Department of electrical and electronic engineering

May 4, 2018 | Author: Anonymous | Category: Engineering
Report this link


Description

1. School of Applied Sciences and Technology ~ 1 ~Shahjalal University of Science and TechnologyKumargaon, Sylhet - 3114Department of Electrical and Electronic EngineeringFirst Year Semester ICourse no. Course Title Hours/WeekTheory + LabCredits Pre-requisiteEEE 101 Electrical Circuits I 3 + 0 3.0 N/ACSE 133 Structured Computer Programming 3 + 0 3.0 N/ACSE 134 Structured Computer Programming Lab. 0 + 6 3.0 N/AENG 101 English Language I 2 + 0 2.0 N/AENG 102 English Language I Lab. 0 + 2 1.0 N/ACSE 108 Computer Aided Engineering Drawing 0 + 4 2.0 N/AMAT 101 Co-ordinate Geometry and Linear Algebra 3 + 0 3.0 N/APHY 103 Mechanics, Wave, Heat & Thermodynamics 3 + 0 3.0 N/APHY 104 Physics I Lab 0 + 3 1.5 N/ATotal 14 + 15 21.5First Year Semester IICourse no. Course Title Hours/WeekTheory + LabCredits Pre-requisiteEEE 123 Electrical Circuits II 3 + 03.0EEE 101EEE 124 Electrical Circuits Lab. 0 + 3 1.5 EEE 101EEE 126 Electrical Circuit Simulation Lab 0 + 3 1.5 EEE 101PHY 207 Electromagnetism, Optics & Modern Physics 3 + 0 3.0 PHY 103PHY 204 Physics II Lab. 0 + 3 1.5 PHY 104CHE 101 General Chemistry 3 + 0 3.0 N/ACHE 102General Chemistry Lab (Inorganic andQuantitative Analysis Lab)0 + 3 1.5 N/AENG 103 English Language II 2 + 0 2.0 ENG 101ENG 104 English Language II Lab 0 + 2 1.0 ENG 102MAT 103 Differential and Integral Calculus 3 + 0 3.0 MAT 101Total 14 + 14 21Second Year Semester ICourse no. Course Title Hours/WeekTheory + LabCredits Pre-requisiteEEE 221 Electronics I 3 + 0 3.0 EEE 101 & 123EEE 222 Electronic Circuit Simulation Lab. 0 + 3 1.5 EEE 124 & 126EEE 223 Electrical Machines I 3 + 0 3.0 EEE 101 & 123EEE 224 Electrical Machines I Lab. 0 + 3 1.5 EEE 124 & 126EEE 229 Electromagnetic Fields and Waves 3 + 0 3.0 MAT 102 2. School of Applied Sciences and Technology ~ 2 ~CSE 209 Numerical Analysis 2 + 0 2.0 CSE 135CSE 210 Numerical Analysis Lab. 0 + 2 1.0 CSE 136BAN 243 Cost and Management Accounting 3 + 0 3.0 N/AMAT 221 Vector Analysis and Complex Variables 3 + 0 3.0 MAT 103Total 17 + 08 21Second Year Semester IICourse no. Course Title Hours/WeekTheory + LabCredits Pre-requisiteEEE 225 Electrical Machines II 3 + 03.0 EEE 223EEE 226 Electrical Machines II Lab 0 + 31.5 EEE 224EEE 227 Electronics II 3 + 03.0 EEE 221EEE 228 Electronics Lab 0 + 31.5 EEE 222STA 202 Basic Statistics & Probability 4 + 0 4.0 N/AECO 103 Principles of Economics 4 + 0 4.0 N/AMAT 223 Ordinary and Partial Differential Equations 3 + 0 3.0 MAT 221Total 17 + 06 20Third Year Semester ICourse no. Course Title Hours/WeekTheory + LabCredits Pre-requisiteEEE 321 Signals and Linear Systems 3 + 0 3.0 EEE 101 & 123EEE 323 Digital Electronics 3 + 0 3.0 EEE 221EEE 324 Digital Electronics Lab 0 + 3 1.5 EEE 222EEE 325 Power System I 3 + 03.0EEE 101 & 123EEE 326 Power System I Lab 0 + 31.5EEE 124 & 126EEE 327 Electrical Properties of Materials 3 + 03.0EEE 101 & 123EEE 328 Electrical Services Design0 + 31.5EEE 101 & 123IPE 301 Industrial & Business Management 3 + 0 3.0 N/ATotal 15 + 09 19.5Third Year Semester IICourse no. Course Title Hours/WeekTheory + LabCredits Pre-requisiteEEE 329 Digital Communication Engineering 3 + 0 3.0 MAT 204EEE 330 Digital Communication Engineering Lab 0 + 3 1.5 MAT 204EEE 331 Digital Signal Processing I 3 + 03.0EEE 321EEE 332 Digital Signal Processing I Lab 0 + 31.5EEE 321 3. School of Applied Sciences and Technology ~ 3 ~EEE 333 Microprocessor & Assembly Language 3 + 03.0 EEE 323EEE 334 Microprocessor & Assembly Language Lab 0 + 3 1.5 EEE 324EEE 335 Control System I 3 + 0 3.0 EEE 323EEE 336 Control System I Lab 0 + 3 1.5 EEE 324EEE 3** Option I 3 + 0 3.0 Option listTotal 15 + 12 21Fourth Year Semester ICourse no. Course Title Hours/WeekTheory + LabCredits Pre-requisiteEEE 400 Project/Thesis (Initial work)0 + 4 2.0 Completion of300 levelcoursesEEE 421 Solid State Devices 3 + 03.0EEE 221EEE 423 Computer Interfacing and Industrial Automation3 + 03.0EEE 333 & 335EEE 424Computer Interfacing and Industrial AutomationLab0 + 3 1.5 EEE 334 & 336EEE 4** Option II 3 + 03.0Option listEEE 4** Option III 3 + 03.0Option listEEE 4** Option III Lab 0 + 31.5Option listEEE 4** Option IV 3 + 0 3.0 Option listTotal 15 + 10 20Fourth Year Semester IICourse no. Course Title Hours/WeekTheory + LabCredits Pre-requisiteEEE 408 Project/Thesis0 + 8 4.0 Completion of300 level coursesEEE 4** Option V 3 + 03.0Option listEEE 4** Option V Lab 0 + 31.5Option listEEE 4** Option VI 3 + 03.0Option listEEE 4** Option VII 3 + 03.0Option listEEE 4** Option VIII 3 + 03.0Option listEEE 4** Option VIII Lab0 + 31.5Option listTotal 12 + 14 19Total Credit: 160 4. School of Applied Sciences and Technology ~ 4 ~List of OptionsOption I CoursesCourse Number Course Title Credit Hour GroupEEE 337 Power System II 3.0 PowerEEE 351 Analog Integrated Circuits 3.0 ElectronicsEEE 371 Random Signals and Processes 3.0 CommunicationOption II CoursesCourse Number Course Title Credit Hour GroupEEE 439 Electrical Machines III/ Energy Conversion III 3.0 PowerEEE 453 Processing and Fabrication Technology 3.0 ElectronicsEEE 473 Digital Signal Processing II 3.0 CommunicationCSE 411 PLC troubleshooting and programming 3.0 ComputerOption III CoursesCourse Number Course Title Credit Hour GroupEEE 441EEE 442Power ElectronicsPower Electronics Lab3.01.5PowerEEE 455EEE 456VLSI IVLSI I Lab3.01.5 ElectronicsEEE 457 (any one)EEE 458Microcontroller System DesignMicrocontroller System Design Lab3.01.5EEE 475EEE 476RF and Microwave EngineeringRF and Microwave Engineering Lab3.01.5CommunicationCSE 413CSE 414Microprocessor System DesignMicroprocessor System Design Lab3.01.5ComputerOption IV CoursesCourse Number Course Title Credit Hour GroupEEE 443 Power Plant Engineering 3.0 PowerEEE 459 Compound Semiconductor and Hetero-Junction Devices 3.0 ElectronicsEEE 477 Geographical Communication 3.0 CommunicationCSE 417 Real Time Computer System 3.0 Computer 5. School of Applied Sciences and Technology ~ 5 ~Option V CoursesCourse Number Course Title Credit Hour GroupEEE 445EEE 446Power System ProtectionPower System Protection Lab3.01.5PowerEEE 447 High Voltage Engineering(any one)EEE 448High Voltage Engineering Lab3.01.5EEE 461EEE 462VLSI IIVLSI II Lab3.01.5ElectronicsEEE 463 Programmable ASIC Design(any one)EEE 464Programmable ASIC Design Lab3.01.5EEE 481EEE 482Optical Fiber CommunicationOptical Fiber Communication Lab3.01.5 CommunicationCSE 361CSE 362Computer NetworkingComputer Networking Lab3.01.5 ComputerOption VI CoursesCourse Number Course Title Credit Hour GroupEEE 449 Power System Reliability 3.0 PowerEEE 465 Optoelectronics 3.0 ElectronicsEEE 483 Telecommunication Engineering 3.0 CommunicationCSE 329 Computer Architecture 3.0 ComputerOption VII CoursesCourse Number Course Title Credit Hour GroupEEE 451 Power System Operation and Control 3.0 PowerEEE 467 Semiconductor Device Theory 3.0 ElectronicsEEE 485 Cellular Mobile and Satellite Communication 3.0 CommunicationCSE 415 Multimedia Communications 3.0 ComputerOption VIII (Interdisciplinary) CoursesCourse Number Course Title Credit Hour GroupEEE 487EEE 488Control System IIControl System II Lab3.01.5 InterdisciplinaryEEE 489EEE 490Renewable Energy SystemsRenewable Energy Systems Lab3.01.5 InterdisciplinaryEEE 491EEE 492Biomedical InstrumentationBiomedical Instrumentation Lab3.01.5 InterdisciplinaryEEE 493EEE 494Measurement and InstrumentationMeasurement and Instrumentation Lab3.01.5 Interdisciplinary 6. School of Applied Sciences and Technology ~ 6 ~Detailed SyllabusCore Courses:EEE 101 ELECTRICAL CIRCUITS I3 hours/Week, 3 CreditsCircuit variables and elements: Voltage, current, power, energy, independent and dependent sources, and resistance. Basic laws: Ohm’s law,Kirchoff’s current and voltage laws. Simple resistive circuits: Series and parallel circuits, voltage and current division, wye-delta transformation.Techniques of circuit analysis: Nodal and mesh analysis including super node and super mesh. Network theorems: Source transformation, Thevenin’s,Norton’s and superposition theorems with applications in circuits having independent and dependent sources, maximum power transfer condition andreciprocity theorem. Energy storage elements: Inductors and capacitors, series parallel combination of inductors and capacitors. Responses of RL andRC circuits: Natural and step responses.Magnetic quantities and variables: Flux, permeability and reluctance, magnetic field strength, magnetic potential, flux density, magnetizationcurve. Laws in magnetic circuits: Ohm’s law and Ampere’s circuital law. Magnetic circuits: series, parallel and series-parallel circuits.Pre-requisite: N/ATextbook: Introductory circuit analysis by BoylestadReference: Networks, lines and fields by J. D. RyderEEE 103 INTRODUCTION TO ELECTRICAL AND ELECTRONIC CIRCUITS2 Hours/Week, 2 CreditsVoltage and Current, Ohm’s law, Series circuits, Parallel circuits, Series-Parallel circuits, Capacitors, Inductors, R-L and R-L-C Circuits,Sinusoidal alternating wave forms, Square Waves and R-C response;Diode circuits, Transistor circuits, Op Amp. circuits, Popular ICs, Logic gates, Flip-Flops, and Counter.EEE 104 INTRODUCTION TO ELECTRICAL AND ELECTRONIC CIRCUITS LAB2 Hours/Week, 2 CreditsLaboratory works based on EEE 103 courseEEE 105 INTRODUCTION TO ELECTRICAL AND ELECTRONIC CIRCUITS3 Hours/Week, 3 CreditsVoltage and Current, Ohm’s law, Series circuits, Parallel circuits, Series-Parallel circuits, Capacitors, Inductors, R-L and R-L-C Circuits, Sinusoidal alternating wave forms, Square Waves and R-C response;Diode circuits, Transistor circuits, Op Amp. circuits, Popular ICs, Logic gates, Flip-Flops, and Counter.Single phase transformer, Introduction to three phase transformer; DC machines: DC generator principle, types,characteristics and performances. AC machines: Single phase induction motor, three phase induction motor, introduction tosynchronous machines; Oscilloscope; Transducers: Strain, temperature, pressure, speed and torque measurements.EEE 106 INTRODUCTION TO ELECTRICAL AND ELECTRONIC CIRCUITS LAB3 Hours/Week, 1.5 CreditsLaboratory works based on EEE 103/EEE 105.EEE 107 ELECTRICAL AND ELECTRONIC CIRCUIT ANALYSIS4 Hours/Week, 4 Creditsa. Circuit Models: Linear circuit elements, Ohm’s law, Voltage and Current sources, Kirchoff’s voltage and Current law, Voltage and Current Dividerrules, Series Parallel Circuits, Circuit Theorem: Thevenin’s, Norton’s, Maximum power transfer, Superposition Reciprocity Theorem DC analysis:Source conversion, Branch Current, Mesh analysis, Nodal Analysis, Bridge Network, Delta-Y conversion Transient and Time Domain Analysis:Transient in RC, RL and RLC circuits, Reactance, Average power AC theory and Frequency Domain Analysis: Phasors, Source conversion, SeriesParallel AC circuits, Mesh analysis, Nodal Analysis Resonance: Series, Parallel resonance circuit, Q valuesb. Semiconductors: Semiconductor materials, Energy levels, n, p type Semiconductor Devices: Diode, Transistor, FET, Optoelectronic devices andtheir uses in circuits Operational Amplifier: Basic operation and use in construction of analog circuits 7. School of Applied Sciences and Technology ~ 7 ~EEE 108 ELECTRICAL AND ELECTRONIC CIRCUIT ANALYSIS LAB6 Hours/Week, 3 Credits1. Use of measuring Equipment: Multi-meter, Frequency meter and Oscilloscope2. Test of Ohm’s Law plot of I-V, P-V curve3. I-V curve for Si, Ge and Zenor diodes4. Measurement of time constant in RC circuit5. Construction of a High pass and Low pass filter using RC circuit6. Measurement of Resonance frequency and Q value of a RLC circuit7. Making AND/OR gates using transistors8. FET as voltage controlled resistor9. Op amp as Inverting amplifier10. OP Amp as Differentiator and Integrator11. Optical data communication using LED and photodiode12. Electronic ProjectEEE 123 ELECTRICAL CIRCUITS II3 hours/Week, 3 CreditsSinusoidal functions: Instantaneous current, voltage, power, effective current and voltage, average power, phasors and complex quantities, impedance,real and reactive power, power factor. Analysis of single phase AC circuits: Series and parallel RL, RC and RLC circuits, nodal and mesh analysis,application of network theorems in AC circuits, circuits with non-sinusoidal excitations, transients in AC circuits, passive filters. Resonance in ACcircuits: Series and parallel resonance. Magnetically coupled circuits. Analysis of three phase circuits: Three phase supply, balanced and unbalancedcircuits, and power calculation.Pre-requisite: EEE 101 ELECTRICAL CIRCUITS ITextbook: Introductory circuit analysis by BoylestadReference: Networks, lines and fields by J. D. RyderEEE 124 ELECTRICAL CIRCUITS LAB3 hours/Week, 1.5 CreditsIn this course students will perform experiments to verify practically the theories and concepts learned in EEE-101 and EEE 123.1. To familiar with the operation of different electrical instruments.2. To verify the following theorems:i. KCL and KVL theorem,ii. Superposition theorem,iii. Thevenin’s theorem,iv. Norton’s theorem andv. Maximum power transfer theorem3. To design and construct of low pass and high pass filter and draw their characteristics curves.4. To investigate the voltage regulation of a simulated transmission network.Study the characteristics of Star-Delta connection5. Study the frequency response of an RLC circuit and find its resonant frequency.6. To perform also other experiments relevant to this course.Pre-requisite: EEE 101 ELECTRICAL CIRCUITS ITextbook: Introductory circuit analysis by BoylestadReference: Networks, lines and fields by J. D. RyderEEE 126 ELECTRICAL CIRCUIT SIMULATION LAB3 hours/Week, 1.5 CreditsSimulation laboratory based on EEE-1011 and EEE-1113 theory courses. Students will verify the theories and concepts learned in EEE-1011and EEE-1113 using simulation software like PSpice and Matlab. Students will also perform specific design of DC and AC circuitstheoretically and by simulation.Pre-requisite: EEE 101 ELECTRICAL CIRCUITS ITextbook: Introductory circuit analysis by BoylestadReference: Networks, lines and fields by J. D. RyderEEE 201 DIGITAL LOGIC DESIGN3 Hours/Week, 3 Credits 8. School of Applied Sciences and Technology ~ 8 ~Logic Families: TTL, CMOS, ECL, TristateLogic Gates: AND, OR, NAND, NOR, X-OR, X-NOR, Circuit DesignFlipflops: SR, JK, D, Master Slave, Application, SynchronizationLogic Circuits: Coder, Decoder, Mux, DmuxCounters: Synchronous, Asynchronous, Up/Down, Ripple, CascadingRegisters: Shift registersMemory Devices: ROM, RAM, Static, Dynamic, Memory OperationArithmatic Circuits: Adder, Carry, Look Ahead, ALUPAL: Microprogram Control, FPGA, HDLAEEE 202 DIGITAL LOGIC DESIGN LAB4 Hours/Week, 2 Credits1. Logic circuits using combination of gates2. Bounce-less switch using RS latch3. 0-9 second timer using 555, counters and 7-segment display4. Scrambler/De-scrambler circuit using latch for data communication5. Design of nano-computer6. Write, Read and Display contents of memory devices.7. Project with PAL/FPGA/MicrocontrollerEEE 221 ELECTRONICS I3 hours/Week, 3 CreditsP-N junction as a circuit element: Intrinsic and extrinsic semiconductors, operational principle of p-n junction diode, contact potential, current-voltagecharacteristics of a diode, simplified DC and AC diode models, dynamic resistance and capacitance. Diode circuits: Half wave and full wave rectifiers,rectifiers with filter capacitor, characteristics of a Zener diode, Zener shunt regulator, clamping and clipping circuits. Bipolar Junction Transistor (BJT)as a circuit element: current components, BJT characteristics and regions of operation, BJT as an amplifier, biasing the BJT for discrete circuits, smallsignal equivalent circuit models, BJT as a switch. Single stage mid-band frequency BJT amplifier circuits: Voltage and current gain, input and outputimpedance of a common base, common emitter and common collector amplifier circuits. Metal Oxide Semiconductor Field Effect Transistor(MOSFET) as circuit element: structure and physical operation of an enhancement MOSFET, threshold voltage, Body effect, current-voltagecharacteristics of an enhancement MOSFET, biasing discrete and integrated MOS amplifier circuits, single-stage MOS amplifiers, MOSFET as aswitch, CMOS inverter. Junction Field-Effect-Transistor (JFET): Structure and physical operation of JFET, transistor characteristics, pinch-off voltage.Differential and multistage amplifiers: Description of differential amplifiers, small-signal operation, differential and common mode gains, RC coupledmid-band frequency amplifier.Pre-requisite: EEE 101 Electrical Circuits I & EEE 123 Electrical Circuits IITextbook: Electronics Devices by R. L. BoylestadReference: Electronics Principles. By MalvinoEEE 222 ELECTRONIC CIRCUIT SIMULATION LAB3 hours/Week, 1.5 CreditsSimulation laboratory based on EEE-221 theory course. Students will verify the theories and concepts learned in EEE 221using simulation software like PSpice and Matlab. Students will also perform specific design of electronics circuits theoretically and bysimulation.1. To familiar with electronics devices and Laboratory Equipments.2. To study of V-l Characteristics curve of P-N junction diode.3. To study of V-l Characteristics curve of a Zener diode.4. To study of Half-Wave Rectification circuit.5. To study of Full-Wave Rectification circuit (Bridge & Cente- tap)6. To familiar with NPN and PNP Transistors.7. To study of Full-Wave filter circuit.8. To study of Common Emitter (CE) Transistor Amplifier circuits.9. To study of Clipping and clamping circuit.10. To study of output characteristics of an FET.11. To study of JFET as an amplifier. 9. School of Applied Sciences and Technology ~ 9 ~To study of output characteristics of a JFET.Pre-requisite: EEE 124 Electrical Circuits Lab & EEE 126 Electrical Circuit Simulation LabTextbook: Electronics Devices by R. L. BoylestadReference: Electronics Principles. By MalvinoEEE 223 ELECTRICAL MACHINES I3 hours/Week, 3 CreditsTransformer: Ideal transformer- transformation ratio, no-load and load vector diagrams; actual transformer- equivalent circuit, regulation,short circuit and open circuit tests. Three phase induction motor: Rotating magnetic field, equivalent circuit, vector diagram, torque-speedcharacteristics, effect of changing rotor resistance and reactance on torque-speed curves, motor torque and developed rotor power, no-loadtest, blocked rotor test, starting and braking and speed control. Single phase induction motor: Theory of operation, equivalent circuit andstarting.Pre-requisite: EEE 101 Electrical Circuits I & EEE 123 Electrical Circuits IITextbook: Energy conversion by Kenneth C. WestonReference: Energy conversion: systems, flow physics and engineering by Professor Reiner DecherEEE 224 ELECTRICAL MACHINES I LAB3 hours/Week, 1.5 CreditsThis course consists of two parts. In the first part, students will perform experiments to verify practically the theories and concepts learned in EEE 223. Inthe second part, students will design simple systems using the principles learned in EEE 223.Pre-requisite: EEE 124 Electrical Circuits Lab & EEE 126 Electrical Circuit Simulation LabTextbook: Energy conversion by Kenneth C. WestonReference: Energy conversion: systems, flow physics and engineering by Professor Reiner DecherEEE 225 ELECTRICAL MACHINES II3 hours/Week, 3 CreditsSynchronous Generator: excitation systems, equivalent circuit, vector diagrams at different loads, factors affecting voltage regulation, synchronousimpedance, synchronous impedance method of predicting voltage regulation and its limitations. Parallel operation: Necessary conditions,synchronizing, circulating current and vector diagram. Synchronous motor: Operation, effect of loading under different excitation condition, effect ofchanging excitation, V-curves and starting. DC generator: Types, no-load voltage characteristics, build-up of a self excited shunt generator, critical fieldresistance, load-voltage characteristic, effect of speed on no-load and load characteristics and voltage regulation. DC motor: Torque, counter emf, speed,torque-speed characteristics, starting and speed regulation. Introduction to wind turbine generators Construction and basic characteristics of solarcells.Pre-requisite: EEE 223 Electrical Machines ITextbook: Energy conversion by Kenneth C. WestonReference: Energy conversion: systems, flow physics and engineering by Professor Reiner DecherEEE 226 ELECTRICAL MACHINES II LAB3 hours/Week, 1.5 CreditsThis course consists of two parts. In the first part, students will perform experiments to verify practically the theories and concepts learned in EEE225. In the second part, students will design simple systems using the principles learned in EEE 225.Pre-requisite: EEE 224 Electrical Machines I LabTextbook: Energy conversion by Kenneth C. WestonReference: Energy conversion: systems, flow physics and engineering by Professor Reiner DecherEEE 227 ELECTRONICS II3 hours/Week, 3 CreditsFrequency response of amplifiers: Poles, zeros and Bode plots, amplifier transfer function, techniques of determining 3 dBfrequencies of amplifier circuits, frequency response of single-stage and cascade amplifiers, frequency response of differential amplifiers. Operationalamplifiers (Op-Amp): Properties of ideal Op-Amps, non-inverting and inverting amplifiers, inverting integrators, differentiator, weighted summer andother applications of Op-Amp circuits, effects of finite open loop gain and bandwidth on circuit performance, logic signal operation of Op-Amp, DCimperfections. General purpose Op-Amp: DC analysis, small-signal analysis of different stages, gain and frequency response of 741 Op-Amp. Negativefeedback: properties, basic topologies, feedback amplifiers with different topologies, stability, frequency compensation. Active filters: Different types offilters and specifications, transfer functions, realization of first and second order low, high and band pass filters using Op-Amps. Signal generators:Basic principle of sinusoidal oscillation, Op-Amp RC oscillators, LC and crystal oscillators. Power Amplifiers: Classification of output stages, class A,B and AB output stages.Pre-requisite: EEE 221 Electronics ITextbook: Electronics Devices by R. L. BoylestadReference: Electronics Principles. By MalvinoEEE 228 ELECTRONICS LAB3 hours/Week,1.5 Credits 10. School of Applied Sciences and Technology ~ 10 ~In this course students will perform experiments to verify practically the theories and concepts learned in EEE-221 & 227.1. Study of R-C coupling.2. Study of Transformer coupling.3. Study of Direct coupling.4. Study of R-C Phase shift Oscillator.5. Study of Transistor Tuned Oscillator.Study of Negative feedback circuit.Pre-requisite: EEE 222 Electronic Circuit Simulation LabTextbook: Electronics Devices by R. L. BoylestadReference: Electronics Principles. By MalvinoEEE 229 ELECTROMAGNETIC FIELDS AND WAVES3 hours/Week, 3 CreditsReview of Vector Algebra and Co-ordinate System: Curvilinear Co-Ordinates, Rectangular Cylindrical and Spherical Co-Ordinates,Gradient, Divergence, Curl and Formulas involving Vector Operations,.Electrostatics: Coulombs law, Gauss’s theorem, Laplace’s and Poisson’s equations, Energy of an electrostatic system,Magneto static: Ampere’s law, Biot Savart law, Energy of magneto static system. Maxwell’s equations: Their derivations, Continuity ofcharges, Concept of displacement current, Electro-Magnetic Energy, Boundary conditions, The Wave Equations with Sources. Potentials used withvarying charges and currents, Retarded potentials, Maxwell’s equation in different co-ordinate systems.Relation between circuit theory and field theory: Circuit concepts and the derivation from the field equations, high frequency circuit concepts,Circuit radiation resistance, Skin effect and circuit impedance, Concept of good and Perfect conductors and dielectrics, Propagation in good conductors,Reflection of uniform plane waves, standing wave ratio, Dispersion in dielectrics.Propagation of electromagnetic waves: Plane wave propagation, Polarization, Power flow and pointing theorem, Transmission lineanalogy, Display lines ion in dielectrics, Liquids and solids,Radio wave propagation: Different types of radio wave propagation Ionosphere, Vertical heights and critical frequencies of layers, Propagation of RWthrough Ionosphere, Reflection of RW, Skip distance and MUF, Fading, Static and noise, Two way communication.Pre-requisite: MAT 102 Matrices, Vector Analysis & GeometryTextbook: Field and Wave Electromagnetic by David K. ChengReference: Physics (Part-II) by Resnick & HalidayEEE 305A BUILDING SERVICES III (ELECTRICAL)3 Hours/Week, 1.5 CreditsEEE 321 SIGNALS AND LINEAR SYSTEMS3 hours/Week, 3 CreditsContinuous-time signals and systems: Mathematical, frequency and time domain representation.Discrete-time signals and systems:Mathematical, frequency and time domain representation, Application in digital processing andcommunication systems.Linear Systems: Characteristics of a linear system, methods of transient and steady state solutions of differential and integro-differentialequations, Network theorems, Analogous systems. Analysis by Fourier methods. Laplace transformation and itsapplication to linear circuits. Impulse function, convolution integral and its application. Matrix with simple applications in circuits:network functions, poles and zeroes of a network. Introduction to topological concepts in electrical and magnetic circuit networks.Pre-requisite: EEE 101 Electrical Circuits I & EEE 123 Electrical Circuits IITextbook: Signals & Linear Systems by B.P. LathiReference: Signals and Systems by Alan V. Oppenheim, Alan S. Willsky, S. Hamid, S. Hamid NawabEEE 323 DIGITAL ELECTRONICS3 hours/Week, 3 CreditsIntroduction to number systems and codes. Analysis and synthesis of digital logic circuits: Basic logic functions, Booleanalgebra, combinational logic design, minimization of combinational logic. Implementation of basic static logic gates inCMOS and BiCMOS: DC characteristics, noise margin and power dissipation. Power optimization of basic gates andcombinational logic circuits. Modular combinational circuit design: pass transistor, pass gates, multiplexer, demultiplexerand their implementation in CMOS, decoder, encoder, comparators, binary arithmetic elements and ALU design.Programmable logic devices: logic arrays, field programmable logic arrays and programmable read only memory.Sequential circuits: different types of latches, flip-flops and their design using ASM approach, timing analysis and poweroptimization of sequential circuits. Modular sequential logic circuit design: shift registers, counters and their applications.Pre-requisite: EEE 221 Electronics ITextbook: Digital Logic Design by M. Morris ManoReference: Switching Theory by Dr. V. K. JainEEE 324 DIGITAL ELECTRONICS LAB3 hours/Week, 1.5 Credits 11. School of Applied Sciences and Technology ~ 11 ~This course consists of two parts. In the first part, students will perform experiments to verify practically the theories and concepts learned in EEE-323.In the second part, students will design simple systems using the principles learned in EEE-323.1. To construct and study the following logic gates: AND, OR, NOT. NAND, NOR, EXOR2. Verify the Demorgan’s Law : Law(I) and Law(II)3. To Verify different kind of applications of Boolean algebra.4. To construct an AND gate by diode resistors and observe its characteristics.5. To verify the characteristics of Exclusive OR and Exclusive NOR using basic logic gate.6. Verification of De-Morgan’s Theorem for 2 input Variable.6. To simplify the given Boolean function by using K-map and implement it with logic Diagram.7. ABCD to 7 Segment Decoder8. Study of 4-bit BCD adder.9. Study of Asynchronous & Synchronous R-S Flip-Flop.10. Study of J-K Flip-Flop.11. Study of 4-bit binary Ripple Counter.Pre-requisite: EEE 222 Electronic Circuit Simulation LabTextbook: Digital Logic Design by M. Morris ManoReference: Switching Theory by Dr. V. K. JainEEE 325 POWER SYSTEM I3 hours/Week, 3 CreditsNetwork representation: Single line and reactance diagram of power system and per unit. Line representation: equivalent circuit of short,medium and long lines. Load flow: Gauss- Siedel and Newton Raphson Methods. Power flow control: Tap changing transformer, phaseshifting, booster and regulating transformer and shunt capacitor. Fault analysis: Short circuit current and reactance of a synchronous machine.Symmetrical fault calculation methods: symmetrical components, sequence networks and unsymmetrical fault calculation. Protection:Introduction to relays, differential protection and distance protection. Introduction to circuit breakers. Typical layout of a substation. Loadcurves: Demand factor, diversity factor, load duration curves, energy load curve, load factor, capacity factor and plant factorPre-requisite: EEE 101 Electrical Circuits I & EEE 123 Electrical Circuits IITextbook: Communication and Control in Electric Power Systems: Applications of Parallel and Distributed by Mohammad ShahidehpourReference: Transient Phenomena in Electrical Power Systems by Valentin Andreevich VenikovEEE 326 POWER SYSTEM I LAB3 hours/Week, 1.5 CreditsThis course consists of two parts. In the first part, students will perform experiments to verify practically the theories and concepts learned in EEE-325.In the second part, students will design simple systems using the principles learned in EEE-325.Pre-requisite: EEE 124 Electrical Circuits Lab & EEE 126 Electrical Circuit Simulation LabTextbook: Communication and Control in Electric Power Systems: Applications of Parallel and Distributed by Mohammad ShahidehpourReference: Transient Phenomena in Electrical Power Systems by Valentin Andreevich VenikovEEE 327 ELECTRICAL PROPERTIES OF MATERIALS3 hours/Week, 3 CreditsWiring system design, drafting, and estimation. Design for illumination and lighting. Electrical installations system design: substation, BBTand protection, air-conditioning, heating and lifts. Design for intercom, public address systems, telephone system and LAN. Design ofsecurity systems including CCTV, fire alarm, smoke detector, burglar alarm, and sprinklersystem. A design problem on a multi-storied building.Pre-requisite: EEE 101 Electrical Circuits I & EEE 123 Electrical Circuits IITextbook: Electronics Properties of Materials by Rolf E. HummerlReference: Properties Of Materials: Anisotropy, Symmetry, Structure by Robert Everest NewnhamEEE 328 ELECTRICAL SERVICES DESIGN3 hours/Week, 1.5 CreditsCrystal structures: Types of crystals, lattice and basis, Bravais lattice and Miller indices. Classical theory of electrical and thermal conduction: Scattering,mobility and resistivity, temperature dependence of metal resistivity, Mathiessen’s rule, Hall effect and thermal conductivity. Introduction to quantummechanics: Wave nature of electrons, Schrodinger’s equation, one-dimensional quantum problems- infinite quantum well, potential step and potentialbarrier; Heisenbergs’s uncertainty principle and quantum box. Band theory of solids: Band theory from molecular orbital, Bloch theorem, Kronig-Pennymodel, effective mass, density-of-states. Carrier statistics: Maxwell-Boltzmann and Fermi-Dirac distributions, Fermi energy. Modern theory of metals:Determination of Fermi energy and average energy of electrons, classical and quantum mechanical calculation of specific heat. Dielectric properties ofmaterials: Dielectric constant, polarization- electronics, ionic and orientational; internal field, Clausius-Mosotti equation, spontaneous polarization,frequency dependence of dielectric constant, dielectric loss and piezoelectricity. Magnetic properties of materials: Magnetic moment, magnetization andrelative permitivity, different types of magnetic materials, origin of ferromagnetism and magnetic domains. Introduction to superconductivity: Zeroresistance and Meissner effect, Type I and Type II superconductors and critical current density. 12. School of Applied Sciences and Technology ~ 12 ~Pre-requisite: EEE 101 Electrical Circuits I & EEE 123 Electrical Circuits IITextbook: Electronics Properties of Materials by Rolf E. HummerlReference: Properties Of Materials: Anisotropy, Symmetry, Structure by Robert Everest NewnhamEEE 329 DIGITAL COMMUNICATION ENGINEERING3 hours/Week, 3 CreditsIntroduction: Basic constituents of communication system. Need for using high carrier frequency, Classification of RF spectrum.Communication channels, mathematical model and characteristics. Probability and stochastic processes. Source coding: Mathematicalmodels of information, entropy, Huffman code and linear predictive coding. Digital transmission system: Base band digital transmission,inter-symbol interference, bandwidth, power efficiency, modulation and coding trade-off. Receiver for AWGN channels: Correlationdemodulator, matched filter demodulator and maximum likelihood receiver. Channel capacity and coding: Channel models and capacitiesand random selection of codes. Block codes and conventional codes: Linear block codes, convolution codes and coded modulation. Spreadspectrum signals and system.Pre-requisite: MAT 221 Ordinary and Partial Differential Equations andEEE 323 Digital ElectronicsTextbook: Digital Communications by John G. ProakisReference: Communication System by Simon HaykinEEE 330 DIGITAL COMMUNICATION ENGINEERING LAB3 hours/Week, 1.5 CreditsThis course consists of two parts. In the first part, students will perform experiments to verify practically the theories and concepts learned in EEE-329. Inthe second part, students will design simple systems using the principles learned in EEE-329Pre-requisite: MAT 221 Ordinary and Partial Differential EquationsEEE 324 Digital ElectronicsTextbook: Communication Theory: Epistemological Foundations by James Arthur AndersonReference: Modern Digital and Analog Communication System by B.P. LathiEEE 331 DIGITAL SIGNAL PROCESSING I3 hours/Week, 3 CreditsIntroduction to digital signal processing (DSP): Discrete-time signals and systems, analog to digital conversion, impulse response, finite impulseresponse (FIR) and infinite impulse response (IIR) of discrete-time systems, difference equation, convolution, transient and steady state response.Discrete transformations: Discrete Fourier series, discrete-time Fourier series, discrete Fourier transform (DFT) and properties, fast Fourier transform(FFT), inverse fast Fourier transform, z-transformation - properties, transfer function, poles and zeros and inverse z-transform. Correlation: circularconvolution, auto-correlation and cross correlation. Digital Filters: FIR filters- linear phase filters, specifications, design using window, optimal andfrequency sampling methods; IIR filters- specifications, design using impulse invariant, bi-linear z- transformation, least-square methods and finiteprecision effects.Pre-requisite: EEE 321 Signals and Linear SystemsTextbook: Digital Signal Processing by John G. ProakisReference: Introduction to Digital Signal Processing by Johnny R. JohnsonEEE 332 DIGITAL SIGNAL PROCESSING I LAB3 hours/Week, 1.5 CreditsThis course consists of two parts. In the first part, students will perform experiments to verify practically the theories and concepts learned in EEE 331.In the second part, students will design simple systems using the principles learned in EEE 331.1. Time Domain Characterization of LTI system.2. DFT and IDFT computation.3. Rational Z-transform and inverse of it.4. Schur-Cohn Stability test.5. IIR digital filter design.6. FIR digital filter design.7. Design of linear phase FIR filters based on windowed Fourier Series Approach.8. Application of FFT and IFFT functions.Pre-requisite: EEE 321 Signals and Linear SystemsTextbook: Digital Signal Processing by John G. ProakisReference: Introduction to Digital Signal Processing by Johnny R. JohnsonEEE 333 MICROPROCESSOR & ASSEMBLY LANGUAGE3 hours/Week, 3 CreditsMicroprocessor: Introduction to different types of microprocessors. Microprocessor architecture, instruction set, interfacing, I/O operation,Interrupt structure, DMA. Microprocessor interface ICs. Advanced microprocessors; parallelism in microprocessors. Concepts of 13. School of Applied Sciences and Technology ~ 13 ~Microprocessor based systems design.Assembly LanguageIntroduction: Machine & assembly languages, Necessity and applications, Elements of assembly languages, Expression and operators,Statements, Format, Machine instructions and mnemonics, Register, Flags and stack.Instruction sets and implementation: Data definition and transfer, Arithmetic instructions, Character representation instructions,Addressing modes, Instructions and data in memory.Subroutine: Calling, Parameter passing, and Recursion.Macros: Calling macros, Macro operators, Advance macros usage.Files: DOS file functions, Text file, Bit file, and File manipulation.I/O programming: Procedure, Software interrupts, DOS functions call.Machine and assembly language programming (macro and large system)Advanced programming techniques in assembly language, interfacing with high level programmingPre-requisite: EEE 323 Digital ElectronicsTextbook: Microprocessor & Microprocessor Based System Design by Dr. M. RafiquzzamanReference: Microprocessor Architecture, Programming & Applications by R.S. GaonkerEEE 334 MICROPROCESSOR & ASSEMBLY LANGUAGE LAB3 hours/Week, 1.5 Credits1. Registers, JMP, LOOP, CMP instructions, and Conditional jump instruction.2. Implementation of different types of instructions (rotating, shifting etc)3. Instructions (MUL, IMUL, DIV, IDIV, CBW, CWD, arrays, XLAT).4. String instructions, macro handling.5. Bios Interrupt, Dos Interrupt6. The IN, OUT, INS and OUTS instructions,7. To perform also other experiments relevant to this course.Pre-requisite: EEE 324 Digital Electronics LabTextbook: Microprocessor & Microprocessor Based System Design by Dr. M. RafiquzzamanReference: Microprocessor Architecture, Programming & Applications by R.S. GaonkerEEE 335 CONTROL SYSTEM I3 hours/Week, 3 CreditsIntroduction to control systems. Linear system models: transfer function, block diagram and signal flow graph (SFG). State variables: SFGto state variables, transfer function to state variable and state variable to transfer function. Feedback control system: Closed loop systems,parameter sensitivity, transient characteristics of control systems, effect of additional pole and zero on the system response and system typesand steady state error. Routh stability criterion. Analysis of feedback control system: Root locus method and frequency response method.Design of feedback control system: Controllability and observability, root locus, frequency response and state variable methods. Digitalcontrol systems: introduction, sampled data systems, stability analysis in Z-domain.Pre-requisite: EEE 323 Digital ElectronicsTextbook: Control Systems Engineering by Norman S. NiseReference: Modern Control Engineering (4th Edition) by Katsuhiko OgataEEE 336 CONTROL SYSTEM I LAB3 hours/Week, 1.5 CreditsThis course consists of two parts. In the first part, students will perform experiments to verify practically the theories and concepts learned in EEE-335.In the second part, students will design simple systems using the principles learned in EEE-335.Pre-requisite: EEE 324 Digital Electronics LabTextbook: MATLAB 6.1 Supplement to accompany Control Systems Engineering by Norman S. NiseReference: Control Systems Engineering by Norman S. NiseEEE 400 PROJECT/THESIS (INITIAL WORK)2 hours/Week, 2 CreditsProject work based on all major coursesPre-requisite: Completion of 300 level coursesTextbook: N/AReference: N/AEEE 421 SOLID STATE DEVICES3 hours/Week, 3 CreditsSemiconductors in equilibrium: Energy bands, intrinsic and extrinsic semiconductors, Fermi levels, electron and hole concentrations, temperaturedependence of carrier concentrations and invariance of Fermi level. Carrier transport processes and excess carriers: Drift and diffusion, generation and 14. School of Applied Sciences and Technology ~ 14 ~recombination of excess carriers, built-in-field, Einstein relations, continuity and diffusion equations for holes and electrons and quasi-Fermi level. PNjunction: Basic structure, equilibrium conditions, contact potential, equilibrium Fermi level, space charge, non-equilibrium condition, forward andreverse bias, carrier injection, minority and majority carrier currents, transient and AC conditions, time variation of stored charge, reverse recoverytransient and capacitance. Bipolar Junction Transistor: Basic principle of pnp and npn transistors, emitter efficiency, base transport factor and currentgain, diffusion equation in the base, terminal currents, coupled-diode model and charge control analysis, Ebers-Moll equations and circuit synthesis.Metal-semiconductor junction: Energy band diagram of metal semiconductor junctions, rectifying and ohmic contacts. MOS structure: MOScapacitor, energy band diagrams and flat band voltage, threshold voltage and control of threshold voltage, static C-V characteristics, qualitative theoryof MOSFET operation, body effect and current-voltage relationship of a MOSFET. Junction Field-Effect-Transistor: Introduction, qualitative theoryof operation, pinch-off voltage and current-voltage relationship.Pre-requisite: EEE 221 EEE 221 Electronics ITextbook: Solid State Electronics Devices (6th Edition) by Ben Streetman and Sanjay BanerjeeReference: Modular Series on Solid State Devices by Robert F. Pierret, Gerold NeudeckEEE 423 COMPUTER INTERFACING AND INDUSTRIAL AUTOMATION3 hours/Week, 3 CreditsIntroductory Concept: I/O interface, memory interface, interfacing components and their characteristics.Interfacing components: 8284A Programmable timer, Bus architecture, Bus Timing, Bus Controller, analog and digital interface.Interrupt: Interrupt sources, types of interrupt, 8259A priority interrupt controller, Daisy chainSerial Interface: Characteristics of memory and I/O interface, Synchronous and asynchronous communication, Serial I/O interface, 8251Acommunication interface, RS-232 interfaceParallel Interface: 8155A Programmable peripheral Interface, Parallel adapter, parallel portI/O Controller: 8237A DMA Controller, Floppy and Hard disk ControllerPeripheral Components: Barcode Reader, Sound card, Stepper motor and opto-isolation, MIDI interface, power circuits.Industrial Automation:Part A: General concepts of the industrial production. Concepts of production systems and production processes. Automation productionsystems and their classification. Production equipment. Process and manufacturing productions automation. Flexibility of the manufacturingsystems: general elements. Principal performance indexes.Part B: Modeling and control of Discrete Events Systems (DES). Discrete Events Systems (DES) concepts review; their use in modelingproductive processes. Importance of DES for engineers and relevant features of control of such systems. Preliminary elements on the PetriNets as DES modeling formalisms. Fundamental properties of the Petri nets. Place and Transition-invariant. Modeling of typical elements ofthe manufacturing systems. Examples of production systems models. Analysis of cyclic production systems. Supervisory Control of DESusing Petri Nets. Elements of SFC language.Pre-requisite: EEE 333 Microprocessor & Assembly Language & EEE 335 Control System ITextbook: Microprocessor and Interface by Douglas V. Hall andProcess Control Instrumentation Technology by C. D. JohnsonReference: Microprocessor and Interfacing by Mohamed RafiquzzamanEEE 424 COMPUTER INTERFACING AND INDUSTRIAL AUTOMATION LAB3 hours/Week, 1.5 CreditsThis course consists of two parts. In the first part, students will perform experiments to verify practically the theories and concepts learned in EEE-423.In the second part, students will design simple systems using the principles learned in EEE-423.Some of the experiments are: Registers, JMP, LOOP, CMP instructions, and Conditional jump instruction. Implementation of different types of instructions (rotating, shifting etc) Instructions (MUL, IMUL, DIV, IDIV, CBW, CWD, arrays, XLAT). String instructions, macro handling. Bios Interrupt, Dos Interrupt The IN, OUT, INS and OUTS instructions, Computer Interfacing Details about parallel port ( pin description, port address and commands) LED interface through parallel port. Interfacing 7-segment Display High power load interface Stepping motor interface and to control it both in clockwise and anti-clockwise direction Inputting data through parallel port Serial port programming Interfacing a robot manipulator arm and writing a program to control it Parallel port programming using Visual Basic Voice InterfaceList of the Project: 15. School of Applied Sciences and Technology ~ 15 ~1. Traffic Control system2. Interfacing a joystick using parallel port3. 3-DOF robot manipulator arm control4. Room Automation5. Electronics voting machine6. Interfacing a 2x8 character LCD displayTo perform also other experiments relevant to this coursePre-requisite: EEE 334 Microprocessor & Assembly Language Lab & EEE 336 Control System I LabTextbook: Microprocessor and Microcomputer Based System Design by Microprocessor Data handbookReference: Microprocessor and Interface by Douglas V. HallEEE 408 PROJECT/THESIS (Finalization and Submission)8 hours/Week, 4 CreditsProject work based on all major coursesPre-requisite: Completion of 300 level coursesTextbook: N/AReference: N/AEEE OptionsPOWER OPTIONSEEE 337 POWER SYSTEM II3 hours/Week, 3 CreditsTransmission lines cables: overhead and underground. Stability: swing equation, power angle equation, equal area criterion, multi-machine system,step by step solution of swing equation. Factors affecting stability. Reactive power compensation. Flexible AC transmission system (FACTS). Highvoltage DC transmission system. Power quality: harmonics, sag and swell.Pre-requisite: EEE 325 Power System ITextbook: Communication and Control in Electric Power Systems: Applications of Parallel and Distributed by Mohammad ShahidehpourReference: Economic Operation of Power Systems by Leon Kenneth KirchmayerEEE 439 ELECTRICAL MACHINES III3 hours/Week, 3 CreditsSpecial machines: series universal motor, permanent magnet DC motor, unipolar and bipolar brush less DC motors, stepper motor and control circuits.Reluctance and hysteresis motors with drive circuits, switched reluctance motor, electro static motor, repulsion motor, synchros and control transformers.Permanent magnet synchronous motors. Acyclic machines: Generators, conduction pump and induction pump. Magneto hydrodynamic generators. FuelCells, thermoelectric generators, flywheels. Vector control, linear motors and traction. Photovoltaic systems: stand alone and grid interfaced. Wind turbinegenerators: induction generator, AC-DC-AC conversion.Pre-requisite: EEE 225 Electrical Machines IITextbook: Energy conversion by Kenneth C. WestonReference: Energy conversion: systems, flow physics and engineering by Professor Reiner decherEEE 441 POWER ELECTRONICS3 hours/Week, 3 CreditsEEE 442 POWER ELECTRONICS LAB3 hours/Week, 1.5 CreditsPower semiconductor switches and triggering devices: BJT, MOSFET, SCR, IGBT, GTO, TRIAC, UJT and DIAC. Rectifiers: Uncontrolledand controlled single phase and three phase. Regulated power supplies: Linear-series and shunt, switching buck, buckboost, boost and Cukregulators. AC voltage controllers: single and three phase. Choppers. DC motor control. Single phase cycloconverter. Inverters: Single phaseand three phase voltage and current source. AC motor control. Stepper motor control. Resonance inverters. Pulse width modulation control ofstatic converters.Lab work:This course consists of two parts. In the first part, students will perform experiments to verify practically the theories and concepts learned in EEE-441. 16. School of Applied Sciences and Technology ~ 16 ~In the second part, students will design simple systems using the principles learned in EEE-441.Pre-requisite: EEE 227 Electronics II , EEE 325 Power System I and their LabsTextbook: An Introduction to Power Electronics by Bird, B. M., K. G. King, and D. A. G. Ped derReference: Power electronics systems: theory and design by Agrawal, Jai P.EEE 443 POWER PLANT ENGINEERING3 hours/Week, 3 CreditsPower plants: general layout and principles, steam turbine, gas turbine, combined cycle gas turbine, hydro and nuclear. Power plantinstrumentation. Selection of location: Technical, economical and environmental factors. Load forecasting. Generation scheduling:deterministic and probabilistic. Electricity tariff: formulation and types.Pre-requisite: EEE 337 Power System IITextbook: Power Plant Engineering by Larry Drbal, Kayla Westra, Pat BostonReference: Power Generation Handbook : Selection, App by Philip KiamehEEE 445 POWER SYSTEM PROTECTION3 hours/Week, 3 CreditsEEE 446 POWER SYSTEM PROTECTION LAB3 hours/Week, 1.5 CreditsPurpose of power system protection. Criteria for detecting faults: over current, differential current, difference of phase angles, over andunder voltages, power direction, symmetrical components of current and voltages, impedance, frequency and temperature. Instrumenttransformers: CT and PT. Electromechanical, electronics and digital Relays: basic modules, over current, differential, distance anddirectional. Trip circuits. Unit protection schemes: Generator, transformer, motor, bus bar, transmission and distribution lines. Miniaturecircuit breakers and fuses. Circuit breakers: Principle of arc extinction, selection criteria and ratings of circuit breakers, types - air, oil, SF6and vacuum.Lab work:This course consists of two parts. In the first part, students will perform experiments to verify practically the theories and concepts learned in EEE-445.In the second part, students will design simple systems using the principles learned in EEE-445.Pre-requisite: EEE 337 Power System IITextbook: Power System Protection by Paul M. AndersonReference: Practical Power System Protection by Leslie HewitsonEEE 447 HIGH VOLTAGE ENGINEERING3 hours/Week, 3 CreditsEEE 448 HIGH VOLTAGE ENGINEERING LAB3 hours/Week, 1.5 CreditsHigh voltage DC: Rectifier circuits, voltage multipliers, Van-de-Graaf and electrostatic generators. High voltage AC: Cascaded transformersand Tesla coils. Impulse voltage: Shapes, mathematical analysis, codes and standards, single and multi-stage impulse generators, trippingand control of impulse generators. Breakdown in gas, liquid and solid dielectric materials. Corona. High voltage measurements and testing.Over-voltage phenomenon and insulation coordination. Lightning and switching surges, basic insulation level, surge diverters and arresters.Pre-requisite: EEE 337 Power System IITextbook: High Voltage Engineering by M.S. NaiduReference: Dielectric Phenomena In High Voltage Engineering by F. W. PeekEEE 449 POWER SYSTEM RELIABILITY3 hours/Week, 3 CreditsReview of probability concepts. Probability distribution: Binomial, Poisson, and Normal. Reliability concepts: Failure rate, outage, meantime to failure, series and parallel systems and redundancy. Markov process. Probabilistic generation and load models. Reliability indices:Loss of load probability and loss of energy probability. Frequency and duration. Reliability evaluation techniques of single area system.Pre-requisite: EEE 337 Power System IITextbook: Power System Reliability Evaluation by R. BillintonReference: Reliability Assessment of Electrical Power Systems Using Monte Carlo Methods by BillintonEEE 451 POWER SYSTEM OPERATION AND CONTROL3 hours/Week, 3 CreditsPrinciples of power system operation: SCADA, conventional and competitive environment. Unit commitment, static security analysis, stateestimation, optimal power flow, automatic generation control and dynamic security analysis.Pre-requisite: EEE 337 Power System II and EEE 335 Control System ITextbook: Power System Operation by Robert H. Miller, James H. MalinowskReference: Electric Utility Systems and Practices by Homer M. Rustebakke 17. School of Applied Sciences and Technology ~ 17 ~ELECTRONICS OPTIONSEEE 351 ANALOG INTEGRATED CIRCUITS3 hours/Week, 3 CreditsReview of FET amplifiers: Passive and active loads and frequency limitation. Current mirror: Basic, cascode and active current mirror. DifferentialAmplifier: Introduction, large and small signal analysis, common mode analysis and differential amplifier with active load. Noise: Introduction to noise,types, representation in circuits, noise in single stage and differential amplifiers and bandwidth. Band-gap references: Supply voltage independent biasing,temperature independent biasing, proportional to absolute temperature current generation and constant transconductance biasing. Switch capacitor circuits:Sampling switches, switched capacitor circuits including unity gain buffer, amplifier and integrator. Phase Locked Loop (PLL): Introduction, basic PLLand charge pumped PLL.Pre-requisite: EEE 227 Electronics IITextbook: Analysis and Design of Analog Integrated Circuitsby Paul R. Gray, Paul J. Hurst, Stephen H. Lewis, Robert G. MeyerReference: CMOS Analog Circuit Design by Phillip E. AllenEEE 453 PROCESSING AND FABRICATION TECHNOLOGY3 hours/Week, 3 CreditsSubstrate materials: Crystal growth and wafer preparation, epitaxial growth technique, molecular beam epitaxy, chemical vapor phase epitaxy andchemical vapor deposition (CVD). Doping techniques: Diffusion and ion implantation. Growth and deposition of dielectric layers: Thermal oxidation,CVD, plasma CVD, sputtering and silicon-nitride growth. Etching: Wet chemical etching, silicon and GaAs etching, anisotropic etching, selectiveetching, dry physical etching, ion beam etching, sputtering etching and reactive ion etching. Cleaning: Surface cleaning, organic cleaning and RCAcleaning. Lithography: Photo-reactive materials, pattern generation, pattern transfer and metalization. Discrete device fabrication: Diode, transistor,resistor and capacitor. Integrated circuit fabrication: Isolation - pn junction isolation, mesa isolation and oxide isolation. BJT based microcircuits, p-channeland n-channel MOSFETs, complimentary MOSFETs and silicon on insulator devices. Testing, bonding and packaging.Pre-requisite: EEE 227 Electronics IITextbook: Semiconductor Technology: Processing and Novel Fabrication Techniquesby Michael E. Levinshtein, Michael S. ShurReference: Photomask Fabrication Technology by Benjamin G. Eynon, Banqiu WuEEE 455 VLSI I3 hours/Week, 3 CreditsEEE 456 VLSI I LAB3 hours/Week, 1.5 CreditsVLSI technology: Top down design approach, technology trends and design styles. Review of MOS transistor theory: Threshold voltage,body effect, I-V equations and characteristics, latch-up problems, NMOS inverter, CMOS inverter, pass-transistor and transmission gates.CMOS circuit characteristics and performance estimation: Resistance, capacitance, rise and fall times, delay, gate transistor sizing and powerconsumption. CMOS circuit and logic design: Layout design rules and physical design of simple logic gates. CMOS subsystem design:Adders, multiplier and memory system, arithmetic logic unit. Programmable logic arrays. I/O systems. VLSI testing.Lab work:This course consists of two parts. In the first part, students will perform experiments to verify practically the theories and concepts learned in EEE-455.In the second part, students will design simple systems using the principles learned in EEE-455Pre-requisite: EEE 323 Digital Electronics and EEE 324 Digital Electronics LabTextbook: CMOS Circuit design, Layout and Simulation, Modern VLSI Design : Systems on Siliconby R.Jacob Baker, Harry W .Li, David E.BoyceReference: Design of VLSI Systems : A practical Introduction, by Linda E.M. BrackenduryEEE 457 MICROCONTROLLER SYSTEM DESIGN3 hours/Week, 3 CreditsEEE 458 MICROCONTROLLER SYSTEM DESIGN LAB3 hours/Week, 1.5 CreditsThe internal structure and operation of microcontrollers will be studied. The design methodology for software and hardware applications will bedeveloped through the labs and design projects The objective of this course is to teach students design and interfacing of microcontroller-basedembedded systems. High-level languages are used to interface the microcontrollers to various applications. There are extensive hands-on labs/projects.Embedded system for sensor applications will be introduced. GUI using C#Lab work:(1) PIC microcontrollers: introduction and features, (2) CCS C Compiler and PIC18F Development System, (3) PIC Architecture &Programming, (4) PIC I/O Port Programming, (5) PIC Programming in C (6) PIC18 Hardware Connection and ROM loaders, (7) PIC18Timers Programming, (8) PIC18 Serial Port Programming, (9) Interrupt Programming, (10) LCD and Keypad Interface, (11) External 18. School of Applied Sciences and Technology ~ 18 ~EEPROM and I2C, (12) USB and HID Class, (13) ADC and DAC, (14) Sensor and other Applications, (15) CCP and ECCP Programming,(16) Capture Mode Programming and Pulse Width Measurement, (17) C# RS232 Interface Programming, (18) C# GUI Plot Program, (19)Digital Oscilloscope, spectral Analyzer, and multi-meter, (20) Impact of engineering solutions in a global, economic, environmental, andsocietal context, (21) Knowledge of contemporary issues, (22) Final ProjectPre-requisite: EEE 323 Digital Electronics and EEE 324 Digital Electronics LabTextbook: The PIC Microcontroller and Embedded systems – Using Assembly and C for PIC18by Muhammad Ali Mazidi, Rolin D. McKinlay, and Danny CauseyReference: Embedded System Design with the Atmel Avr Microcontroller By Steven BarrettEEE 459 COMPOUND SEMICONDUCTOR AND HETERO-JUNCTION DEVICES3 hours/Week, 3 CreditsCompound semiconductor: Zinc-blend crystal structures, growth techniques, alloys, band gap, density of carriers in intrinsic and doped compoundsemiconductors. Hetero-Junctions: Band alignment, band offset, Anderson’s rule, single and double sided hetero-junctions, quantum wells and quantizationeffects, lattice mismatch and strain and common hetero-structure material systems. Hetero-Junction diode: Band banding, carrier transport and I-Vcharacteristics. Hetero-junction field effect transistor: Structure and principle, band structure, carrier transport and I-V characteristics. Hetero-structurebipolar transistor (HBT): Structure and operating principle, quasi-static analysis, extended Gummel-Poon model, Ebers-Moll model, secondary effects andband diagram of a graded alloy base HBT.Pre-requisite: EEE 421 Solid State DevicesTextbook: Compound semiconductor electronics: the age of maturity, by M shurReference: Sige heterojunction bipolar transistors by Peter ashburnEEE 461 VLSI II3 hours/Week, 3 CreditsEEE 462 VLSI II LAB3 hours/Week, 1.5 CreditsVLSI MOS system design: Layout extraction and verification, full and semi-full custom design styles and logical and physical positioning.Design entry tools: Schematic capture and HDL. Logic and switch level simulation. Static timing. Concepts and tools of analysis, solutiontechniques for floor planning, placement, global routing and detailed routing. Application specific integrated circuit design including FPGA.Lab work:This course consists of two parts. In the first part, students will perform experiments to verify practically the theories and concepts learned in EEE-461.In the second part, students will design simple systems using the principles learned in EEE-461Pre-requisite: EEE 455 VLSI I and EEE 456 VLSI I LabTextbook: Digital Integrated Circuits by Jan M. RabaeyReference: Silicon VLSI Technology: Fundamentals, Practice and Modelingby James D. Plummer, Michael D. Deal and Peter B. GriffinEEE 463 PROGRAMMABLE ASIC DESIGN3 hours/Week, 3 CreditsEEE 464 PROGRAMMABLE ASIC DESIGN LAB3 hours/Week, 1.5 CreditsThe goal of the course is to introduce digital design techniques using field programmable gate arrays (FPGAs). We will discuss FPGA architecture, digitaldesign flow using FPGAs, and other technologies associated with field programmable gate arrays. The course study will involve extensive lab projects togive students hands-on experience on designing digital systems on FPGA platforms.Topics include:1. Introduction to ASICs and FPGAs, 2. Fundamentals in digital IC design, 3. FPGA & CPLD Architectures, 4. FPGA ProgrammingTechnologies, 5. FPGA Logic Cell Structures, 6. FPGA Programmable Interconnect and I/O Ports, 7. FPGA Implementation ofCombinational Circuits, 8. FPGA Sequential Circuits, 9. Timing Issues in FPGA Synchronous Circuits, 10. Introduction to Verilog HDL andFPGA Design flow with using Verilog HDL, 11. FPGA Arithmetic Circuits, 12. FPGAs in DSP Applications, 13. FPGA Implementation ofDirect Digital Frequency Synthesizer, 14. FPGA Microprocessor design, 15. Design Case Study: Design of SDRAM Controller, 16. DesignCase Study: Design of Halftone Pixel Converter, 17. FPGA High-level Design Techniques, 18. Programming FPGAs in Electronic Systems,19. Dynamically Reconfigurable Systems, 20. Latest Trends in Programmable ASIC and System Design.Lab work:1. Implement an encoding circuit with using user constraint file2. Implement an 8-bit signed multiplier with using user constraint file. Study how user constraint files can be used to improve circuitperformance3. Design and implement an multiplier and accumulator (MAC) unit using distributed arithmetic circuits4. Project: Implementing a fixed-point 2nd-order low-pass filterPre-requisite: EEE 457 Microcontroller System Design, EEE 458 Microcontroller System Design LabTextbook: FPGA-Based System Design by Wayne WolfReference: Advanced FPGA Design by Steve Kilts 19. School of Applied Sciences and Technology ~ 19 ~EEE 465 OPTOELECTRONICS3 hours/Week, 3 CreditsOptical properties in semiconductor: Direct and indirect band-gap materials, radiative and non-radiative recombination, optical absorption, photo-generatedexcess carriers, minority carrier life time, luminescence and quantum efficiency in radiation. Properties of light: Particle and wave nature of light,polarization, interference, diffraction and blackbody radiation. Light emitting diode (LED): Principles, materials for visible and infrared LED, internal andexternal efficiency, loss mechanism, structure and coupling to optical fibers. Stimulated emission and light amplification: Spontaneous and stimulatedemission, Einstein relations, population inversion, absorption of radiation, optical feedback and threshold conditions. Semiconductor Lasers: Populationinversion in degenerate semiconductors, laser cavity, operating wavelength, threshold current density, power output, hetero-junction lasers, optical andelectrical confinement. Introduction to quantum well lasers. Photo-detectors: Photoconductors, junction photo-detectors, PIN detectors, avalanchephotodiodes and phototransistors. Solar cells: Solar energy and spectrum, silicon and Schottkey solar cells. Modulation of light: Phase and amplitudemodulation, electro-optic effect, acousto-optic effect and magneto-optic devices. Introduction to integrated optics.Pre-requisite: EEE 227 Electronics IITextbook: Electrochromism and Electrochromic Devicesby Paul Monk, R. J. Mortimer, D. R. RosseinskyReference: Optical System Design by Robert Fischer, Paul R. Yoder, Biljana Tadic-GalebEEE 467 SEMICONDUCTOR DEVICE THEORY3 hours/Week, 3 CreditsLattice vibration: Simple harmonic model, dispersion relation, acoustic and optical phonons. Band structure: Isotropic and anisotropiccrystals, band diagrams and effective masses of different semiconductors and alloys. Scattering theory: Review of classical theory, Fermi-Golden rule, scattering rates of different processes, scattering mechanisms in different semiconductors, mobility. Different carrier transportmodels: Drift-diffusion theory, ambipolar transport, hydrodynamic model, Boltzman transport equations, quantum mechanical model,simple applications.Pre-requisite: EEE 421 Solid State DevicesTextbook: Power Semiconductor Devices: Theory and Applicationsby Vítezslav Benda, Duncan A. Grant, John Gowar.Reference: Physics of Semiconductor Devices by Simon M. SzeCOMMUNICATION OPTIONSEEE 371 RANDOM SIGNALS AND PROCESSES3 hours/Week, 3 CreditsProbability and random variables. Distribution and density functions and conditional probability. Expectation: moments and characteristic functions.Transformation of a random variable. Vector random variables. Joint distribution and density. Independence. Sums of random variables. RandomProcesses. Correlation functions. Process measurements. Gaussian and Poisson random processes. Noise models. Stationarity and Ergodicity. SpectralEstimation. Correlation and power spectrum. Cross spectral densities. Response of linear systems to random inputs. Introduction to discrete time processes,Mean-square error estimation, Detection and linear filtering.Pre-requisite: EEE 321 Signals and Linear SystemsTextbook: Introduction to Random Signals and Processes by Michael HaagReference: An Introduction to the Theory of Random Signals and Noise by Wilbur B., Jr. Davenport, William L. RootEEE 473 DIGITAL SIGNAL PROCESSING II3 hours/Week, 3 CreditsSpectral estimation: Nonparametric methods – discrete random processes, autocorrelation sequence, periodogram; parametric method–autoregressivemodeling, forward/backward linear prediction, Levinson-Durbin algorithm, minimum variance method and Eigen-structure method I and II. Adaptivesignal processing: Application, equalization, interference suppression, noise cancellation, FIR filters, minimum mean-square error criterion, leastmean-square algorithm and recursive least square algorithm. Multi-rate DSP: Interpolation and decimation, poly-phase representation and multistageimplementation. Perfect reconstruction filter banks: Power symmetric, alias-free multi-channel and tree structured filter banks. Wavelets: Short timeFourier transform, wavelet transform, discrete time orthogonal wavelets and continuous time wavelet basis.Pre-requisite: EEE 331 Digital Signal Processing ITextbook: Digital Signal Processing by John G. ProakisReference: Digital Signal Processing by Alan V. Oppenheim and R. W. SchaferEEE 475 RF AND MICROWAVE ENGINEERING3 hours/Week, 3 CreditsEEE 476 RF AND MICROWAVE ENGINEERING LAB3 hours/Week, 1.5 CreditsElectromagnetic Engineering Antenna Theory and Practice Analytical and Computational Techniques in Electromagnetics, RF andMicrowave Circuits and Antenna . RF and Microwave Integrated Circuits. Tuned small-signal amplifiers, mixers and active filters,oscillators; receivers; amplitude modulation; single side-band modulation; angle modulation; digital communications; transmission lines andcables; radio wave propagation; antennae. Spectral analysis; phase locked loops; noise; antennae; cellular radio; meteor burstcommunications; spread spectrum techniques. 20. School of Applied Sciences and Technology ~ 20 ~Transmission lines: Voltage and current in ideal transmission lines, reflection, transmission, standing wave, impedance transformation, Smith chart,impedance matching and lossy transmission lines. Waveguides: general formulation, modes of propagation and losses in parallel plate, rectangular andcircular waveguides. Microstrips: Structures and characteristics. Rectangular resonant cavities: Energy storage, losses and Q. Radiation: Small currentelement, radiation resistance, radiation pattern and properties, Hertzian and half wave dipoles. Antennas: Mono pole, horn, rhombic and parabolicreflector, array, and Yagi-Uda antenna.Lab work:This course consists of two parts. In the first part, students will perform experiments to verify practically the theories and concepts learned in EEE-475.In the second part, students will design simple systems using the principles learned in EEE-475.Pre-requisite: EEE 321 Signals and Linear SystemsTextbook: Microwave devices and Circuits by Samuel Y. LiasReference: Microwave Engineering by P.A. RizziEEE 477 GEOGRAPHICAL COMMUNICATION3 hours/Week, 3 CreditsBy the end of the course students will…1. Understand how communication both structures and is structured by geography.2. Understand the uneven geographical development of the Internet and other communication technologies.3. Recognize the significance of the location of physical telecommunications infrastructure in the construction of cyberspaces.4. Understand the ways that communications technologies may be undermining or enhancing the creation of community.5. Critically analyze the content of online communications.6. Apply principles of good web design (including principles of accessibility for people with disabilities) to become a content creatoras well as a content consumer.7. Be able to identify the ways that online and offline worlds interconnect.8. Understand the interrelationships among the disciplines of communication and geography.9. Understand how their own relationships with others are affected by telecommunications technologies.10. Understand how technological skills may be used to benefit their own and other's communities.11. Develop skills in managing complex projects and in working as a part of a team. be able to identify both printed and online sources ofinformation that they can use in the future to understand the changing geography of communication.12. Develop web design skills that may be useful for gaining employment upon graduation.Pre-requisite: EEE 329 Basic Communication EngineeringTextbook: The Cybercities Reader by Stephen Graham.Reference: Mapping Cyberspace by Martin Dodge and Rob KitchinEEE 481 OPTICAL FIBER COMMUNICATION3 hours/Week, 3 CreditsEEE 482 OPTICAL FIBER COMMUNICATION LAB3 hours/Week, 1.5 CreditsOptical fiber as wave-guides: Ray theory, Modes, SMF, MMF, Step Index and graded Index Fiber, Transmission Characteristic:Attenuation, Dispersion, Polarization, Fabrication: Liquid phase, Vapor phase, Fiber Cables, Connectors and Couplers: Alignment andjoint loss, Splices, GRIN rod lens, Connectors, Couplers, Optical Source: LASER, semiconductor injection LASER, LASER characteristic,modulation Optical Detectors: Photodiode construction, characteristic, P-N, P-I-N, APD, Direct Detection: Noise, Eye diagram, Receiverdesign, Fiber Amplifier: Construction, characteristic, use, Digital Transmission System: Point to point link, power budget, Noise,Advanced Systems and Techniques: WDM, Photonic switching, All optical network.Lab work:1. Study of Optical Fibers, 2. Multimode behavior of a optical fiber, 3. Measurement of Bend Loss, 4. Study of an optical attenuator, 5. L-Icurve of a LASER, 6. Construction of a power meter, 7. Fiber optic data communication, 8. BER plot of fiber optic system, 9. Project onfiber optic system.Pre-requisite: EEE 329 Basic Communication Engineering,EEE 330 Basic Communication Engineering LabTextbook: Optical Fiber Communication by John M. SeniorReference: Fiber Optic Communication Technique by D.K MynbaevEEE 483 TELECOMMUNICATION ENGINEERING3 hours/Week, 3 CreditsIntroduction: Principle, evolution, networks, exchange and international regulatory bodies. Telephone apparatus: Microphone, speakers,ringer, pulse and tone dialing mechanism, side-tone mechanism, local and central batteries and advanced features. Switching system:Introduction to analog system, digital switching systems – space division switching,blocking probability and multistage switching, time division switching and two dimensional switching. Traffic analysis: Traffic 21. School of Applied Sciences and Technology ~ 21 ~characterization, grades of service, network blocking probabilities, delay system and queuing. Modern telephone services and network:Internet telephony, facsimile, integrated services digital network, asynchronous transfer mode and intelligent networks. Introduction tocellular telephony and satellite communication.Pre-requisite: EEE 329 Basic Communication Engineering,EEE 330 Basic Communication Engineering LabTextbook: Telecommunications by Warren HiokiReference: Reference manual for telecom engineering 2d e by FreemannEEE 485 CELLULAR MOBILE AND SATELLITE COMMUNICATION3 hours/Week, 3 CreditsCellular & Mobile Communication: Introduction to code divisions Multiple Access (CDMA), Basic concepts, Spread spectrum, DS (Directsequence) spread spectrum, Reverse link DSCDMA, forward link DS-CDMA, Cellular systems, GSM, AMPS, Cellular digital packet data. CDMA Airlinks: Pilot channel, Synchronous channel, Paging channel, Traffic channel, Free space propagation, Propagation model, Multi path propagation,Propagation environment, Marine environment.Historical developments of Mobile Telephony, Trunking efficiency, Propagation criteria, mobile ratio environment, Elements of cellularradio system design, Specifications, Channel capacity, Cell coverage for signal and traffic, Mobile propagation models and fading models,Interference effects, Power control, Mobile switching and traffic, Mobile switching system and its subsystems, Mobile communicationprotocols.Satellite Communication: Introduction, Types of Satellites, Orbits, Station keeping, Satellite altitude, Transmission path, Path losses, Noiseconsiderations, Satellite systems, Saturation flux density, Effective isotropic radiated power, Multiple access methods.Pre-requisite: EEE 483 Telecommunication EngineeringTextbook: Cellular Mobile Systems Engineering by Saleh Faruque andWireless Communication by Theoder S. RappaportReference: Cellular mobile communication by William SchnederINTERDISCIPLINERY OPTIONSEEE 487 CONTROL SYSTEM II3 hours/Week, 3 CreditsEEE 488 CONTROL SYSTEM II LAB3 hours/Week, 1.5 CreditsCompensation using pole placement technique. State equations of digital systems with sample and hold, state equation of digital systems, digitalsimulation and approximation. Solution of discrete state equations: by z-transform, state equation and transfer function, state diagrams, state planeanalysis. Stability of digital control systems. Digital simulation and digital redesign. Time domain analysis. Frequency domain analysis. Controllabilityand observability. Optimal linear digital regulator design. Digital state observer. Microprocessor control. Introduction to neural network and fuzzycontrol, adaptive control. HμControl, nonlinear control.Pre-requisite: EEE 335 Control System I and EEE 336 Control System I LabTextbook: Control Systems Engineering by Norman S. NiseReference: Modern Control Engineering (4th Edition) by Katsuhiko OgataEEE 489 RENEWABLE ENERGY SYSTEMS3 hours/Week, 3 CreditsEEE 490 RENEWABLE ENERGY SYSTEMS LAB3 hours/Week, 1.5 CreditsModern society relies on stable, readily available energy supplies. Renewable energy is an increasingly important component of the newenergy mix. The course covers energy conversion, utilization and storage for renewable technologies such as wind, solar, biomass, fuel cellsand hybrid systems. Thermodynamics concepts (including the first and second law) will form the basis for modeling the renewable energysystems. The course also touches upon the environmental consequences of energy conversion and how renewable energy can reduce airpollution and global climate change.Course Objectives of the course:I. Understand and analyze energy conversion, utilization and storage for renewable technologies such as wind, solar, biomass, fuel cells andhybrid systems and for more conventional fossil fuel-based technologies.II. Use the First and Second Laws of Thermodynamics and introductory transport phenomena to form the basis of modeling renewableenergy systems.III. Understand the environmental consequences of energy conversion and how renewable energy can reduce air pollution and global climatechangeTopics include:Introduction to Renewable Energy, Review of Thermodynamics, Second Law Analysis, Availability, Exergy, Free Energy, Solar Radiation, SolarThermal, Biomass, Wind Energy, Fuel Cells, Hydrogen Production, Hydrogen Storage, Thermionics, Wave,Pre-requisite: EEE 223 Electrical Machines I, EEE 224 Electrical Machines I Lab, EEE 225 ElectricalMachines II, EEE 225 Electrical Machines II Lab, EEE 439 Electrical Machines IIITextbook: Fundamentals of Renewable Energy Processes by Aldo Da RosaReference: Fundamentals of Thermodynamics by 22. School of Applied Sciences and Technology ~ 22 ~Sonntag, Borgnakke, Van Wylen John Wiley and SonsEEE 491 BIOMEDICAL INSTRUMENTATION3 hours/Week, 3 CreditsEEE 492 BIOMEDICAL INSTRUMENTATION LAB3 hours/Week, 1.5 CreditsDescriptionIntroduction to engineering aspects of the detection, acquisition, processing, and display of signals from living systems; biomedical sensors formeasurements of bio-potentials, ions and gases in aqueous solution, force, displacement, blood pressure, blood flow, heart sounds, respiration, andtemperature; therapeutic and prosthetic devices; medical imaging instrumentation.Course Objectives Understand the limitations of instrumentation in terms of accuracy, resolution, precision, and reliability. Analyze and design operational amplifier and instrumentation amplifier circuits to amplify bio-signals. Analyze and design filter circuits to filter unwanted signals from bio-signals Understand the origin of cardiac and muscle bio-signals and how they are acquired using ECG and electro-myogram electrodes Understand electrode circuit models and how they effect signal acquisition Understand they physical modes of operation of various biosensors (amperometric, enzymatic, optical, resistive, capacitive) . Describe and compare methods and instrumentation needed to measure pressure and flow in the body. Determine and characterize the factors that limit medical imaging methods in biological tissue. Describe the requirements and limitations of bioinstrumentation in the clinical environment. Function and interact cooperatively and efficiently as a team member in completing a project. Present work in both written and oral reports.Lab work:DescriptionThe goal of the course is to provide students with laboratory experience to test the principles, design, and applications of medicalinstrumentation. This course also provides exposure to clinical applications of medical instrumentation.Course Objectives Analyze, design, and construct operational amplifier and instrumentation amplifier circuits to amplify bio-signals. Analyze, design, and construct filter circuits to filter unwanted signals from bio-signals. Acquire electrical and biological signals by implementing virtual instruments with Agilent VEE, LabView, or amplifiers coupled toa computer with other software. Understand biosensor and electrode design and apply them for signal acquisition. Understand the limitations of instrumentation in terms of accuracy, resolution, precision, and reliability. Understand the origin of cardiac and muscle bio-signals and acquire data using ECG and electromyogram electrodes. Determine and characterize the factors that limit ultrasound and other imaging methods in biological tissue. Describe the requirements and limitations of bioinstrumentation in the clinical environment. Function and interact cooperatively and efficiently as a team member in completing laboratory projects. Present laboratory data in a written format.Pre-requisite: EEE 223 Electrical Machines I, EEE 224 Electrical Machines I Lab, EEE 225 ElectricalMachines II, EEE 225 Electrical Machines II Lab, EEE 439 Electrical Machines IIITextbook: Medical Instrumentation: Application and Design, Fourth Edition by John WebsterReference: Design and Development of Medical Electronics Instrumentation: A Practical Perspective of the Design, Construction, and Testof Medical Devices by David PrutchiEEE 493 MEASUREMENT AND INSTRUMENTATION3 hours/Week, 3 CreditsEEE 494 MEASUREMENT AND INSTRUMENTATION LAB3 hours/Week, 1.5 CreditsIntroduction: Applications, functional elements of a measurement system and classification of instruments. Measurement of electrical quantities:Current and voltage, power and energy measurement. Current and potential transformer. Transducers: mechanical, electrical and optical. Measurementof non-electrical quantities: Temperature, pressure, flow, level, strain, force and torque. Basic elements of DC and AC signal conditioning:Instrumentation amplifier, noise and source of noise, noise elimination compensation, function generation and linearization, A/D and D/A converters,sample and hold circuits. Data Transmission and Telemetry: Methods of data transmission, DC/AC telemetry system and digital data transmission.Recording and display devices. Data acquisition system and microprocessor applications in instrumentation.Lab work:This course consists of two parts. In the first part, students will perform experiments to verify practically the theories and concepts learned in EEE-493. In the second part, students will design simple systems using the principles learned in EEE-493.Pre-requisite: EEE 223 Electrical Machines I, EEE 224 Electrical Machines I Lab, EEE 225 ElectricalMachines II, EEE 225 Electrical Machines II Lab, EEE 439 Electrical Machines III 23. School of Applied Sciences and Technology ~ 23 ~Textbook: Measurement and Instrumentation Principles, Third Edition by Alan S MorrisReference: Instrumentation for Process Measurement and Control, Third Editon by Norman A. Anderson


Comments

Copyright © 2025 UPDOCS Inc.