positive matrix, SIAM J. Numer. Anal. 7, 424-427. Minc, H. [1974a]. Irreducible matrices, Linear and Multilinear Algebra 1, 337-342. Minc, H. (1974b]. The structure of irreducible matrices. Linear and Multilinear Algebra 2, 85-90. Minc. H. [1974e). Linear transformations of nonnegative matrices, Linear Algebra and Appl. 9.149-153. Minc, H. [1978]. "Permanente" (Encyclopedia of Mathematics and its Applications.) Addison- Wesley, Reading, Massachusetts. Minkowski, H. [1900]. Zur Theorie der Einkerten in den algebraischen Zahlkbrper, Nachr. K. Ges. Wiss. Gött, Math.-Phrs. Klasse 90-93. Minkowski, H. [1907]. "Diophantische Approximationen." Teubner, Leipzig. Mirsky. L. [1963]. Resuits and problems in the theory of doubly-stochastic matrices, Z. W'ahrscheinlicltkeitstheorie und Veru-. Gebiete 1, 319-334. D ow nl oa de d 09 /1 3/ 13 to 1 8. 7. 29 .2 40 . R ed ist rib ut io n su bje ct to SIA M lic en se or co py rig ht; se e h ttp ://w ww .si am .or g/j ou rna ls/ ojs a.p hp 332 References Mirsky, L. [1964]. Inequalities and existence theorems in the theory of matrices, J. Math. Anal. Appl. 9, 99-118. Mohan, S. R. [1976]. On the simplex method and a class of linear complementarity problems, Linear Algebra and Appl. 14, 1-9. Montague, J. S., and Plemmons, R. J. [1973]. Doubly stochastic matrix equations, Israel J. Mail:. 15, 216-229. Moré, J. R. [19731. Classes of functions and feasibility conditions in nonlinear complementarity problems, Tech. Rep. No. 73-174, Dept. of Computer Sciences, Cornell Univ. Moreau, J. J. [1962]. Decomposition orthogonale d'un espace hilbertien selon deux cones mutuellement polaires, C. R. Acad. Sci. Paris 255, 233-240. Moylan, P. J. [1977]. Matrices with positive principal minors, Linear Algebra and Appl. 17, 53-58. Mulholland, H. P., and Smith, C. A. B. [1959]. An inequality arising in genetical theory, Amer. Math. Mo. 66, 673-683. Murty, K. G. [1972]. On the number of solutions of the complementarity problems and spanning properties of complementarity cones, Linear Algebra and Appl. 5, 65-108. Nekrasov, P. A. [1885]. Die Bestimmung der Unbekannten nach der Methode der Kleinstan Quadrate bei einer sehr grossen Anzahl der Unbekannten, Mat. Sb. 12, 189-204. Neumann, M. [ 1979]. A note on generalizations of strict diagonal dominante for real matrices, Linear Algebra and Appi. 26, 3-14. Neumann, M., and Plemmons, R. J. [ 1978]. Convergent nonnegative matrices and iterative methods for consistent linear systems. Numer. Math. 31, 265-279. Neumann, M., and Plemmons, R. J. [ 1979]. Generalized inverse-positivity and splittings of M-matrices, Linear Algebra and Appl. 23, 21-26. Neumann, M., and Plemmons, R. J. [ 1979]. M-matrix characterizations Il: general M-matrices, Linear and Multilinear Algebra 9, 211-225. Nikaido, H. [1968]. "Convex Structures and Economic Theory." Academic Press, New York. Oldenburger, R. [1940]. Infinite powers of matrices and characteristic roots, Duke Math. J. 6,357-361. Ortega, J. M. [1972]. "Numerical Analysis: A Second Course." Academic Press, New York. Ortega, J. M., and Plemmons, R. J. [1979]. Extensions of the Ostrowski-Reich theorem for SOR iterations, Linear Algebra and Appi. Ortega, J. M., and Rheinboldt, W. [1967]. Monotone iterations for nonlinear equations with applications to Gauss-Seidel methods, SIAM J. Numer. Anal. 4, 171-190. Ostrowski, A. M. [1937]. Ober die Determinanten mit uberwiegender Hauptdiagonale, Comment. Math. Hek. 10, 69-96. Ostrowski, A. M. [1952]. Bounds for the greatest latent root of a positive matrix, J. London Math. Soc. 27, 253-256. Ostrowski, A. M. [1954]. On the linear iteration procedures for symmetric matrices, Rend. Mat. e Appl. 14, 146-163. Ostrowski, A. M. [1956]. Determinanten mit überwiegender Hauptdiagonale und die absolut Konvergenz von linearen Iterationsprozessen, Comment. Math. Helv. 30, 175-210. Ostrowski, A. M. [1960/61]. On the eigenvector belonging to the maximal root of a nonnegative matrix, Proc. Edinburgh Math. Soc. 12, 107-112. Ostrowski, A. M. [1963]. On positive matrices, Math. Annalen 150, 276-284. Ostrowski, A. M., and Schneider, H. [1960]. Bounds for the maximal characteristic root of a nonnegative irreducible matrix, Duke Math. J. 27, 547-553. Pang, J. S. [1976]. "Least Element Complementarity Theory," Ph.D. thesis, Stanford Univ. Pang, J. S., Kaneko, K., and Hallman, W. P. [1977]. On the solution of some (parametric) linear complementarity problems with application to portfolio analysis, structural engi- D ow nl oa de d 09 /1 3/ 13 to 1 8. 7. 29 .2 40 . R ed ist rib ut io n su bje ct to SIA M lic en se or co py rig ht; se e h ttp ://w ww .si am .or g/j ou rna ls/ ojs a.p hp References 333 neering and graduation, Working paper 77-27, Dept. of Industrial Engineering, Univ. of Wisconsin, Madison, Wisconsin. Pearl, M. [1973]. "Matrix Theory and Finite Mathematica." McGraw-Hill, New York. Perfect, H. [1953]. Methods of constructing certain stochastic matrices I, Duke Math. J. 20, 395-404. Perron, O. [1907]. Zur Theorie der Über Matrizen, Math. Ann. 64, 248-263. Plemmons, R. J. [1973]. Regular nonnegative matrices, Proc. Amer. Math. Soc. 39, 26- 32. - Plèmmons, R. J. [1974]. Direct iterative methods for linear systems using weak splittings, Acta Univ. Car. 1 -8. Plemmons, R. J. [1976a]. Regular splittings and the discrete Neumann problem, Numer. Math. 25, 153-161. Plemmons, R. J. [1976b]. M-matrices leading to semiconvergent splittings, Linear Algebra and Appl. 15, 243-252. Plemmons, R. J. [1977]. M-matrices characterizations I: Nonsingular M-matrices, Linear Algebra and Appl. 18, 175-188. Plemmons, R. J. [1979]. Adjustment by least squares in Geodesy using block iterative methods for sparse matrices, Proc. of the U.S. Army Conf. on Numerical Anal. and Computers, El Paso, Texas. Plemmons, R. J., and Cline, R. E. [1972]. The generalized inverse of a nonnegative matrix, Proc. Amer. Math. Soc. 31, 46-50. Poole, G., and Boullion, T. [1974]. A survey on M-matrices, SIAM Rev. 16, 419-427. Price, H. S. [1968]. Monotone and oscillation matrices applied to finite differente approxi- rnation, Math. Comp. 22, 484-516. Pullman, N. J. [1971]. A geometric approach to the theory of nonnegative matrices, Linear Algebra and Appl. 4, 297-312. Pullman, N. J. [1974]. A note on a theorem of Minc on irreducible nonnegative matrices, Linear and Multilinear Algebra 2, 335-336. Rao, P. S. [1973]. On generalized inverses of doubly stochastic matrices, Sankhya Ser. A35, 103-105. Reich, E. [1949]. On the convergente of the classical iterative method of solving linear simul- taneous equations, Ann. Math. Statist. 20, 448-451. Rheinboldt, W. C., and Vandergraft, J. S. [1973]. A simple approach to the Perron-Frobenius theory for positive operators on general partially-ordered finite-dimensional linear spaces, Math. Comp. 27, 139-145. Richman, D. J., and Schneider, H. [1974]. Primes in the semigroup of nonnegative matrices, Linear Multilinear Algebra 2, 135-140. Richman, D. J., and Schneider, H. (1978]. On the singular graph and the Weyr characteristic of an M-matrix, Aequationes Math. 17, 208-234. Robert, F. [1966]. Recherche d'une M-matrice, parmi les minorantes d'un operateur lineaire, Numer. Math. 9, 189-199. Robert, F. [1973]. "Matrices Non-negatives et Normes Vectorielles." Lecture Notes, Scientific and Medical Univ. at Grenoble. Rockafellar, R. T. [1970]. "Convex Analysis." Princeton Univ. Press. Princeton, New Jersey. Romanovsky, V. (1936). Recherches sur les chains de Markoff, Acta Math. 66, 147-251. Rothblum, U. G. [1975]. Algebraic eigenspaces of nonnegative matrices, Linear Algebra and Appl. 12, 281-292. Rothblum, U. G. (1979]. An index classification of M-matrices, Linear Algebra and Appl. 23, 1-12. D ow nl oa de d 09 /1 3/ 13 to 1 8. 7. 29 .2 40 . R ed ist rib ut io n su bje ct to SIA M lic en se or co py rig ht; se e h ttp ://w ww .si am .or g/j ou rna ls/ ojs a.p hp 334 References Saigal, R. [1971). Lemke's algorithm and a special linear complementarity problem, Opsearch 8, 201-208. Salzmann, F. L. [1972]. A note on eigenvalues of nonnegative matrices, Linear Algebra and Appl. 5, 329-338. Samelson, H., Thrall, R. M., and Wesler, O. [1958]. A partitioning theorem for Euclidean n-space, Proc. Amer. Math. Soc. 9, 805-807. Sandberg, I. W. (1974a]. A global non-linear extension of the Le Chatelier-Samuelson principle for linear Leontief models, J. of Economic Th. 7, 40-52. Sandberg, I. W. [1974b], Some comparative-status results for nonlinear input-output models in a multisectored economy, and related results, J. Economic Theory 8, 248-258. Sarma, K. [1977]. An input-output economie model, IBM Systems J. 16, 398-420. Sawashima, 1. [1964). On spectra) properties of some positive operators, Nat. Sci. Rep. (Ochanormizu Univ.) 15, 53-64. Schaefer, H. H. [1960]. Some spectral properties of positive linear operators, Pacific J. Math. 10, 1009-1019. Schaefer, H. H. [1971]. "Topological Vector Spaces," 3rd printing. Springer, New York. Schaefer, H. H. [1974). "Banach Lattices and Positive Operators." Springer, New York. Schneider, H. [1953]. An inequality for latent roots applied to determinants with dominant principal diagonal, J. London Math. Soc. 28, 8-20. Schneider, H. [1956]. The elementary divisors, associated with 0, of a singular M-matrix, Proc. Edinburgh Math. Soc. 10, 108-122. Schneider, H. [1965]. Positive operators and an inertia theorem, Numer. Math. 7, 11-17. Schneider, H. [1977]. The concepts of irreducibility and full indecomposability of a matrix in the works of Frobenius, König and Markov, Linear Algebra and Appl. 18, 139-162. Schneider, H., and Turner, R. E. L. [1972]. Positive eigenvectors of order-preserving maps, J. Math. Anal. Appl. 7, 508-519. Schneider, H., and Vidyasagar, M. [1970]. Cross-positive matrices, SIAM J. Numer. Anal. 7, 508-519. Schröder, J. [1961]. Lineare Operatoren mit positive Inversen Arch. Rational Mech. Anal. 8, 408-434. Schröder, J. [1970]. Proving inverse-positivity of linear operators by reduction, Numer. Math. 15, 100-108. Schröder, J. [1972]. Duality in linear range-domain implications, In "Inequalities III" (0 Shisha, ed.), pp. 321-332. Academie Press, New York. Schröder, J. [19781. M-matrices and generalizations, STAM Rev. 20, 213-244. Schumann, J. [1968]. Input-Output Analyse. Springer-Verlag, Berlin and New York. Schur, I. [1923]. Ober eine Klasse von Mittelbildungen mit Anwendungen auf die Determi- nantentheorie, Sitzber. Berl. Math. Ges. 22, 9-20. Schwarz, S. [1967). A note on the semigroup of doubly stochastic matrices, Mat. Casopis Sloven. Akad. Vied. 17, 308-316. Seneta, E. [1973]. "Non-Negative Matrices." Wiley, New York. Sierksma, G. [1979]. Nonnegative matrices; the open Leontief model, Linear Algebra and Appl, Sinkhorn, R. [1964]. A relationship between arbitrary positive matrices and doubly stochastic matrices, Ann. Math. Statist. 35, 876-879. Sinkhorn, R. [1974]. Diagonal equivalence to matrices with prescribed row and column sums II, Proc. Amer. Math. Soc. 45, 195-198. Sinkhorn, R., and Knopp, P. [1967]. Concerning nonnegative matrices and doubly stochastic matrices, Pacific J. Math. 21, 343-348. Smith, J. H. [1974]. A geometrie treatment of nonnegative generalized inverses, Linear and Multilinear Algebra 2, 179-184. D ow nl oa de d 09 /1 3/ 13 to 1 8. 7. 29 .2 40 . R ed ist rib ut io n su bje ct to SIA M lic en se or co py rig ht; se e h ttp ://w ww .si am .or g/j ou rna ls/ ojs a.p hp References 335 Southwell, R. V. [1946]. "Relaxation Methods in Theoretical Physics." Oxford Univ. Press (Clarendon), London and New York. Stein, P. [1952]. Some general theorems on iterants, J. Res. Nat. Bur. Sid. 48, 82--83. Stein, P., and Rosenberg, R. L. [1948]. On the solution of linear simultaneous equations by iteration, J. London Math. Soc. 23, 111 -118. Stoer, J., and Witzgall, C. [1970]. "Convexity and Optimization in Finite Dimensions 1." Springer, New York. Stone, D. [1970]. "An Economie Approach to Planning the Conglomerate of the 70's. Auerbach Publ. New York. Stolper, W., and Samuelson. P. A. [1941]. Protection and real wages, Rer. Econ. Studies 9, 58-73. Strang, G. [19761. "Linear Algebra and its Applications." Academie Press, New York. Suleimanova, H. R. [1949]. Stochastic matrices with real eigenvalues, Sotiet Math. Dokt 66, 343-345. Sylvester, J. J. [1883]. On the equation to the secular inequalities in the planetary theory, Philos. Mag. 16; (5) 267-269. Tam, B. S. [1977]. "Some Aspects of Finite Dimensional Cones," Ph.D. Thesis, Univ. of Hong Kong. Tamir, A. [1974]. Minimality and complementarity properties associated with Z-functions and M-functions, Math. Progr. 7, 17-31. Tartar, L. [1971]. Une nouvelle characterization des M-matrices, Ree. Francaise Informat. Recherche Operationnelle 5, 127-128. Taskier, C. E. [1961]. "Input-Output Bibliography." United Nations Publ., New York. Taussky, O. [1958]. Research problem, Bull. Amer. Math. Soc. 64, 124. Thomas, B. [1974]. Rank factorization of nonnegative matrices, SIAM Reu. 16. 393. Tucker, A. W. [1963]. Principal pivotal transforms of square matrices, SIAM Ree. 5, 305. Ullman, J. L. [1952]. On a theorem of Frobenius, Michigan Math. J. 1, 189-193. Uekawa, Y., Kemp, M. C., and Wegge, L. L. [1972]. P and PN-matrices, Minkowski and Metzler Matrices, and generalizations of the Stoepler-Samuelson-Rybezynski Theorems, J. Internat. Econ. 3, 53-76. Vandergraft, J. S. [1968]. Spectral properties of matrices which have invariant cones, SIAM J. Appl. Math. 16, 1208-1222. Vandergraft, J. S. [1972]. Applications of partial orderings to the study of positive definiteness, monotonicity, and convergence, SIAM J. Numer. Anal. 9, 97-104. van der Waerden, B. L. [1926]. Aufgabe 45, Jber. Deutsch. Math. Verein. 35, 117. Varga, R. S. [1959]. p-cyclic matrices: a generalization of the Young-Frankel successive over- relaxation scheme, Pacific J. Math. 9, 617-628. Varga, R. S. [1960]. Factorization and normalized iterative methods, in Boundary Problems in Differential Equations (R. E. Langer, ed.), pp. 121-142. Univ. of Wisconsin Press, Madison, Wisconsin. Varga, R. S. [1962]. "Matrix Iterative Analysis." Prentice-Hall, Englewood Cliffs, New Jersey. Varga, R. S. [1968]. Nonnegatively posed problems and completely monotonic functions, Linear Algebra and Appl. 1, 329-347. Varga, R. S. [1976]. On recurring theorems on diagonal dominance, Linear Algebra and Appl. 13, 1 -9. Varga, R. S. [a], Revision of Varga [1962], preprint. Vitek, Y. [1975]. A bound connected with primitive matrices, Numer. Math. 23, 255-260. Vitek, Y. [1977]. Exponents of primitive matrices and a Diophantine problem of Frobenius, Ph.D. Thesis, Technion-Israel Institute of Technology, Haifa, Israel. D ow nl oa de d 09 /1 3/ 13 to 1 8. 7. 29 .2 40 . R ed ist rib ut io n su bje ct to SIA M lic en se or co py rig ht; se e h ttp ://w ww .si am .or g/j ou rna ls/ ojs a.p hp 336 References von Mises, R., and Pollaczek-Geiringer, H. [1929]. Praktische Verfahren der Gleichungsau- flSsing, Z. Angew. Math. Mech. 9, 58-77. von Neumann, J. [1945/46]. A model of a general economie equilibrium, Rev. Econ. Stud. 13, 10-18. Wall, J. R. [1975]. Generalized inverses of stochastic matrices, Linear Algebra and Appl. 10, 147-154. Wallace, V. L. [ 1974]. Algebraic techniques for numerical solutions of queueing networks, Proc. Conf. Math. Methods in Queueing Theory, Lecture Notes in Economics and Math. Systems 98. Springer-Verlag, Berlin and New York. Wielandt, H. [1950]. Unzerlegbare, nicht negative Matrizen, Math. Z. 52, 642-648. Willoughby, R. A. [1977]. The inverse M-matrix problem, Linear Algebra and Appl. 18, 75-94. Willson, A. N. [1971]. A useful generalization of the P o matrix concept, Numer. Math. 17, 62-70. Yan, C. [1969]. "Introduction to Input—Output Economics." Holt, New York. Young, D. M. [1950]. "Iterative Methods for Solving Partial Difference Equations of Elliptic Type," Ph.D. Thesis, Harvard Univ., Cambridge, Massachusetts. Young, D. M. [1972]. "Iterative Solution of Large Linear Systems." Academie Press, New York. D ow nl oa de d 09 /1 3/ 13 to 1 8. 7. 29 .2 40 . R ed ist rib ut io n su bje ct to SIA M lic en se or co py rig ht; se e h ttp ://w ww .si am .or g/j ou rna ls/ ojs a.p hp INDEX A Aggregationldisaggregation methods, 312 Algebraic eigenspace, 42 Almost monotone matrix, 120 Assumption of fixed proportion of factor inputs, 249 Asymptotic race of convergence, 172 B Birkhoff theorem on doubly stochastic matrices, 50 on K-nonnegative matrices, 6 Bounds for eigenvalues not equal to the spectral radius, 51, 59 C Chain of classes, 42 length of, 42 Circuit, 34 Class, 39 basic, 39 final, 39 height of, 39 nonbasic, 39 Cogredience, 27 Collatz-Wielandt function, 60 Communication between classes, 39 between indices, 39 Comparision matrix, 142 Complementary pivot algorithm, 295-296 Completely decomposable matrix, 75 Completely monotonic functions, 142-146 Completely positive matrix, 20, 304-306 Completely reducible matrix, 53 Cone, 2, 21 complementary, 276 convex,2 dual, 1 ice cream, 2 indecomposable, 20 pointed, 2 polyhedral, 2 proper, 3, 181 reproducing, 2 simplicial, 3 solid, 2 Cone independence, 71 Convergent matrix, 9 Convex body, 5 Copositive matrix, 20, 295 strictly, 295 with respect to a cone, 23 Copositive plus matrix, 295 cp-rank. 304 Cross-positive matrix, 21 strongly, 21 Cyclic matrix, 34, 309-310 D D-monotone, 119 DAD theorems, 58-59 Degree of an eigenvalue, 6 of a nonnegative matrix, 42 Diagonal of a matrix, 49 Diagonally dominant matrix, 20 generalized column, 186 irreducibly, 186 lower semistrictly, 137 strictly, 137, 186 Directed graph, 29 337 D ow nl oa de d 09 /1 3/ 13 to 1 8. 7. 29 .2 40 . R ed ist rib ut io n su bje ct to SIA M lic en se or co py rig ht; se e h ttp ://w ww .si am .or g/j ou rna ls/ ojs a.p hp 338 Index strongly connected, 30 Distribution vector initial, 213 initial probability, 212 probability, 212 stationary, 213 Doubly nonnegative matrix, 304-306 Doubly stochastic matrix, 48. 66, 240 pattern, 55 Doubly substochastic matrix, 104 Drazin inverse, 118, 147, 198, 227 E Eigenset, 191 Eigenvector, generalized, 42 principal, 7 Equimodular matrices, 142 Ergodic state, 219 Essentially nonpositive matrices, 252, see also Matrices, of Leontief type; Z-matrices Extreme points of matrix polytopes, 100-105 polytope of doubly stochastic matrices. see Birkhoff theorem Face, 3 Factorizable matrix, 75 Finite homogeneous Markov chain, see Markov chain Fully indecomposable matrix, 56 Fundamental matrix associated with a Markov chain, 234 G Gauss-Seidel method, 171 block, 174 point, 174 Generalized left inverse, 118 Generalized right inverse, 118 Generalized ultrametric matrices, 307 Generalized left inverse positive matrix, 121 Green's relations, 64 on the semigroup of nonnegative matrices, 72-73 Group inverse, 118, 226-240 Group monotone matrix, 119 H H-matrix, 185 Hadamard-Fischer inequality, 57-160 Hadamard product, 159 Hawkins-Simon condition, 161, 253 Heat equation, 167 Hitchcock's transportation problem, 110 Idempotent nonnegalive matrices, 65-67 Incidence matrix, 75 Indecomposable matrix, see Irreducible, matrix Index of cyclicity, 34 of primitivity, 46 bounds for, 46-48 of a square matrix, 61, 118, 198 Input matrix, 251-257, 260-266 Input-output table, 247 Inverse eigenvalue problem, 61, 87 for primitive matrices, 302-303 for symmetrie nonnegative matrices, 88-92, 301, 303 with prescribed diagonal elements, 93-98 for symmetrie positive matrices, 92-93 Inverse M-matrix problem, 163 Inverse nonnegative matrix, 306-307 Inverse positive matrix, 137 Irreducible matrix, 27, 29-38 M-matrix, 141, 156, 160, 267 monotone matrix, 116 Jacobi method, 170 block, 174 point, 174 K K-inverse-positive matrix, 112 K-irreducible matrix, 11-13, 15 K-monotone matrix, 112 K-nonnegative matrix, 5 K-nonsingular M-matrix, 112 K-positive matrix, 5, 13-14 K-primitive matrix, 16-18 K-reducible matrix, I 1 D ow nl oa de d 09 /1 3/ 13 to 1 8. 7. 29 .2 40 . R ed ist rib ut io n su bje ct to SIA M lic en se or co py rig ht; se e h ttp ://w ww .si am .or g/j ou rna ls/ ojs a.p hp Index 339 K-semipositive matrix, 9, 114 K-singular M-matrix, 114 K-stochastic matrix, 23 Krein-Rutman theorem, 6 L a,- inverse, 117 L-monotone matrix, 119 L-matrix, 296 Least element, 279 Left inverse, 67 Leontief input-output model, 243 closed, 245, 258-265 feasibility of, 260 open, 245, 251-258 feasibility of, 252 profitability of, 252 Leontief matrix, 282, 296 pre, 282 totally, 282 Lexico-positive vector, 274 Limiting matrix of a Markov chain, 227, 234 Linear complementarity problem, 271 parametric, 281 with upper bounds, 281 over cones, 298 Linear equations, 165 Linear least-squares problem, 178 LP solvability, 285-290 LU decomposition of an M-matrix, 157 LU nonnegative factorization, 86 Lyapunov theorem, 162 M µ-positive matrix, 22 M-matrix, 133 nonsingular, 133-142, 158-164, 166, 181-190,245,253-255, 267-270,272,290-292,294 with property c, 152-156. 200-202, 226-228, 261, 263 singular, 147-164,207,213,242. 310-311 Markov chain, 48, 212-243 absorbing, 221 ergodic, 220 period of, 221 periodic, 220 regular, 220 solutions of using iterative methods, 307-312 Matrices of Leontief type, 252 Maximal subgroups of nonnegative matrices, 71 Monomial matrix, 67 Monotone matrix, 137 in a set, 119 Moore-Penrose generalized inverse, 83, 86,119-127,207.240 N Nearly completely decomposable matrix, 312 Nonlinear complementarity problem, 298 Nonnegative matrix, 26-62 doubly, 304-306 inverse, 306-307 on a set, 119 Nonnegative orthant, 1 Nonnegative rank, 304 Nonnegative rank factorization, 67, 84 Nonnegative stability, 150 Normal form of a cyclic matrix, 32 of a reducible matrix, 43 rL o>-matrix, 160 Open sector, 244 Optimum SOR relaxation parameter, 174 Orthostochastic matrix, 85 Oscillatory matrix, 57 Ostrowski-Reich theorem, 195 Output equilibrium vector, 261 P P-matrix, 134, 272-276 Partly decomposable matrix, 75 Permanent, 51 Perron-Frobenius theorem, 27, 32 in a game of numbers, 312-314 in nonnegative linear systems, 314-315 Perron root, 299-301 Poisson's equation, 196 Polyhedron, 49 Polytope, 49 Positive definite matrix, 20 Positive eigenvector of an irreducible matrix, 37, 60 Positive matrix, 26 Positive semidefinite matrix, 20 Positive stable matrix, 113, 135 D ow nl oa de d 09 /1 3/ 13 to 1 8. 7. 29 .2 40 . R ed ist rib ut io n su bje ct to SIA M lic en se or co py rig ht; se e h ttp ://w ww .si am .or g/j ou rna ls/ ojs a.p hp Index Price vector, 252 Prime matrix, 75-82 Primitive matrix, 28, 45-54, 223-226 Principal minors, 34-35, 149-150 Principal pivot transform, 273 Principal pivoting method, 271-272 Proper splitting, 207 Q-matrix, 276-279 Quadratic form sign equivalent hermitian matrices, 192 R r-monotone matrix, 67 Random walk, 217, 236-241 Rank factorization, 67 Rectangular monotone matrix, 119 Reduced triangular block form, 262, see also Normal form Reducible matrix, 27, 38-45 Regular D-class, 64, 70 Regular element, 64 Regular matrix, 277 Regular progression hypothesis, 291 Regular splitsing, 130 convergent, 138 convergent weak, 138 theorem, 183 weak, 151 Restricted basis simplex method, 291 Right inverse, 67 Safety factor, 291 Schur complement, 159, 293 Schur's determinantal formula, 293 Semiconvergent matrix, 152, 197, 228-229, 235-237 Semigroup, 64 of doubly stochastic matrices, 82-83 of nonnegative matrices, 67--82 Semi-inverse, 64-117 Semimonotone matrix, 119 strictly, 277 Semipositive matrix, 136 Set monotonicity, 127-128 Simple odd cactus, 101 Simple path, 34 length of, 34 Singular linear system, 196-203 SOR method, 169, 172-181 block, 174 p-cyclic, 307-312 point, 174 symmetric, 204 Spectral radius, 6, 31, 52, 53, 56, 159 bounds for, 37, 38, 60 Star-shaped set, 291 Stationary probability distribution vector. 2 12-24 1 Stieltjes matrix, 109, 141, 201, 221-224, 265 Stein-Rosenberg theorem, 187, 201 Stochastic matrix, 48-52, 54, 212, 314 Stoper-Samuelson condition, 270 theorem, 270 Strictly ultrametric matrices, 307 Subpermutation matrix, 104 Successive overrelaxation method, see SOR method T t-matrix, 160, 164 T-monotone matrix, 120 Taussky's unification problem, 164 Term rank, 110 symmetric, 110 Totally nonnegative matrix, 57, 163 Totally positive matrix, 57 Transient state, 219 Transition matrix, 212 standard form, 224 Triangular block form, 39, 54, see also Normal form v Value added vector, 252 van der Waerden conjecture, 51, 62 von Neumann model. 269 W Weak monotone, 120 Z Z-matrix, 279D ow nl oa de d 09 /1 3/ 13 to 1 8. 7. 29 .2 40 . R ed ist rib ut io n su bje ct to SIA M lic en se or co py rig ht; se e h ttp ://w ww .si am .or g/j ou rna ls/ ojs a.p hp


Comments

Copyright © 2025 UPDOCS Inc.