Buffer Tank 100Ton Cone

April 5, 2018 | Author: Anonymous | Category: Documents
Report this link


Description

Page 1 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:43 PM ETANK FULL REPORT - Tangki Buffer 100MT ETank2000 Full 1.9.14 (26 Oct 2010) TABLE OF CONTENTS ETANK SETTINGS SUMMARY SUMMARY OF DESIGN DATA AND REMARKS SUMMARY OF RESULTS ROOF DESIGN SHELL COURSE DESIGN BOTTOM HEAD DESIGN SEISMIC CALCULATIONS ANCHOR BOLT DESIGN CAPACITIES AND WEIGHTS MAWP & MAWV SUMMARY PAGE 1 PAGE 2 PAGE 3 PAGE 5 PAGE 8 PAGE 17 PAGE 28 PAGE 35 PAGE 41 PAGE 45 PAGE 46 Page 2 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:43 PM ETANK SETTINGS SUMMARY To Change These ETank Settings, Go To Tools->Options, Behavior Tab. ---------------------------------------------------------------------No 650 Appendix F Calcs when Tank P = 0 -> Default : False -> This Tank : False Repad 650 Design Basis -> Default for Tank Roof Nozzles : t-Basis = Roof t-Calc -> This Tank : Use API Default 1/4 in. Show MAWP / MAWV Calcs : True Enforce API Minimum thicknesses : True Enforce API Maximum Roof thickness : True Enforce Minimum Self Supp. Cone Pitch (2 in 12) : True Force Non-Annular Btm. to Meet API-650 5.5.1 : False Set t.actual to t.required Values : False Maximum 650 App. S or App. M Multiplier is 1 : True Enforce API Maximum Nozzle Sizes : True Max. Self Supported Roof thickness : 0.5 in. Max. Tank Corr. Allowance : 0.5 in. External pressure calcs subtract C.A. per V.5 : False Use Gauge Material for min thicknesses : False Enforce API Minimum Live Load : True Enforce API Minimum Anchor Chair Design Load = Bolt Yield Load : True Page 3 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:44 PM SUMMARY OF DESIGN DATA and REMARKS Job Date of Calcs. Mfg. or Insp. Date Designer Project Plant Plant Location Site Design Basis : : : : : : : : : Tangki Buffer 100MT 7/17/2012 , 05:04 PM 6/19/2012 Gandhi Smart Refinery Rungkut Surabaya Surabaya API-650 11th Edition, Addendum 2, Nov 2009 ---------------------------------------------------------------------- TANK NAMEPLATE INFORMATION ---------------------------------------------------------------------- Operating Ratio: 0.4 - Design Standard: - API-650 11th Edition, Addendum 2, Nov 2009 - (None) - Roof : A-240 Type 304L: 0.236in. - Shell (8): A-240 Type 304: 0.236in. - Shell (7): A-240 Type 304: 0.236in. - Shell (6): A-240 Type 304: 0.236in. - Shell (5): A-240 Type 304: 0.236in. - Shell (4): A-240 Type 304: 0.315in. - Shell (3): A-240 Type 304: 0.315in. - Shell (2): A-240 Type 304: 0.315in. - Shell (1): A-240 Type 304: 0.315in. - Bottom : A-240 Type 304L: 0.47in. ---------------------------------------------------------------------Design Internal Pressure = 1 PSI or 27.71 IN. H2O Design External Pressure = 0 PSI or 0 IN. H2O MAWP = 0.0996 PSI or 2.76 IN. H2O MAWV = 0 PSI or 0 IN. H2O OD of Tank = 12.739 ft Shell Height = 32 ft S.G. of Contents = 0.9 Max. Liq. Level = 32 ft Design Temperature = 104 °F Tank Joint Efficiency = 0.7 Ground Snow Load = 0 lbf/ft^2 Roof Live Load = 25 lbf/ft^2 Design Roof Dead Load = 0 lbf/ft^2 Page 4 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:44 PM Basic Wind Velocity = 20 mph Wind Importance Factor = 1 Using Seismic Method: API-650 11th Ed. - Site Specific Seismic Use Group: I Site Class: D Sa0 = 0.8 %g Sai = 0.8 %g Sac = 0.8 %g Av = 0.23 %g Q = 1 Importance Factor = 1 Rwi = 4 Rwc = 2 DESIGN NOTES NOTE 1 : There are tank calculation warnings. Search for * * Warning * * notes. NOTE 2 : Tank is not subject to API-650 Appendix F.7 DESIGNER REMARKS Tangki Buffer 100 Metric Ton SUS304 Bottom Cone Page 5 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:44 PM SUMMARY OF RESULTS Shell Material Summary (Bottom is 1) -----------------------------------------------------------------------Shell Width Material Sd St Weight CA # (ft) (psi) (psi) (lbf) (in) -----------------------------------------------------------------------8 4 A-240 Type 304 22,500 27,000 1,616 0.0625 7 4 A-240 Type 304 22,500 27,000 1,616 0.0625 6 4 A-240 Type 304 22,500 27,000 1,616 0.0625 5 4 A-240 Type 304 22,500 27,000 1,616 0.0625 4 4 A-240 Type 304 22,500 27,000 2,156 0.0625 3 4 A-240 Type 304 22,500 27,000 2,156 0.0625 2 4 A-240 Type 304 22,500 27,000 2,156 0.0625 1 4 A-240 Type 304 22,500 27,000 2,156 0.0625 -----------------------------------------------------------------------Total Weight 15,088 Shell API 650 Summary (Bottom is 1) ---------------------------------------------------------------------Shell t.design t.test t.external t.seismic t.required t.actual # (in.) (in.) (in.) (in.) (in.) (in.) ---------------------------------------------------------------------8 0.073 0.0093 N.A. 0.0716 0.1875 0.236 7 0.0806 0.0163 N.A. 0.0807 0.1875 0.236 6 0.0882 0.0233 N.A. 0.0898 0.1875 0.236 5 0.0958 0.0303 N.A. 0.0989 0.1875 0.236 4 0.1033 0.0373 N.A. 0.108 0.1875 0.315 3 0.1109 0.0444 N.A. 0.1171 0.1875 0.315 2 0.1185 0.0514 N.A. 0.1261 0.1875 0.315 1 0.126 0.0584 N.A. 0.1353 0.1875 0.315 ---------------------------------------------------------------------Structurally Supported Conical Roof Plate Material = A-240 Type 304L, Struct. Material = A-240 Type 304L t.required = 0.25 in. t.actual = 0.236 in. Roof Joint Efficiency = 0.7 Plate Weight = 1,287 lbf Rafters: 21 Rafters 0 Rafters 0 Rafters 0 Rafters 0 Rafters 0 Rafters at at at at at at Rad. Rad. Rad. Rad. Rad. Rad. 0.8493 1.6985 2.5478 3.397 4.2463 6.3695 ft.: ft.: ft.: ft.: ft.: ft.: 3 3 3 3 3 3 X X X X X X 3 3 3 3 3 3 X X X X X X 1/4 1/4 1/4 1/4 1/4 1/4 ANGLE ANGLE ANGLE ANGLE ANGLE ANGLE Rafters Weight = 0 lbf Page 6 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:44 PM Girders: 0 Girders 0 Girders 0 Girders 0 Girders 0 Girders at at at at at Rad. Rad. Rad. Rad. Rad. 0.8493 1.6985 2.5478 3.397 4.2463 ft.: ft.: ft.: ft.: ft.: 3 3 3 3 3 X X X X X 3 3 3 3 3 X X X X X 1/4 1/4 1/4 1/4 1/4 ANGLE ANGLE ANGLE ANGLE ANGLE Girders Weight = 0 lbf Columns: 1 Column at Center: 0 Columns at Rad. 0.8493 0 Columns at Rad. 1.6985 0 Columns at Rad. 2.5478 0 Columns at Rad. 3.397 0 Columns at Rad. 4.2463 Columns Weight = 0 lbf Bottom Type: Conical Bottom Bottom Floor Material = A-240 Type 304L t.required = 0.2428 in. t.actual = 0.47 in. Bottom Joint Efficiency = 0.7 Total Weight of Bottom = 2,852 lbf TOP END STIFFENER: L3x2x3/8, A-240 Type 304L, 252. lbf QTY (6) INTERMEDIATE STIFFENERS: A-240 Type 304L Stiffener #1: L1x1x1/8, 34. lbf, Elev. = 6.99 ft. Stiffener #2: L1x1x1/8, 34. lbf, Elev. = 13.98 ft. Stiffener #3: L1x1x1/8, 34. lbf, Elev. = 18.42 ft. Stiffener #4: L1x1x1/8, 34. lbf, Elev. = 21.81 ft. Stiffener #5: L1x1x1/8, 34. lbf, Elev. = 25.21 ft. Stiffener #6: L1x1x1/8, 34. lbf, Elev. = 28.6 ft. BOTTOM END STIFFENER: BAR 2x1/4, A-240 Type 304L, 72. lbf 3 X 3 X 1/4 ANGLE ft.: 3 X 3 X 1/4 ANGLE ft.: 3 X 3 X 1/4 ANGLE ft.: 3 X 3 X 1/4 ANGLE ft.: 3 X 3 X 1/4 ANGLE ft.: 3 X 3 X 1/4 ANGLE Page 7 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:44 PM SUPPORTED CONICAL ROOF (from Brownell & Young) Roof Plate Material: A-240 Type 304L, Structural Material: A-240 Type 304L, R = 6.3695 ft pt = 0.75 in/ft (Cone Roof Pitch) Theta = ATAN(pt/12) = ATAN(0.0625) = 3.5763 degrees Ap_Vert = = = = Vertical Projected Area of Roof pt*OD^2/48 0.75*12.739^2/48 2.536 ft^2 Sd = 20,928 PSI, Fy = 24,856 (API-650 Sd = 20,928 PSI, Fy = 24,856 (API-650 PSI « Table S-2a) PSI « Table S-2a) Horizontal Projected Area of Roof (Per API-650 5.2.1.f) Xw = = = = Ap = = = = Moment Arm of UPLIFT wind force on roof 0.5*OD 0.5*12.739 6.3695 ft Projected Area of roof for wind moment PI*R^2 PI*6.3695^2 127.456 ft^2 S = Ground Snow Load = 0 lbf/ft^2 Sb = Balanced Design Snow Load = 0 lbf/ft^2 Su = Unbalanced Design Snow Load = 0 lbf/ft^2 Dead_Load = Insulation + Plate_Weight + Added_Dead_Load = (8)(4/12) + 10.1102 + 0 = 12.7769 lbf/ft^2 Roof Loads (per API-650 Appendix R) Pe = PV*144 = 0*144 = 0 lbf/ft^2 e.1b = DL + MAX(Sb,Lr) + 0.4*Pe = 12.7769 + 25 + 0.4*0 = 37.777 lbf/ft^2 e.2b = DL + Pe + 0.4*MAX(Sb,Lr) = 12.7769 + 0 + 0.4*25 = 22.777 lbf/ft^2 T = Balanced Roof Design Load (per API-650 Appendix R) = MAX(e.1b,e.2b) = 37.777 lbf/ft^2 e.1u = DL + MAX(Su,Lr) + 0.4*Pe = 12.7769 + 25 + 0.4*0 = 37.777 lbf/ft^2 e.2u = DL + Pe + 0.4*MAX(Su,Lr) = 12.7769 + 0 + 0.4*25 = 22.777 lbf/ft^2 Page 8 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:44 PM U = Unbalanced Roof Design Load (per API-650 Appendix R) = MAX(e.1u,e.2u) = 37.777 lbf/ft^2 Lr_1 = MAX(T,U) = 37.777 lbf/ft^2 P = Max. Design Load = Lr_1 = 37.777 lbf/ft^2 = 0.2623 PSI l = = = = Maximum Rafter Spacing (Per API-650 5.10.4.4) (t - ca) * SQRT(1.5 * Fy / P) (0.236 - 0.0625)*SQRT(1.5*24,856/0.2623) 65.41 in. MINIMUM # OF RAFTERS < FOR OUTER SHELL RING > l = 65.41 in. since l < 84 in. (7 ft) N_min = 2*PI*R/l = 2*PI*(6.3695)(12)/65.41 = 7.34 * * Warning * *Parameters Still Required: Num. Girders Not Set for Ring #5 * * * NOTE * * * * * Warning * * Girder Ring #5: Num Girders Not Set Could Not Calculate Minimum Rafters at Radius = 4.2463 ft. Because Number of Girders is not Assigned. < FOR GIRDER RING Outer # of Girders (N) = 0 Radius = 4.2463 ft > * * Warning * *Girder quantity is zero at Girder Ring Outer Radius = 4.2463 « ft. * * Warning * *Parameters Still Required: Num. Girders Not Set for Ring #5 * * * NOTE * * * * * Warning * * Girder Ring #5: Num Girders Not Set Could Not Calculate Minimum Rafters at Radius = 4.2463 ft. Because Number of Girders is not Assigned. < FOR GIRDER RING Outer # of Girders (N) = 0 Radius = 3.397 ft > Page 9 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:44 PM * * Warning * *Girder quantity is zero at Girder Ring Outer Radius = 3.397 ft. * * Warning * *Parameters Still Required: Num. Girders Not Set for Ring #4 * * * NOTE * * * * * Warning * * Girder Ring #4: Num Girders Not Set Could Not Calculate Minimum Rafters at Radius = 3.397 ft. Because Number of Girders is not Assigned. < FOR GIRDER RING Outer # of Girders (N) = 0 Radius = 2.5478 ft > * * Warning * *Girder quantity is zero at Girder Ring Outer Radius = 2.5478 « ft. * * Warning * *Parameters Still Required: Num. Girders Not Set for Ring #3 * * * NOTE * * * * * Warning * * Girder Ring #3: Num Girders Not Set Could Not Calculate Minimum Rafters at Radius = 2.5478 ft. Because Number of Girders is not Assigned. < FOR GIRDER RING Outer # of Girders (N) = 0 Radius = 1.6985 ft > * * Warning * *Girder quantity is zero at Girder Ring Outer Radius = 1.6985 « ft. * * Warning * *Parameters Still Required: Num. Girders Not Set for Ring #2 * * * NOTE * * * * * Warning * * Girder Ring #2: Num Girders Not Set Could Not Calculate Minimum Rafters at Radius = 1.6985 ft. Because Number of Girders is not Assigned. < FOR GIRDER RING Outer # of Girders (N) = 0 Radius = 0.8493 ft > * * Warning * *Girder quantity is zero at Girder Ring Outer Radius = 0.8493 « ft. Page 10 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:44 PM * * Warning * *Parameters Still Required: Num. Girders Not Set for Ring #1 * * * NOTE * * * * * Warning * * Girder Ring #1: Num Girders Not Set Could Not Calculate Minimum Rafters at Radius = 0.8493 ft. Because Number of Girders is not Assigned. t.required = MAX(t-Calc, 0.1875 + 0.0625) = MAX(0,0.25) = 0.25 in. Page 11 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:44 PM RAFTER DESIGN * * Warning * *Parameters Still Required: Num. Girders Not Set for Ring #5 * * * NOTE * * * * * Warning * * Ring# 6: Num Girders Not Set Could Not Perform Rafter Design at Radius = 4.2463 ft. * * Warning * *Parameters Still Required: Num. Girders Not Set for Ring #4 * * * NOTE * * * * * Warning * * Ring# 5: Num Girders Not Set Could Not Perform Rafter Design at Radius = 3.397 ft. * * Warning * *Parameters Still Required: Num. Girders Not Set for Ring #3 * * * NOTE * * * * * Warning * * Ring# 4: Num Girders Not Set Could Not Perform Rafter Design at Radius = 2.5478 ft. * * Warning * *Parameters Still Required: Num. Girders Not Set for Ring #2 * * * NOTE * * * * * Warning * * Ring# 3: Num Girders Not Set Could Not Perform Rafter Design at Radius = 1.6985 ft. * * Warning * *Parameters Still Required: Num. Girders Not Set for Ring #1 * * * NOTE * * * * * Warning * * Ring# 2: Num Girders Not Set Could Not Perform Rafter Design at Radius = 0.8493 ft. * * Warning * *Parameters Still Required: Num. Girders Not Set for Ring #1 Page 12 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:44 PM * * * NOTE * * * * * Warning * * Ring #1: Num Girders Not Set Could Not Perform Rafter Design at Radius = 0.8493 ft. Page 13 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:44 PM GIRDER DESIGN * * * NOTE * * * * * Warning * *Ring #4: Num. Girders Not yet Assigned. * * Warning * *Ring #4: Num. Girders Not yet Assigned. Could Not Perform Girder Design at Radius = 3.397 ft. * * * NOTE * * * * * Warning * *Ring #3: Num. Girders Not yet Assigned. * * Warning * *Ring #3: Num. Girders Not yet Assigned. Could Not Perform Girder Design at Radius = 2.5478 ft. * * * NOTE * * * * * Warning * *Ring #2: Num. Girders Not yet Assigned. * * Warning * *Ring #2: Num. Girders Not yet Assigned. Could Not Perform Girder Design at Radius = 1.6985 ft. * * * NOTE * * * * * Warning * *Ring #1: Num. Girders Not yet Assigned. * * Warning * *Ring #1: Num. Girders Not yet Assigned. Could Not Perform Girder Design at Radius = 0.8493 ft. * * * NOTE * * * * * Warning * *Ring #1: Num. Girders Not yet Assigned. * * Warning * *Ring #1: Num. Girders Not yet Assigned. Could Not Perform Girder Design at Radius = 0.8493 ft. Page 14 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:44 PM COLUMN DESIGN * * * NOTE * * * * * Warning * *Ring #6: Num. Rafters Not yet Assigned. * * Warning * *Ring #6: Num. Rafters Not yet Assigned. Could Not Perform Column Design at Radius = 6.3695 ft. * * * NOTE * * * * * Warning * *Ring #5: Num. Girders Not yet Assigned. * * Warning * *Ring #5: Num. Girders Not yet Assigned. Could Not Perform Column Design at Radius = 4.2463 ft. * * * NOTE * * * * * Warning * *Ring #4: Num. Girders Not yet Assigned. * * Warning * *Ring #4: Num. Girders Not yet Assigned. Could Not Perform Column Design at Radius = 3.397 ft. * * * NOTE * * * * * Warning * *Ring #3: Num. Girders Not yet Assigned. * * Warning * *Ring #3: Num. Girders Not yet Assigned. Could Not Perform Column Design at Radius = 2.5478 ft. * * * NOTE * * * * * Warning * *Ring #2: Num. Girders Not yet Assigned. * * Warning * *Ring #2: Num. Girders Not yet Assigned. Could Not Perform Column Design at Radius = 1.6985 ft. * * * NOTE * * * Page 15 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:44 PM * * Warning * *Ring #1: Num. Girders Not yet Assigned. * * Warning * *Ring #1: Num. Girders Not yet Assigned. Could Not Perform Column Design at Radius = 0.8493 ft. Roof_Area = 36*PI*OD^2/COS(Theta) = 36*PI*(12.739)^2/COS() = 18,389 in^2 ROOF WEIGHT Weight of Roof Plates = (density)(t)(PI/4)(12*OD - t)^2/COS(Theta) = (0.2975)(0.236)(PI/4)(152.868 - 0.236)^2/COS(3.5763) = 1,287 lbf (New) = 946 lbf (Corroded) Weight of Roof Plates supported by shell = 391 lbf (New) = 287 lbf (Corroded) Weight of Rafters = 0 lbf Weight of Girders = 0 lbf Weight of Columns = 0 lbf (New) (New) (New) Total Weight of Roof = 1,287 lbf (New) = 946 lbf (Corroded) (From API-650 Figure F-2) Wc = 0.6 * SQRT[Rc * (t-CA)] (Top Shell Course) = 0.6 * SQRT[76.198 * (0.236 - 0.0625)] = 2.1816 in. (From API-650 Figure F-2) Wh = 0.3 * SQRT[R2 * (t-CA)] (or 12", whichever is less) = 0.3 * SQRT[1,225 * (0.236 - 0.0625)] = MIN(4.3742, 12) = 4.3742 in. Top End Stiffener: L3x2x3/8 Aa = (Cross-sectional Area of Top End Stiffener) = 1.73 in^2 Using API-650 Fig. F-2, Detail d End Stiffener Detail Ashell = = = = Contributing Area due to shell plates Wc*(t_shell - CA) 2.1816 * (0.236 - 0.0625) 0.379 in^2 Page 16 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:44 PM Aroof = = = = A = = = = Contributing Area due to roof plates Wh*(t_roof - CA) 4.3742 * (0.236 - 0.0625) 0.759 in^2 Actual Part. Area of Roof-to-Shell Juncture (per API-650) Aa + Aroof + Ashell 1.73 + 0.759 + 0.379 2.868 in^2 (per API-650 F.1.2) < Uplift on Tank > For conical or dish bottom tank with structural roof, Net_Uplift = Minus Corroded weight of shell and corroded roof weight. = -12,618 lbf Since Tank does not have flat bottom, Uplift Case per API-650 1.1.1 does not apply. < API-650 App. F > Fy = Min(Fy_roof,Fy_shell,Fy_stiff) = Min(24,856,29,800,24,856) = 24,856 psi A_min_a = Min. Participating Area due to full Design Pressure. (per API-650 F.5.1, and Fig. F-2) = [OD^2(P - 8*t)]/[0.962*24,856*TAN(Theta)] = [12.739^2(27.71 - 8*0.236)]/[0.962*24,856*0.0625] = 2.804 in^2 P_F51 = Max. Design Pressure, reversing A_min_a calculation. = A * [0.962*24,856*TAN(Theta)]/OD^2 + 8*t_h = 2.868 * [0.962*24,856*0.0625]/12.739^2 + 8*0.1735 = 1.0031 PSI or 27.8 IN. H2O P_Std = Max. Pressure allowed (Per API-650 App. F.1.3 & F.7) = 2.5 PSI or 69.28 IN. H2O P_max_internal = MIN(P_F51, P_Std) = MIN(27.8, 69.28) = 1.0031 PSI or 27.8 IN. H2O * * * NOTE * * * P_max_external Not Calculated: Parameters Still Required. Page 17 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:44 PM SHELL COURSE DESIGN (Bottom Course is #1) VDP Criteria (per API-650 5.6.4.1) L = (6*D*(t-ca))^0.5 = (6*12.739*(0.315-0.0625))^0.5 = 4.3931 H = Max Liquid Level =32 ft L / H H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 32 + 2.31*1/0.9 = 34.57ft t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 S.3.2) = 2.6*12.739*(34.57 - 1)*0.9/(22,500*0.7) + 0.0625 = 0.126 in. hMax_1 = E*Sd*(t_1 - CA_1)/(2.6*OD*G) + 1 = 0.7*22,500*(0.315 - 0.0625) / (2.6 * 12.739 * 0.9) + 1 = 134.4107 ft. Pmax_1 = (hMax_1 - H) * 0.433 * G = (134.4107 - 32) * 0.433 * 0.9 = 39.9095 PSI Pmax_int_shell = Pmax_1 Pmax_int_shell = 39.9095 PSI HYDROSTATIC TEST CONDITION < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 32 + 2.31*1/1 = 34.31ft t.test = 2.6*12.739*(34.31 - 1)/(27,000*0.7) = 0.0584 in. Course # 2 Material: A-240 Type 304; Width = 4 ft. Corrosion Allow. = 0.0625 in. Joint Efficiency = 0.7 Page 18 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:44 PM API-650 ONE FOOT METHOD Sd = 22,500 PSI St = 27,000 PSI (allowable design stress per API-650 App. S Table S-2a) (allowable test stress) DESIGN CONDITION G = 0.9 (per API-650) < Design Condition G = 0.9 > H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 28 + 2.31*1/0.9 = 30.57ft t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 S.3.2) = 2.6*12.739*(30.57 - 1)*0.9/(22,500*0.7) + 0.0625 = 0.1185 in. hMax_2 = E*Sd*(t_2 - CA_2)/(2.6*OD*G) + 1 = 0.7*22,500*(0.315 - 0.0625) / (2.6 * 12.739 * 0.9) + 1 = 134.4107 ft. Pmax_2 = (hMax_2 - H) * 0.433 * G = (134.4107 - 28) * 0.433 * 0.9 = 41.4683 PSI Pmax_int_shell = Min(Pmax_int_shell, Pmax_2) = Min(39.9095, 41.4683) Pmax_int_shell = 39.9095 PSI HYDROSTATIC TEST CONDITION < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 28 + 2.31*1/1 = 30.31ft t.test = 2.6*12.739*(30.31 - 1)/(27,000*0.7) = 0.0514 in. Course # 3 Material: A-240 Type 304; Width = 4 ft. Corrosion Allow. = 0.0625 in. Joint Efficiency = 0.7 API-650 ONE FOOT METHOD Sd = 22,500 PSI St = 27,000 PSI (allowable design stress per API-650 App. S Table S-2a) (allowable test stress) DESIGN CONDITION G = 0.9 (per API-650) < Design Condition G = 0.9 > H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 24 + 2.31*1/0.9 = 26.57ft Page 19 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:44 PM t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 S.3.2) = 2.6*12.739*(26.57 - 1)*0.9/(22,500*0.7) + 0.0625 = 0.1109 in. hMax_3 = E*Sd*(t_3 - CA_3)/(2.6*OD*G) + 1 = 0.7*22,500*(0.315 - 0.0625) / (2.6 * 12.739 * 0.9) + 1 = 134.4107 ft. Pmax_3 = (hMax_3 - H) * 0.433 * G = (134.4107 - 24) * 0.433 * 0.9 = 43.0271 PSI Pmax_int_shell = Min(Pmax_int_shell, Pmax_3) = Min(39.9095, 43.0271) Pmax_int_shell = 39.9095 PSI HYDROSTATIC TEST CONDITION < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 24 + 2.31*1/1 = 26.31ft t.test = 2.6*12.739*(26.31 - 1)/(27,000*0.7) = 0.0444 in. Course # 4 Material: A-240 Type 304; Width = 4 ft. Corrosion Allow. = 0.0625 in. Joint Efficiency = 0.7 API-650 ONE FOOT METHOD Sd = 22,500 PSI St = 27,000 PSI (allowable design stress per API-650 App. S Table S-2a) (allowable test stress) DESIGN CONDITION G = 0.9 (per API-650) < Design Condition G = 0.9 > H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 20 + 2.31*1/0.9 = 22.57ft t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 S.3.2) = 2.6*12.739*(22.57 - 1)*0.9/(22,500*0.7) + 0.0625 = 0.1033 in. hMax_4 = E*Sd*(t_4 - CA_4)/(2.6*OD*G) + 1 = 0.7*22,500*(0.315 - 0.0625) / (2.6 * 12.739 * 0.9) + 1 = 134.4107 ft. Pmax_4 = (hMax_4 - H) * 0.433 * G = (134.4107 - 20) * 0.433 * 0.9 = 44.5859 PSI Page 20 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:44 PM Pmax_int_shell = Min(Pmax_int_shell, Pmax_4) = Min(39.9095, 44.5859) Pmax_int_shell = 39.9095 PSI HYDROSTATIC TEST CONDITION < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 20 + 2.31*1/1 = 22.31ft t.test = 2.6*12.739*(22.31 - 1)/(27,000*0.7) = 0.0373 in. Course # 5 Material: A-240 Type 304; Width = 4 ft. Corrosion Allow. = 0.0625 in. Joint Efficiency = 0.7 API-650 ONE FOOT METHOD Sd = 22,500 PSI St = 27,000 PSI (allowable design stress per API-650 App. S Table S-2a) (allowable test stress) DESIGN CONDITION G = 0.9 (per API-650) < Design Condition G = 0.9 > H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 16 + 2.31*1/0.9 = 18.57ft t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 S.3.2) = 2.6*12.739*(18.57 - 1)*0.9/(22,500*0.7) + 0.0625 = 0.0958 in. hMax_5 = E*Sd*(t_5 - CA_5)/(2.6*OD*G) + 1 = 0.7*22,500*(0.236 - 0.0625) / (2.6 * 12.739 * 0.9) + 1 = 92.6703 ft. Pmax_5 = (hMax_5 - H) * 0.433 * G = (92.6703 - 16) * 0.433 * 0.9 = 29.8784 PSI Pmax_int_shell = Min(Pmax_int_shell, Pmax_5) = Min(39.9095, 29.8784) Pmax_int_shell = 29.8784 PSI HYDROSTATIC TEST CONDITION < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 16 + 2.31*1/1 = 18.31ft Page 21 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:44 PM t.test = 2.6*12.739*(18.31 - 1)/(27,000*0.7) = 0.0303 in. Course # 6 Material: A-240 Type 304; Width = 4 ft. Corrosion Allow. = 0.0625 in. Joint Efficiency = 0.7 API-650 ONE FOOT METHOD Sd = 22,500 PSI St = 27,000 PSI (allowable design stress per API-650 App. S Table S-2a) (allowable test stress) DESIGN CONDITION G = 0.9 (per API-650) < Design Condition G = 0.9 > H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 12 + 2.31*1/0.9 = 14.57ft t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 S.3.2) = 2.6*12.739*(14.57 - 1)*0.9/(22,500*0.7) + 0.0625 = 0.0882 in. hMax_6 = E*Sd*(t_6 - CA_6)/(2.6*OD*G) + 1 = 0.7*22,500*(0.236 - 0.0625) / (2.6 * 12.739 * 0.9) + 1 = 92.6703 ft. Pmax_6 = (hMax_6 - H) * 0.433 * G = (92.6703 - 12) * 0.433 * 0.9 = 31.4372 PSI Pmax_int_shell = Min(Pmax_int_shell, Pmax_6) = Min(29.8784, 31.4372) Pmax_int_shell = 29.8784 PSI HYDROSTATIC TEST CONDITION < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 12 + 2.31*1/1 = 14.31ft t.test = 2.6*12.739*(14.31 - 1)/(27,000*0.7) = 0.0233 in. Course # 7 Material: A-240 Type 304; Width = 4 ft. Corrosion Allow. = 0.0625 in. Joint Efficiency = 0.7 API-650 ONE FOOT METHOD Sd = 22,500 PSI St = 27,000 PSI (allowable design stress per API-650 App. S Table S-2a) (allowable test stress) Page 22 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:44 PM DESIGN CONDITION G = 0.9 (per API-650) < Design Condition G = 0.9 > H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 8 + 2.31*1/0.9 = 10.57ft t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 S.3.2) = 2.6*12.739*(10.57 - 1)*0.9/(22,500*0.7) + 0.0625 = 0.0806 in. hMax_7 = E*Sd*(t_7 - CA_7)/(2.6*OD*G) + 1 = 0.7*22,500*(0.236 - 0.0625) / (2.6 * 12.739 * 0.9) + 1 = 92.6703 ft. Pmax_7 = (hMax_7 - H) * 0.433 * G = (92.6703 - 8) * 0.433 * 0.9 = 32.996 PSI Pmax_int_shell = Min(Pmax_int_shell, Pmax_7) = Min(29.8784, 32.996) Pmax_int_shell = 29.8784 PSI HYDROSTATIC TEST CONDITION < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 8 + 2.31*1/1 = 10.31ft t.test = 2.6*12.739*(10.31 - 1)/(27,000*0.7) = 0.0163 in. Course # 8 Material: A-240 Type 304; Width = 4 ft. Corrosion Allow. = 0.0625 in. Joint Efficiency = 0.7 API-650 ONE FOOT METHOD Sd = 22,500 PSI St = 27,000 PSI (allowable design stress per API-650 App. S Table S-2a) (allowable test stress) DESIGN CONDITION G = 0.9 (per API-650) < Design Condition G = 0.9 > H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 4 + 2.31*1/0.9 = 6.57ft t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 S.3.2) = 2.6*12.739*(6.57 - 1)*0.9/(22,500*0.7) + 0.0625 = 0.073 in. Page 23 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:44 PM hMax_8 = E*Sd*(t_8 - CA_8)/(2.6*OD*G) + 1 = 0.7*22,500*(0.236 - 0.0625) / (2.6 * 12.739 * 0.9) + 1 = 92.6703 ft. Pmax_8 = (hMax_8 - H) * 0.433 * G = (92.6703 - 4) * 0.433 * 0.9 = 34.5548 PSI Pmax_int_shell = Min(Pmax_int_shell, Pmax_8) = Min(29.8784, 34.5548) Pmax_int_shell = 29.8784 PSI HYDROSTATIC TEST CONDITION < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 4 + 2.31*1/1 = 6.31ft t.test = 2.6*12.739*(6.31 - 1)/(27,000*0.7) = 0.0093 in. Wtr = Transposed Width of each Shell Course = Width*[ t_top / t_course ]^2.5 Transforming Courses (1) to (8) Wtr(1) = 4*[ 0.236/0.315 ]^2.5 = 1.9434 Wtr(2) = 4*[ 0.236/0.315 ]^2.5 = 1.9434 Wtr(3) = 4*[ 0.236/0.315 ]^2.5 = 1.9434 Wtr(4) = 4*[ 0.236/0.315 ]^2.5 = 1.9434 Wtr(5) = 4*[ 0.236/0.236 ]^2.5 = 4 ft Wtr(6) = 4*[ 0.236/0.236 ]^2.5 = 4 ft Wtr(7) = 4*[ 0.236/0.236 ]^2.5 = 4 ft Wtr(8) = 4*[ 0.236/0.236 ]^2.5 = 4 ft Hts (Height of the Transformed Shell) = SUM{Wtr} = 23.7736 ft ft ft ft ft INTERMEDIATE WIND GIRDERS (API 650 Section 5.9.7) V (Wind Speed) = 20 mph Ve = vf = Velocity Factor = (vs/120)^2 = (20/120)^2 = 0.0278 Design PV = 0 PSI, OR 0 In. H2O Z = Required Top Comp Ring Section Modulus (per API-650 5.1.5.9.e) = 0.27 in^3, For Structural Roof and OD = L_0 Zi (Req. Wind Gird. Z) = (0.0001)(Ve)(L0)(OD^2) = (0.0001)(0.0278)(3.4)(12.739^2) = 0 in^3 Actual Zi = 0.0964 in^3 using QTY (6): L1x1x1/8 SHELL COURSE #1 SUMMARY ------------------------------------------t.seismic governs. See E.6.2.4 table in SEISMIC calculations. ft ft ft ft t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0.126, 0, 0.1353) = 0.1353 in. t-650min = 0.1875 in. (per API-650 Section 5.6.1.1, NOTE 4) t.required = MAX(t.design, t.test, t.min650) = 0.1875 in. t.actual = 0.315 in. Weight = = = = Density*PI*[(12*OD) - t]*12*Width*t 0.2975*PI*[(12*12.739)-0.315]*12*4*0.315 2,156 lbf (New) 1,729 lbf (Corroded) Page 25 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:45 PM SHELL COURSE #2 SUMMARY ------------------------------------------t.seismic governs. See E.6.2.4 table in SEISMIC calculations. t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0.1185, 0, 0.1261) = 0.1261 in. t-650min = 0.1875 in. (per API-650 Section 5.6.1.1, NOTE 4) t.required = MAX(t.design, t.test, t.min650) = 0.1875 in. t.actual = 0.315 in. Weight = = = = Density*PI*[(12*OD) - t]*12*Width*t 0.2975*PI*[(12*12.739)-0.315]*12*4*0.315 2,156 lbf (New) 1,729 lbf (Corroded) SHELL COURSE #3 SUMMARY ------------------------------------------t.seismic governs. See E.6.2.4 table in SEISMIC calculations. t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0.1109, 0, 0.1171) = 0.1171 in. t-650min = 0.1875 in. (per API-650 Section 5.6.1.1, NOTE 4) t.required = MAX(t.design, t.test, t.min650) = 0.1875 in. t.actual = 0.315 in. Weight = = = = Density*PI*[(12*OD) - t]*12*Width*t 0.2975*PI*[(12*12.739)-0.315]*12*4*0.315 2,156 lbf (New) 1,729 lbf (Corroded) SHELL COURSE #4 SUMMARY ------------------------------------------t.seismic governs. See E.6.2.4 table in SEISMIC calculations. t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0.1033, 0, 0.108) = 0.108 in. t-650min = 0.1875 in. (per API-650 Section 5.6.1.1, NOTE 4) t.required = MAX(t.design, t.test, t.min650) = 0.1875 in. t.actual = 0.315 in. Page 26 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:45 PM Weight = = = = Density*PI*[(12*OD) - t]*12*Width*t 0.2975*PI*[(12*12.739)-0.315]*12*4*0.315 2,156 lbf (New) 1,729 lbf (Corroded) SHELL COURSE #5 SUMMARY ------------------------------------------t.seismic governs. See E.6.2.4 table in SEISMIC calculations. t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0.0958, 0, 0.0989) = 0.0989 in. t-650min = 0.1875 in. (per API-650 Section 5.6.1.1, NOTE 4) t.required = MAX(t.design, t.test, t.min650) = 0.1875 in. t.actual = 0.236 in. Weight = = = = Density*PI*[(12*OD) - t]*12*Width*t 0.2975*PI*[(12*12.739)-0.236]*12*4*0.236 1,616 lbf (New) 1,189 lbf (Corroded) SHELL COURSE #6 SUMMARY ------------------------------------------t.seismic governs. See E.6.2.4 table in SEISMIC calculations. t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0.0882, 0, 0.0898) = 0.0898 in. t-650min = 0.1875 in. (per API-650 Section 5.6.1.1, NOTE 4) t.required = MAX(t.design, t.test, t.min650) = 0.1875 in. t.actual = 0.236 in. Weight = = = = Density*PI*[(12*OD) - t]*12*Width*t 0.2975*PI*[(12*12.739)-0.236]*12*4*0.236 1,616 lbf (New) 1,189 lbf (Corroded) SHELL COURSE #7 SUMMARY ------------------------------------------t.seismic governs. See E.6.2.4 table in SEISMIC calculations. t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0.0806, 0, 0.0807) = 0.0807 in. t-650min = 0.1875 in. (per API-650 Section 5.6.1.1, NOTE 4) Page 27 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:45 PM t.required = MAX(t.design, t.test, t.min650) = 0.1875 in. t.actual = 0.236 in. Weight = = = = Density*PI*[(12*OD) - t]*12*Width*t 0.2975*PI*[(12*12.739)-0.236]*12*4*0.236 1,616 lbf (New) 1,189 lbf (Corroded) SHELL COURSE #8 SUMMARY ------------------------------------------t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0.073, 0, 0.0716) = 0.073 in. t-650min = 0.1875 in. (per API-650 Section 5.6.1.1, NOTE 4) t.required = MAX(t.design, t.test, t.min650) = 0.1875 in. t.actual = 0.236 in. Weight = = = = Density*PI*[(12*OD) - t]*12*Width*t 0.2975*PI*[(12*12.739)-0.236]*12*4*0.236 1,616 lbf (New) 1,189 lbf (Corroded) Page 28 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:45 PM CONICAL BOTTOM HEAD Material : A-240 Type 304L pt = 6 in/ft (Bottom Cone Pitch) TAN(Theta) = pt/12 = 0.5 Theta = 26.5651 degrees (angle of cone to the horizontal) Alpha = 63.4349 degrees (1/2 the included apex angle of cone) R2 = 6*OD/SIN(Theta) = 170.91 in. Rc = R3 = OD/2 = 76.43 in. Wc = 0.6*SQRT[Rc(t - CA)] (Bottom Shell Course) = 0.6*SQRT[(76.43)(0.315 - 0.0625)] = 2.64 in. (per API-620 Section 5.12.4.2, Eq.25) Wh = 0.6*SQRT[R2(t - CA)] (Bottom Plate) = 0.6[(170.91)(0.47 - 0.0625)] = 5.0072 in. (per API-620 Section 5.12.4.2 Eq. 24) Aa = (Cross-sectional Area of Bottom End Stiffener) = 0.5 in^2 using BAR 2x1/4 At = PI*OD^2/4*144 = PI*12.739^2/4*144 = 18,354 in^2 (Cross-Sectional Area of Bottom at Shell) Bottom_Area = 36*PI*(OD-t)^2/COS(Theta) = 36*PI*(12.739-0.47)^2/COS(0.4636) = 20,394 in^2 Weight = = = = Density * t.actual * Bottom_Area 0.2975 * 0.47 * 20,394 2,852 lbf (New) 2,472 lbf (Corroded) Page 29 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:45 PM < API-620, Unless Otherwise Noted > A = = = = Actual Part. Area of Bottom-to-Shell Juncture (per API-620) Aa + Wc*(t_shell - CA) + Wh*(t_bottom - CA) 1.428 + (2.64)(0.2525) + (5.0072)(0.4075) 4.135 in^2 < Internal Pressure @ Bottom-Head Edge; h = 32 ft. > W = (Bottom Plates + Dead Load + Fixed Load + Hydro Weight) = 2,852 + 0 + 0 + 4,062 = 6,914 lbf W/At = (6,914 / 18,354) = 0.3767 PSI P = P_Entered + P_Liquid = 1 + 12.4704 = 13.4704 PSI or 373.31 IN. H20 T1 = R3/[2*COS(Alpha)]*(P + W/At) = 76.43/[2*COS(63.4349)]*(13.4704 + 0.3767) = 1,183 lbf/in T2 = R3/COS(Alpha)*(P + W/At) = 76.43/COS(63.4349)*(13.4704 + 0.3767) = 2,367 lbf/in < API-620 > Minimum thickness (t) requirement: (Per 5.10.3.2) T = MAX(T1, T2) = 2,367 lb./in. Sts = 18,750 PSI (Allowable Tensile Stress per API-620 Table 5-1) t-Calc = T/(Sts*E) + CA = 2,367/(18,750*0.7) + 0.0625 = 0.2428 in. t-Calc = 0.2428 in. Since t.actual > T620, Back-Calculating Pmax using t.actual as target, and T620 routine... Entry Condition: P_x = 13.4714, t-620 = 0.2428 Exit Condition: P_x = 30.915, t-620 = 0.47 NOTE: Tank Limited to 2.5 PSI (per API-650) P_max_int = 2.5PSI, or 69.28 IN. H2O (limited by Bottom Plate, without Liquid Head) T2s = P*R3 = (13.4704)(76.43) = 1,030 lbf/in Page 30 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:45 PM Q = (T2)(Wh) + (T2s)(Wc) - (T1)(Rc)(SIN(Alpha)) = (2,367)(5.0072)+(1,030)(2.64)-(1,183)(76.43)(SIN(63.4349)) = -66,321 lbf A_min = = = = Minimum Participating Area ( per API-620 5.12.4.3 Eq. 27) -Q/Scs -66,321/15,000 4.421 in^2 Since Actual Area is Less than A_min, Back-Calculating PmaxQ using Actual Area (A-620) as target... Entry Condition: P_x = 1, A-620 = 4.421 Exit Condition: P_x = 12.57, A-620 = 4.135 * * Warning * *Internal Design Pressure is Greater than Pmax, (Due to Btm. End Stiffener Area) P_max_int_Q = 0.0996 PSI (limited by Actual Participating Area, without Liquid Head) P_max_int = MIN(P_max_int, P_max_int_Q) = 0.0996PSI, or 2.76 IN. H2O < External Pressure - Empty > W = (Bottom Plates) = 2,852 lbf W/At = (2,852 / 18,354) = 0.1554 PSI P = PV_Entered = 0 PSI or 0 IN. H20 T1 = R3/[2*COS(Alpha)]*(P + W/At) = 76.43/[2*COS(63.4349)]*(0 + 0.1554) = 13.28 lbf/in T2 = R3/COS(Alpha)*(P + W/At) = 76.43/COS(63.4349)*(0 + 0.1554) = 26.56 lbf/in < API-620 > Minimum thickness (t) requirement: (Per 5.10.3.2) T = MAX(T1, T2) = 26.6 lb./in. Sts = 18,750 PSI (Allowable Tensile Stress per API-620 Table 5-1) t-Calc = T/(Sts*E) + CA = 26.6/(18,750*0.7) + 0.0625 = 0.0645 in. t-Calc = 0.0645 in. Since t.actual > T620, Back-Calculating Pmax using t-Calc as target, and T620 routine... Entry Condition: V_x = 0 PSI, t-620 = 0.0645 Exit Condition: V_x = -7.468, t-620 = 0.47 Page 31 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:45 PM P_max_ext= -1 PSI (due to Bottom Plate) T2s = P*R3 = (0)(76.43) = 0 lbf/in Q = (T2)(Wh) + (T2s)(Wc) - (T1)(Rc)(SIN(Alpha)) = (26.56)(5.0072)+(0)(2.64)-(13.28)(76.43)(SIN(63.4349)) = -775 lbf A_min = = = = Minimum Participating Area ( per API-620 5.12.4.3 Eq. 27) -Q/Scs -775/15,000 0.052 in^2 Back-Calculating PmaxQ using Actual Area (A-620) as target... Entry Condition: P_x = -1, A-620 = 0.052 Exit Condition: P_x = -14.699, A-620 = 3.709 P_max_ext_Q= -1 PSI (due to Act. Participating Area) P_max_ext = MAX(P_max_ext,P_max_ext_Q) = -1PSI, or -27.71 IN. H2O t-Calc = MAX(t_internal, t_external) = MAX(0.2428,0.0645) = 0.2428 in. Pr = Max Bottom Load = Max(ABS(T1), ABS(T2)) = 26.56 = 26.56 lbf/ft^2 t_Cone = OD/SIN(Theta)*SQRT[Pr/(0.248*E)] = 12.739/SIN(26.5651)*SQRT[26.56/(0.248*27,976,000)] = 0.0557 in. t_Cone = MAX(t-Calc, t_Cone) = MAX(0.2428, 0.0557) = 0.2428 in. Ac = (Required Part. Area of Bottom-to-Shell Juncture) = MAX(4.421,0.052) = 4.421 in^2 A = Actual Part. Area of Bottom-to-Shell Juncture = 4.135 in^2 Bottom End Stiffener: Using BAR 2x1/4 Area = 1.428 in^2 I = 0.61 in^4 * * Warning * * Btm. End Stiffener Area Req'd = 0.286 in^2 A_stiff_required - A_stiff_actual = -1.142in^2 * * Warning * *Bottom Stiffener Area Req'd = 0.286 in^2. Page 32 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:45 PM NOTE: ADDITIONAL STIFFNESS PROVIDED BY LEGS WELDED AT BOTTOM-TO-SHELL JUNCTURE, OR BRACING AGAINST BOTTOM HEAD HAS NOT BEEN FACTORED IN. < BOTTOM DESIGN SUMMARY > Head Area Head Volume Plate Weight Entered Dead Load Fixed Load Liquid Weight = = = = = = 20,394 in^2 541.2223 ft^3 2,852 lbf 0 lbf/ft^2 0 lbf 4,062 LBF t.required = 0.2428 in. t.actual = 0.47 in. P_max_internal = 0.0996 PSI P_max_external = -1 PSI Page 33 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:45 PM NET UPLIFT DUE TO INTERNAL PRESSURE (See roof report for calculations) Net_Uplift = -12,618 lbf Anchorage NOT required for internal pressure. WIND MOMENT (Per API-650 SECTION 5.11) vs = Wind Velocity = 20 mph vf = Velocity Factor = (vs/120)^2 = (20/120)^2 = 0.0278 Wind_Uplift = Iw * 30 * vf = 1 * 30 * 0.0278 = 0.8333 lbf/ft^2 API-650 5.2.1.k Uplift Check P_F41 = WCtoPSI(0.962*Fy*A*TAN(Theta)/D^2 + 8*t_h) P_F41 = WCtoPSI(0.962*24,856*2.868*0.0625/12.739^2 + 8*0.1735) = 1.0031 PSI Limit Wind_Uplift/144+P to 1.6*P_F41 Wind_Uplift/144 + P = 1.0058 PSI 1.6*P_F41 = 1.605 PSI Wind_Uplift/144 + P = MIN(Wind_Uplift/144 + P, 1.6*P_F41) Wind_Uplift/144 = MIN(Wind_Uplift/144, 1.6*P_F41 - P) Wind_Uplift = MIN(Wind_Uplift, (1.6*P_F41 - P) * 144) = MIN(0.8333,87.1142) = 0.8333 lbf/ft^2 Ap_Vert = = = = Vertical Projected Area of Roof pt*OD^2/48 0.75*12.739^2/48 2.536 ft^2 Horizontal Projected Area of Roof (Per API-650 5.2.1.f) Xw = = = = Ap = = = = Moment Arm of UPLIFT wind force on roof 0.5*OD 0.5*12.739 6.3695 ft Projected Area of roof for wind moment PI*R^2 PI*6.3695^2 127.456 ft^2 M_roof (Moment Due to Wind Force on Roof) = (Wind_Uplift)(Ap)(Xw) = (0.8333)(127.456)(6.3695) = 677 ft-lbf Xs (Moment Arm of Wind Force on Shell) = H/2 = (32)/2 = 16 ft As (Projected Area of Shell) = H*(OD + t_ins / 6) = (32)(12.739 + 4/6) = 428.9814 ft^2 M_shell (Moment Due to Wind Force on Shell) = (Iw)(vf)(18)(As)(Xs) = (1)(0.0278)(18)(428.9814)(16) = 3,432 ft-lbf Page 34 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:45 PM Mw (Wind moment) = M_roof + M_shell = 677 + 3,432 = 4,109 ft-lbf W = Net weight (PER API-650 5.11.3) (Force due to corroded weight of shell and shell-supported roof plates less 40% of F.1.2 Uplift force.) = W_shell + W_roof - 0.4*P*(PI/4)(144)(OD^2) = 11,672 + 287 - 1*(PI/4)(144)(12.739^2) = 4,618 lbf RESISTANCE TO OVERTURNING (per API-650 5.11.2) Not Applicable, because Tank bottom is not flat and resting on a foundation. RESISTANCE TO SLIDING (per API-650 5.11.4) Not Applicable, because Tank bottom is not flat and resting on a foundation. Anchorage NOT required since Criteria 1, Criteria 2, and Sliding ARE acceptable. Page 35 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:45 PM SEISMIC CALCULATIONS PER API-650 11TH ED., ADDENDUM 2 < Site Specific Method > WEIGHTS Ws = Weight of Shell (Incl. Shell Stiffeners & Insul.) = 19,031 lbf Wf = Weight of Floor (Incl. Annular Ring) = 2,852 lbf Wr = Weight Fixed Roof, framing and 10% of Design Live Load & Insul. = 1,947 lbf SEISMIC VARIABLES SUG = Seismic Use Group (Importance factor depends on SUG) = I Site Class = D Sa0 = 5% damped, design spectral response acceleration parameter at zero period based on site-specific procedures = 0.008 Decimal %g Sai = 5% damped, site specific MCE response spectra at the calculated impulsive period including site soil effects = 0.008 Decimal %g Sac = 5% damped, site specific MCE response spectra at the calculated convective period including site soil effects = 0.008 Decimal %g Av = Vertical Earthquake Acceleration Coefficient = 0.0023 Decimal %g Q = Scaling factor from the MCE to design level spectral accelerations = 1 I = Importance factor defined by Seismic Use Group = 1 Rwi = Force reduction factor for the impulsive mode using allowable stress design methods. = 4 Rwc = Force reduction factor for the convective mode using allowable stress design methods. = 2 Ci = Coefficient for impulsive period of tank system (Fig E-1) = 13.68 tu = Equivalent uniform thickness of tank shell = 0.2755 in. Density = Density of tank product. SG*62.4 = 56.16 lbf/ft^3 E = Elastic modulus of tank material (bottom shell course) = 27,976,000 PSI Page 36 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:45 PM E.4.5 STRUCTURAL PERIOD OF VIBRATION E.4.5.1 Impulsive Natural Period Ti = (1/27.8)*(Ci*H)/((tu/D)^0.5)*(Density^0.5/E^0.5) = (1/27.8)*(13.68*32/((0.2755/12.739)^0.5)*(56.16^0.5/27,976,000^0.5) = 0.15 sec. E.4.5.2 Convective (Sloshing) Period Ks = 0.578/SQRT(TANH(3.68*H/D)) = 0.578/SQRT(TANH(3.68/0.398)) = 0.578 Tc = Ks*SQRT(D) = 0.578*SQRT(12.739) = 2.06 sec. E.4.6.1 Spectral Acceleration Coefficients Ai = Impulsive spectral acceleration parameter = Q*I/Rwi*Sai = 1*1/4*0.008 = 0.002 decimal %g K = Coefficient to adjust spectral acceleration from 5% - 0.5% damping = 1.5 Ac = Convective spectral acceleration parameter = Q*K*I/Rwc*Sac = 1*1.5*1/2*0.008 = 0.006 decimal %g E.6.1.1 EFFECTIVE WEIGHT OF PRODUCT D/H = Ratio of Tank Diameter to Design Liquid Level = 0.398 Wp = Total Weight of Tank Contents based on S.G. = 233,626 lbf Wi = Effective Impulsive Portion of the Liquid Weight = [1 - 0.218*D/H]*Wp = [1 - 0.218*0.398]*233,626 = 213,356 lbf Wc = Effective Convective (Sloshing) Portion of the Liquid Weight = 0.23*D/H*TANH(3.67*H/D)*Wp = 0.23*0.398*TANH(3.67/0.398)*233,626 = 21,386 lbf Weff = Effective Weight Contributing to Seismic Response = Wi + Wc = 234,742 lbf Wrs = Roof Load Acting on Shell, including 10% of Live Load = 594.8738 lbf E.6.1 DESIGN LOADS Vi = Design base shear due to impulsive component from effective weight of tank and contents = Ai*(Ws + Wr + Wf + Wi) = 0.002*(19,031 + 1,947 + 2,852 + 213,356) = 474 lbf Vc = Design base shear due to convective component of the effective sloshing weight = Ac*Wc = 0.006*21,386 = 128 lbf V = Total design base shear = SQRT(Vi^2 + Vc^2) = SQRT(474^2 + 128^2) = 491 lbf Page 37 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:45 PM E.6.1.2 CENTER OF ACTION for EFFECTIVE LATERAL FORCES Xs = Height from Bottom to the Shell's Center of Gravity = 15.066 ft RCG = Height from Top of Shell to Roof Center of Gravity = 0.1 ft Xr = Height from Bottom of Shell to Roof Center of Gravity = h + RCG = 32 + 0.1 = 32.1 ft E.6.1.2.1 CENTER OF ACTION for RINGWALL OVERTURNING MOMENT Xi = Height to Center of Action of the Lateral Seismic force related to the Impulsive Liquid Force for Ringwall Moment = (0.5 - 0.094*D/H)*H = (0.5 - 0.094*0.398)*32 = 14.8 ft Xc = Height to Center of Action of the Lateral Seismic force related to the Convective Liquid Force for Ringwall Moment = (1-(COSH(3.67*H/D)-1)/((3.67*H/D)*SINH(3.67*H/D)))*H = (1-(COSH(9.2211)-1)/((9.2211)*SINH(9.2211)))*32 = 28.53 ft E.6.1.2.2 CENTER OF ACTION for SLAB OVERTURNING MOMENT Xis = Height to Center of Action of the Lateral Seismic force related to the Impulsive Liquid Force for the Slab Moment = [0.5 + 0.06*D/H]*H = [0.5 + 0.06*0.398]*32 = 16.76 ft Xcs = Height to Center of Action of the Lateral Seismic force related to the Convective Liquid Force for the Slab Moment = (1-(COSH(3.67*H/D)-1.937)/((3.67*H/D)*SINH(3.67*H/D)))*H = (1-(COSH(9.2211)-1.937)/((9.2211)*SINH(9.2211)))*32 = 28.53 ft E.6.1.4 Dynamic Liquid Hoop Forces 0.75 * D = 9.5543 D/H = 0.398 SHELL SUMMARY Width Y Ni ft ft lbf/in Shell #1 4 31 0.41 Shell #2 4 27 0.41 Shell #3 4 23 0.41 Shell #4 4 19 0.41 Shell #5 4 15 0.41 Shell #6 4 11 0.41 Shell #7 4 7 0.38 Shell #8 4 3 0.21 Nc lbf/in 0 0 0.001 0.004 0.011 0.036 0.114 0.361 Nh lbf 1363 1192 1022 852 681 511 341 170 SigT+ lbf/in 5411 4732 4057 3382 3934 2952 1970 983 SigTlbf/in 5385 4710 4038 3366 3916 2938 1960 977 Page 38 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:45 PM E.6.1.5 Overturning Moment Mrw = Ringwall moment—Portion of the total overturning moment that acts at the base of the tank shell perimeter Mrw = ((Ai*(Wi*Xi+Ws*Xs+Wr*Xr))^2 + (Ac*Wc*Xc)^2)^0.5 = ((0.002*(213,356*14.8+19,031*15.066+1,947*32.1))^2 + (0.006*21,386*28.53)^2)^0.5 = 7,912 lbf-ft Ms = Slab moment (used for slab and pile cap design) Ms = ((Ai*(Wi*Xis+Ws*Xs+Wr*Xr))^2 + (Ac*Wc*Xcs)^2)^0.5 = ((0.002*(213,356*16.76+19,031*15.066+1,947*32.1))^2 + (0.006*21,386*28.53)^2)^0.5 = 8,662 lbf-ft E.6.2 RESISTANCE TO DESIGN LOADS E.6.2.1.1 Self-Anchored Fy = Minimum yield strength of bottom plate = 24,856 psi Ge = Effective specific gravity including vertical seismic effects = S.G.*(1 - 0.4*Av) = 0.9*(1 - 0.4*0.0023) = 0.899 1.28*H*D*Ge = 469 lbf/ft wa = = = = Force resisting uplift in annular region 7.9*ta*(Fy*H*Ge)^0.5 D (tank OD) = 12.739 ft P (design pressure) = 27.71 INCHES H2O Pt (test pressure per F.4.4) = P = 27.71 INCHES H2O Pf (failure pressure per F.6) = N.A. (see Uplift Case 3 below) t_h (roof plate thickness) = 0.236 in. Mw (Wind Moment) = 4,109 ft-lbf Mrw (Seismic Ringwall Moment) = 7,912 ft-lbf W1 (Dead Load of Shell minus C.A. and Any Dead Load minus C.A. other than Roof Plate Acting on Shell) W2 (Dead Load of Shell minus C.A. and Any Dead Load minus C.A. including Roof Plate minus C.A. Acting on Shell) W3 (Dead Load of New Shell and Any Dead Load other than Roof Plate Acting on Shell) For Tank with Structural Supported Roof, W1 = Corroded Shell + Shell Insulation = 11,672 + 3,415 = 15,087 lbf W2 = Corroded Shell + Shell Insulation + Corroded Roof Plates Supported by Shell + Roof Dead Load Supported by Shell = 11,672 + 3,415 + 287 * [1 + 18,389*2.6667/(144 * 946)] = 15,477 lbf W3 = New Shell + Shell Insulation = 15,088 + 3,415 = 18,503 lbf Uplift Cases 1 to 3 are N.A. Uplift Case 4: Wind Load Only PWR = Wind_Uplift/5.208 = 0.8333/5.208 = 0.16 IN. H2O PWS = vF * 18 = 0.0278 * 18 = 0.5 lbf/ft^2 MWH = PWS*(D+t_ins/6)*H^2/2 = 0.5*(12.739+4/6)*32^2/2 = 3,432 ft-lbf U = PWR * D^2 * 4.08 + [4 * MWH/D] - W2 = 0.16*12.739^2*4.08+[4*3,432/12.739]-15,477 = -14,294 lbf bt = U / N = -179 lbf Sd = 0.8 * 36,000 = 28,800 PSI A_s_r = Bolt Root Area Req'd A_s_r = N.A., since Load per Bolt is zero. Page 42 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:45 PM Uplift Case 5: Seismic Load Only U = [4 * Mrw / D] - W2*(1-0.4*Av) U = [4 * 7,912 / 12.739] - 15,477*(1-0.4*0.0023) = -12,979 lbf bt = U / N = -162 lbf Sd = 0.8 * 36,000 = 28,800 PSI A_s_r = Bolt Root Area Req'd A_s_r = N.A., since Load per Bolt is zero. Uplift Cases 6 and 7 are N.A. Uplift Case 8: Frangibility Pressure Not applicable since if there is a knuckle on tank roof, or tank roof is not frangible. Pf (failure pressure per F.6) = N.A. < ANCHOR BOLT SUMMARY > Bolt Root Area Req'd = 0 in^2 d = Bolt Diameter = 1.5 in. n = Threads per inch = 6 A_s = Actual Bolt Root Area = 0.7854 * (d - 1.3 / n)^2 = 0.7854 * (1.5 - 1.3 / 6)^2 = 1.2935 in^2 Exclusive of Corrosion, Bolt Diameter Req'd = 0.065 in. (per ANSI B1.1) Actual Bolt Diameter = 1.500 in. Bolt Diameter Meets Requirements. No Anchorage Required. Anchorage Meets Spacing Requirements. ANCHOR BOLT CHAIRS NOT SPECIFIED. Page 43 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:45 PM TABLE 1: NOZZLES & MANWAYS ---------------------------------------------------------------------NAME TYPE SIZE FLANGE SCH. ELEV. WEIGH REPAD REPAD REPAD REPAD FACING ON t Do W CA SHELL or L (in) (ft) lbf (in) (in) (in) (in) ---------------------------------------------------------------------A SHNZ 24 RFSO 80 10 3 0.187 49.5 60 0 ---------------------------------------------------------------------- Page 44 of 46 Kan de Ali - Tangki Buffer 100MT TANK REPORT: Printed - 7/17/2012 5:04:45 PM < Nozzle A Reinforcement Requirements > (Per API-650 Section 3.7.2 and other references below) NOZZLE Description : 24in. 80 RFSO MOUNTED ON SHELL COURSE 3 ; Elevation = 10 ft. COURSE PARAMETERS: t_cr = 0.1171 in. (Course t-Calc) t_c = 0.2525 in. (Course t less C.A.) t_Basis = 0.1171 in. (SHELL NOZZLE REF. API-650 TABLE 5-6, AND FOOTNOTE A OF TABLE 5-7) t_rpr (Repad Required Thickness) t_rpr = NOMINAL(A_rpr / D) A_rpr = (Required Area - Available Shell Area - Available Nozzle Neck Area) Required Area = t_Basis * D = 0.1171 * 24.25 = 2.84 in^2 Available Shell Area = (t_c - t_Basis) * D = (0.2525 - 0.1171) * 24.25 = 3.283 in^2 Available Nozzle Neck Area = [4 * (t_n-ca) + t_c] * (t_n-ca) * « MIN(Sd_n/Sd_s, 1) = [4 * (0) + 0.2525] * (0) * 20,000/22,500 = 0 in^2 A_rpr = 2.84 - 3.283 - 0 = -0.443 in^2 Since A_rpr


Comments

Copyright © 2024 UPDOCS Inc.