BI Apps796 Perf Tech Note V8
April 5, 2018 | Author: Anonymous |
Category:
Documents
Description
Oracle Business Intelligence Applications Version 7.9.6.x Performance Recommendations An Oracle Technical Note, 8th Edition May 2012 Primary Author: Pavel Buynitsky Contributors: Eugene Perkov, Amar Batham, Nitin Aggarwal, Oksana Stepaneeva, Wasimraja Abdulmajeeth, Kirill Denisenko, Andrei Dzianisau, Aliaksander Kokhno, Andrei Hes, Scott Lowe, Siarhei Kulikouski, Valery Enyukov Copyright © 2012, Oracle. All rights reserved. 1 Oracle Business Intelligence Applications Version 7.9.6.x Performance Recommendations Contents Introduction .......................................................................................................................................................... 6 Hardware recommendations for implementing Oracle BI Applications .............................................................. 6 Storage Considerations for Oracle Business Analytics Warehouse .................................................................. 7 Introduction ................................................................................................................................................. 7 Shared Storage Impact Benchmarks ............................................................................................................ 7 Conclusion .................................................................................................................................................... 9 Source Tier ........................................................................................................................................................ 9 Oracle BI Enterprise Edition (OBIEE) / ETL Tier ................................................................................................ 9 Review of OBIEE/ETL Tier components ........................................................................................................ 9 Deployment considerations for the ETL components.................................................................................. 9 Target Tier ...................................................................................................................................................... 10 Source Environments Recommendations for Better Performance .................................................................... 10 Change Data Capture Considerations for Source Databases ......................................................................... 10 Introduction ............................................................................................................................................... 10 Oracle Golden Gate .................................................................................................................................... 10 Materialized View Logs .............................................................................................................................. 11 Database Triggers on Source Tables .......................................................................................................... 15 Extract Workload Impact on Data Sources ..................................................................................................... 15 Allocate Sufficient TEMP space OLTP Data Sources ................................................................................... 16 Replicate Source Tables to Persistent Staging Layer on Target ................................................................. 16 Utilize Target Resources to Speed up Extracts from Target Persistence Layer. ........................................ 16 Custom Indexes in Oracle EBS for Incremental Loads Performance .............................................................. 17 Introduction ............................................................................................................................................... 17 Custom OBIEE indexes in EBS 11i and R12 systems ................................................................................... 17 Custom EBS indexes in EBS 11i source systems ......................................................................................... 19 Oracle EBS tables with high transactional load.......................................................................................... 21 Custom EBS indexes on CREATION_DATE in EBS 11i source systems........................................................ 21 Oracle Warehouse Recommendations for Better Performance ........................................................................ 22 Database configuration parameters............................................................................................................... 22 Oracle RDBMS 64-bit Recommendation ........................................................................................................ 22 ETL impact on amount of generated REDO Logs ............................................................................................ 22 Oracle RDBMS System Statistics ..................................................................................................................... 23 Parallel Query configuration........................................................................................................................... 23 Oracle Business Analytics Warehouse Tablespaces ....................................................................................... 23 2 Bitmap Indexes usage for better queries performance ................................................................................. 24 Introduction ............................................................................................................................................... 24 DAC properties for handling bitmap indexes during ETL ........................................................................... 24 Bitmap Indexes handling strategies ........................................................................................................... 26 Monitoring and Disabling Unused Indexes ................................................................................................ 30 Handling Query Indexes during Initial ETL ................................................................................................. 32 Partitioning guidelines for Large Fact tables .................................................................................................. 33 Introduction ............................................................................................................................................... 33 Range and Composite Range-Range Partitioning ...................................................................................... 34 Composite Range-range Partitioning Using Virtual Columns .................................................................... 46 Interval Partitioning ................................................................................................................................... 47 Partitioning Pruning in Star Queries ............................................................................................................... 48 Partitioning Pruning and Star Transformation Scenarios........................................................................... 48 Conclusion .................................................................................................................................................. 54 Table Compression implementation guidelines ............................................................................................. 54 Table Compression Recommendations...................................................................................................... 54 Row Chaining in Compressed Tables after DML Updates and Deletes ...................................................... 55 ETL Aggregation using Materialized Views ..................................................................................................... 56 Introduction ............................................................................................................................................... 56 Implement DAC Action Framework Support for MVs ................................................................................ 56 Updates Optimization using DBMS_PARALLEL_EXECUTE (11gR2) ................................................................. 62 Wide tables with over 255 columns performance ......................................................................................... 65 Introduction ............................................................................................................................................... 65 Wide tables structure optimization ........................................................................................................... 65 Guidelines for Oracle optimizer hints usage in ETL mappings ....................................................................... 66 Hash Joins versus Nested Loops in Oracle RDBMS .................................................................................... 66 Oracle Database Hints Use in Oracle Business Intelligence Applications 7.9.6 Mappings ........................ 69 Oracle Database Hints Use in Oracle Business Intelligence Applications 7.9.6.3 Mappings ..................... 71 Using Oracle Optimizer Dynamic Sampling for big staging tables ............................................................. 76 Oracle BI Applications Best Practices for Oracle Exadata ................................................................................... 77 Handling BI Applications Indexes in Exadata Warehouse Environment ........................................................ 77 Gather Table Statistics for BI Applications Tables .......................................................................................... 77 Oracle Business Analytics Warehouse Storage Settings in Exadata ............................................................... 77 Parallel Query Use in BI Applications on Exadata........................................................................................... 78 Compression Implementation Oracle Business Analytics Warehouse in Exadata ......................................... 78 OBIEE Queries Performance Considerations on Exadata ............................................................................... 78 Exadata Smart Flash Cache ............................................................................................................................. 79 Database Parameter File Template for Analytics Warehouse on Exadata..................................................... 79 DB2 Warehouse Recommendations for Better Performance ............................................................................ 80 DB2 Warehouse Configuration ....................................................................................................................... 80 Database Manager Level ............................................................................................................................ 80 Database Level ........................................................................................................................................... 80 Database Registry....................................................................................................................................... 80 Buffer Pools ................................................................................................................................................ 81 3 Table Spaces ............................................................................................................................................... 81 DB2 Recommendations and Best Practices .................................................................................................... 81 Disabling Bulk Mode................................................................................................................................... 81 Avoiding ‘Unsorted input found’ Warning ................................................................................................. 81 SIEBTRUN and SIEBSTAT Errors .................................................................................................................. 82 ‘The transaction log for the database is full’ Error .................................................................................... 82 DB2 Index Usage Monitoring .......................................................................................................................... 82 Introduction ............................................................................................................................................... 82 Implement Index Usage Monitoring .......................................................................................................... 83 SQL Server Warehouse Recommendations for Better Performance ................................................................. 84 SQL Server Index Monitoring using DMV ....................................................................................................... 84 Informatica Configuration for Better Performance ............................................................................................ 86 Informatica PowerCenter 32-bit vs. 64-bit ..................................................................................................... 86 Informatica Session Logs ................................................................................................................................ 86 Informatica Lookups ....................................................................................................................................... 87 Disabling Lookup Cache for very large Lookups ............................................................................................. 87 Joining Staging Tables to Lookup Tables in Informatica Lookups .................................................................. 88 Informatica Custom Relational Connections for long running mappings ...................................................... 88 Define Custom Relational Connections in DAC .......................................................................................... 89 Define Custom Relational Connections in Informatica .............................................................................. 89 Informatica Session Parameters ..................................................................................................................... 89 Commit Interval ......................................................................................................................................... 89 DTM Buffer Size .......................................................................................................................................... 89 Additional Concurrent Pipelines for Lookup Cache Creation..................................................................... 90 Default Buffer Block Size ............................................................................................................................ 90 Informatica Load: Bulk vs. Normal ................................................................................................................. 90 Informatica Bulk Load: Table Fragmentation ................................................................................................. 90 Use of NULL Ports in Informatica Mappings................................................................................................... 91 Informatica Parallel Sessions Load on ETL tier ............................................................................................... 91 Informatica Workflow Partitioning................................................................................................................. 91 Workflow Session Partitioning for Writer Updates ................................................................................... 92 Requirements for Implementing Concurrent Updates .............................................................................. 92 Implement Staging Table HASH Partitioning.............................................................................................. 92 Create Parallel Sessions in Workflow Manager ......................................................................................... 93 Informatica Pipeline Partitioning.................................................................................................................... 93 Suspend and Resume Informatica Mappings (Oracle RDBMS) ...................................................................... 94 Oracle MERGE in Informatica to Improve Updates Performance .................................................................. 95 MERGE SQL in Informatica Update Override ............................................................................................. 95 MERGE in Post SQL in Update Override ..................................................................................................... 96 MERGE in Informatica SQL Transformation ............................................................................................... 96 Informatica Load Balancing Implementation ............................................................................................... 103 OBIEE Queries Performance Recommendations .............................................................................................. 103 Introduction .................................................................................................................................................. 103 OBIEE Configuration, Diagnostics and Performance Analysis ...................................................................... 104 4 OBIEE Logging Using LOGLEVEL=7............................................................................................................ 104 OBIEE Init Blocks Overhead ...................................................................................................................... 104 OBIEE Cache Optimization ....................................................................................................................... 104 OBIEE Database Features ......................................................................................................................... 105 OBIEE NQQuery.log Statistics ................................................................................................................... 105 Inadequate Filtering in OBIEE Reports ..................................................................................................... 105 OBIEE Queries Optimization Using Materialized Views ............................................................................... 105 Introduction ............................................................................................................................................. 105 Database Configuration Requirements for using MVs............................................................................. 106 Custom Materialized View Guidelines ..................................................................................................... 106 Integrate MV Refresh in DAC Execution Plan........................................................................................... 111 OBIEE Queries Optimization Using Database Views .................................................................................... 112 OBIEE Reports with SYSDATE........................................................................................................................ 114 AVG with SYSDATE in OBIEE Reports ....................................................................................................... 115 AVG CASE with SYSDATE in OBIEE Reports .............................................................................................. 116 OBIEE Reports With ‘SELECT CASE COUNT DISTINCT’ .................................................................................. 118 Oracle BI Applications High Availability ............................................................................................................ 122 Introduction .................................................................................................................................................. 122 High Availability with Oracle Data Guard and Physical Standby Database .................................................. 122 Conclusion......................................................................................................................................................... 124 5 Oracle Business Intelligence Applications Version 7.9.6 Performance Recommendations Introduction Oracle Business Intelligence (BI) Applications Version 7.9.6 delivers a number of adapters to various business applications on Oracle database. 7.9.6 versions are certified with other major data warehousing platforms. Each Oracle BI Applications implementation requires very careful planning to ensure the best performance during ETL, end user queries and dashboard executions. This article discusses performance topics for Oracle BI Applications 7.9.6 and higher, using Informatica PowerCenter 8.6.x and 9.x ETL platforms, and using Oracle Business Intelligence Enterprise Edition (OBIEE) 10.1.3.4.x and 11.1.1.x. Most of the recommendations are generic for BI Applications 7.9.6.x contents and techstack. Release specific topics refer to exact version numbers. Note: The document is intended for experienced Oracle BI Administrators, DBAs and Applications implementers. It covers advanced performance tuning techniques in Informatica and Oracle RDBMS, so all recommendations must be carefully verified in a test environment before applied to a production instance. Customers are encouraged to engage Oracle Expert Services to review their configurations prior to implementing the recommendations to their BI Applications environments. Hardware recommendations for implementing Oracle BI Applications Depending on the volume of source, Oracle BI Applications Version 7.9.6 implementations can be categorized as small, medium and large. This chapter covers hardware recommendations primarily for ensuring ETL performance. Refer to Oracle BI Analytic Applications documentation for minimum hardware requirements and Oracle Business Intelligence Enterprise Edition (OBIEE) for OBIEE hardware deployment and scalability topics. Oracle Exadata (V2) has delivered the best performance for BI Applications ETL and OBIEE queries performance. Oracle BI Applications on Exadata showed the best ETL runtime and throughputs. This document covers BI Applications / Exadata specific topics in a separate chapter. Refer to Oracle Exadata documents for hardware configuration and specifications, which will work the best for your BI Applications implementation. Oracle Exalytics platform can effectively scale up for OBIEE end user queries performance. The Exalytics topics and best practices are covered in a separate document. The table below summarizes hardware recommendations for Oracle BI Applications tiers by the volume ranges. Configuration SMALL MEDIUM Target Tier Target Volume # CPU cores Physical RAM Up to 200 Gb 16 32-64 Gb 200 Gb to 1 Tb 32 64-128 Gb 1 Tb and higher 64* 256+ Gb* LARGE 6 Storage Space Up to 400 Gb 400 Gb – 2 Tb 2T b and higher High performance SCSI or SAN with 24 Gbps HBA or higher, connected over fiber channel / 2xGb Ethernet NIC Storage System High performance SCSI or SAN with Local (PATA, SATA, iSCSI), or 16 Gbps HBA or higher, connected NAS, preferred RAID over fiber channel / 2xGb Ethernet configuration NIC Oracle BI Enterprise Edition / ETL Tier # CPU cores Physical RAM Storage Space 8 8 Gb 100 Gb local 16 16 Gb 200 Gb local 32 32 Gb 400 Gb local * Consider implementing Oracle RAC with multiple nodes to accommodate large numbers of concurrent users accessing web reports and dashboards. Important! Depending on the number of planned concurrent users, running OBIEE reports, you may have to plan for more memory on the target tier to accommodate for the queries workload. To ensure the queries scalability on OBIEE tier, consider implementing OBIEE Cluster or Oracle Exalytics. Refer to OBIEE and Exalytics documentation for more details. It is recommended to set up all Oracle BI Applications tiers in the same local area network. Installation of any of these three tiers over Wide Area Network (WAN) may cause additional delays during ETL Extract mappings execution in the overall ETL window. Storage Considerations for Oracle Business Analytics Warehouse Introduction Oracle BI Applications ETL execution plans are optimized to maximize hardware utilization on ETL and target tiers and reduce ETL runtime. Usually a well-optimized infrastructure consumes higher CPU and memory on an ETL tier and causes rather heavy storage I/O load on a target tier during an ETL execution. The storage could easily become a major bottleneck as the result of such actions as: Setting excessive parallel query processes (refer to ‘Parallel Query Configuration’ section for more details) Running multiple I/O intensive applications, such as databases, on a shared storage Choosing sub-optimal storage for running BI Applications tiers. Shared Storage Impact Benchmarks Sharing storage among heavy I/O processes could easily degrade ETL performance and result in extended ETL runtime. The following benchmarks helped to measure the impact from sharing the same NetApp filer storage between two target databases, concurrently loading data in two parallel ETL executions. Configuration description: Linux servers #1 and #2 have the following configurations: 2 quad-core 1.8 GHz Intel Xeon CPU 32 GB RAM Shared NetApp filer volumes, volume1 and volume2, are mounted as EXT3 file systems: 7 o o Server #1 uses volume1 Server #2 uses volume2 Execution test description: Set record block size for I/O operations to 32k, the recommended db block size in a target database. Execute parallel load using eight child processes to imitate average workload during ETL run. Run the following test scenarios: o Test#1: execute parallel load above on NFS volume1 using Linux server #1; keep Linux server #2 idle. o Test#2: execute parallel load above on both NFS volume1 and volume2 using Linux servers #1 and #2. The following benchmarks describe performance measurements in KB / sec: Initial Write: write a new file. Rewrite: re-write in an existing file. Read: read an existing file. Re-Read: re-read an existing file. Random Read: read a file with accesses made to random locations in the file. Random Write: write a file with accesses made to random locations in the file. Mixed workload: read and write a file with accesses made to random locations in the file. Reverse Read: read a file backwards. Record Rewrite: write and re-write the same record in a file. Strided Read: read a file with a strided access behavior, for example: read at offset zero for a length of 4 Kbytes, seek 200 Kbytes, read for a length of 4 Kbytes, seek 200 Kbytes and so on. The test summary: Test Type "Initial write " "Rewrite " "Read " "Re-read " "Reverse Read " "Stride read " "Random read " "Mixed workload " "Random write " "Pwrite " "Pread " Total Time Test #1 46087.10 KB/sec 70104.05 KB/sec 3134220.53 KB/sec 3223637.78 KB/sec 1754192.17 KB/sec 1783300.46 KB/sec 1724525.63 KB/sec 2704878.70 KB/sec 68053.60 KB/sec 45778.21 KB/sec 2837808.30 KB/sec 110 min Test #2 30039.90 KB/sec 30106.25 KB/sec 2078320.83 KB/sec 3038416.45 KB/sec 1765427.92 KB/sec 1795288.49 KB/sec 1755344.27 KB/sec 2456869.82 KB/sec 25367.06 KB/sec 23794.34 KB/sec 2578445.19 KB/sec 216 min 8 Initial Write, Rewrite, Initial Read, Random Write, and Pwrite (buffered write operation) were impacted the most, while Reverse Read, Stride Read, Random Read, Mixed Workload and Pread (buffered read operation) were impacted the least by the concurrent load. Read operations do not require specific RAID sync-up operations therefore read requests are less dependent on the number of concurrent threads. Conclusion You should carefully plan for storage deployment, configuration and usage for the Oracle BI Applications environment. Avoid sharing the same RAID controller(s) across multiple databases. Set up periodic monitoring of your I/O system during both ETL and end user queries load for any potential bottlenecks. Source Tier Oracle BI Applications data loads may cause additional overhead for CPU and memory on a source tier. There may be a larger impact on the I/O subsystem, especially during full ETL loads. Using several I/O controllers or a hardware RAID controller with multiple I/O channels on the source side would help to minimize the impact on Business Applications during ETL runs and speed up data extraction into a target data warehouse. Refer to “Source Environments Recommendations for Better Performance” chapter for additional recommendations for OLTP Data sources. Oracle BI Enterprise Edition (OBIEE) / ETL Tier Review of OBIEE/ETL Tier components The Oracle BIEE/ETL Tier is composed of the following parts: Oracle Business Intelligence Server 10.1.3.4.x or 11g Informatica PowerCenter 8.6.x or 9.x Client Informatica PowerCenter 8.6.x or 9.x Server Data Warehouse Administration Console (DAC) client 10.1.3.4.1 Data Warehouse Administration Console server 10.1.3.4.1 Informatica BI Applications Repository (usually stored in a target database) DAC BI Applications Repository (usually stored in a target database) Deployment considerations for the ETL components The Informatica server and DAC server should be installed on a dedicated machine for best performance. The Informatica server and DAC server cannot be installed separately on different servers. The Informatica client and DAC client can be located on an ETL Administration client machine, or a Windows server, running Informatica and DAC servers. Informatica and DAC repositories can be deployed as separate schemas in the same database, as Oracle Business Analytics Warehouse, if the target database platform is Oracle, IBM DB2 or Microsoft SQL Server. The Informatica server and DAC server host machine should be physically located near the source data machine to improve network performance. You can consider deploying Informatica Load Balancing option, if you observe bottlenecks in processing Informatica mappings on the ETL tier. 9 Target Tier Refer to separate chapters for Oracle, IBM DB2 and Microsoft SQL Server Data Warehouse tier recommendations below. Source Environments Recommendations for Better Performance Change Data Capture Considerations for Source Databases Introduction Oracle BI Analytic Applications can use different techniques for capturing changing data in the source databases, minimizing the impact from ETL extracts on OLTP and improving incremental ETL performance. It effectively uses indexes on LAST_UPDATE_DATE columns in Oracle EBS and Image tables in Siebel CRM. However some source databases may not have the required logic for capturing changing rows. As the result, incremental mappings would scan large tables, causing unnecessary workload on the source databases and extending incremental ETL runtime. This chapter discusses the following custom Change Data Capture (CDC) options: Golden Gate Materialized View Logs (Oracle RDBMS) Database Triggers Note: you have to update both DAC and Informatica repositories to use the replicated persistent staging tables or materialized views instead of the original source tables in Informatica workflows and DAC execution plans. Oracle Golden Gate Introduction Oracle Golden Gate (GG) provides the best flexibility and performance for CDC, and the least impact on source databases. It parses each captured record and marks it as an insert, update or delete. Golden Gate can be configured to capture changes for a small set of source tables, used as ETL source containers. Refer to Golden Gate / OLPT Source documentation for more details on integrating and configuring Golden Gate for your Source database. Initial ETL and Golden Gate sync-up Initial ETL does not need to rely on Golden Gate, since it usually processes significant, if not all source data volumes. To ensure smooth switchover from Initial ETL, using the source database, to Incremental ETL, using Golden Gate (GG) you can: Run GG EXTRACTOR process on the source to capture changed data on the source database. 2. Run your Initial ETL against the original data source. You should note the completion time for the ETL before running any GG replication. 3. Run GG REPLICAT process with parameter HANDLECOLLISIONS on the target database to resolve data synchronization issues. For example: 1. START replicat ora_rep Sample ora_rep configuration: REPLICAT ora_rep USERID gg_replicat@ora, PASSWORD gg_replicat HANDLECOLLISIONS NOCOMPRESSUPDATES ASSUMETARGETDEFS 10 INSERTALLRECORDS MAP user_ext.employees, TARGET user_rep.employees, COLMAP (USEDEFAULTS); 4. Check the replication status on the target database. Repeat the replicat command until the Log Read Checkpoint time passes the initial ETL completion timestamp. For example: INFO REPLICAT ora_rep ----------------------------------------------------------------------------------REPLICAT HR_R Last Started 2010-29-03 15:24 Status RUNNING Checkpoint Lag 00:00:00 (updated 00:00:00 ago) Log Read Checkpoint File D:\GG\dirdat\or000001 2010-29-03 15:26:35.114956 RBA 1536 5. Inform the REPLICAT process about data synchronization completion: SEND REPLICAT ora_rep, NOHANDLECOLLISIONS USER_REP.employees 6. Remove HANDLECOLLISIONS parameter from the replicate process configuration file. Golden Gate and Incremental ETL Golden Gate can be used to replicate and maintain the specific source tables on a target, and supply the auxiliary CDC information on DML type and timestamps. Then all the joins can be done with the use of additional indexes, partitioning, parallelism and other techniques to achieve the best extraction performance without any impact on the original data source. A typical incremental ETL with GG will involve the following steps: 1. 2. 3. 4. GG EXTRACTOR tracks changed rows for the identified source tables from the source database Redo Log files. The EXTRACTOR process sends the changed rows to the trail file. The REPLICAT processes the changed rows from the trail file and adds the CDC metadata (insert, update, delete). When an Incremental ETL starts, you can stop REPLICAT and restart it after the ETL completion. Materialized View Logs Introduction Oracle Materialized View (MV) Logs capture the changing data in base source tables and supply the critical CDC volumes to the extract mappings. Important! MV Logs present additional challenges, when used in OLTP environments. You should carefully test MV Log based CDC before implementing it in your production environment. Review the following constraints for using MV Logs: 1. MV Logs can cause additional overhead on business transactions performance, if created on heavy volume transactional tables in busy OLTP sources. 2. Ensure regular MV refresh to purge MV Logs. Otherwise they will grow in size and generate even more overhead for OLTP applications. 3. Avoid sharing an MV Log between two or more fast refreshable MVs. The MV Log will not be purged until all depending MVs are refreshed. Refer to Oracle documentation for more details on MV and MV Logs implementation. The next sections will use an example for using an MV Log on PS_PROJ_RESOURCE in PeopleSoft to speed up incremental extract for SDE_PSFT_ProjectBudgetFact mapping. 11 MV Log CDC Implementation PeopleSoft ESA Application does not maintain DTTM_STAMP column in PS_PROJ_RESOURCE, which is used in SDE_PSFT_ProjectBudgetFact extract logic. As the result, the optimizer uses an expensive full table scan for during an incremental extract SQL execution. The following steps describe the CDC implementation using MV Log approach: 1. Create An MV log on PS_PROJ_RESOURCE source table: CREATE MATERIALIZED VIEW LOG ON PS_PROJ_RESOURCE NOCACHE LOGGING NOPARALLEL WITH SEQUENCE; 2. Create a primary key (PK) constraint, based on PS_PROJ_RESOURCE’s unique index ALTER TABLE PS_PROJ_RESOURCE ADD CONSTRAINT PS_PROJ_RESOURCE_PK PRIMARY KEY (BUSINESS_UNIT,PROJECT_ID,ACTIVITY_ID,RESOURCE_ID) USING INDEX PS_PROJ_RESOURCE; 3. Create a Materialized View using PS_PROJ_RESOURCE definition and an additional LAST_UPDATE_DT column. The latter will be populated using SYSDATE values: CREATE TABLE OBIEE_PS_PROJ_RESOURCE_MV AS SELECT * FROM PS_PROJ_RESOURCE WHERE 1=2; ALTER TABLE OBIEE_PS_PROJ_RESOURCE_MV ADD (LAST_UPDATE_DT DATE DEFAULT SYSDATE); CREATE MATERIALIZED VIEW OBIEE_PS_PROJ_RESOURCE_MV ON PREBUILT TABLE REFRESH FAST ON DEMAND AS SELECT * FROM PS_PROJ_RESOURCE; 4. Create an index on the MV LAST_UPDATE_DT: CREATE INDEX OBIEE_PS_PROJ_RESOURCE_I1 ON OBIEE_PS_PROJ_RESOURCE_MV(LAST_UPDATE_DT); 5. Create a database view on the MV, which will be used in the SDE Fact Source Qualifier query: CREATE VIEW OBIEE_PS_PROJ_RESOURCE_VW AS SELECT * FROM OBIEE_PS_PROJ_RESOURCE_MV; 6. Run the complete refresh for the MV. The subsequent daily ETLs will perform fast refresh using the MV Log. exec dbms_mview.refresh(‘OBIEE_PS_PROJ_RESOURCE_MV’,’C’); 7. Update the SDE fact extract logic and replace the original table with the MV, and add an additional filter: LAST_UPDATE_DT > to_date('$$LAST_EXTRACT_DATE', 'MM/DD/YYYY HH24:MI:SS') DAC Changes to Support MV Refresh in an Execution Plan Create Materialized View Refresh Task Action 1. Open DAC Client and navigate to Tools -> Seed Data -> Actions -> Task Actions 2. Click ‘New’ Button to create a new Task Action “Fast Refresh Materialized View”. 3. Click ‘Check Box’ icon in Value field. 4. Click Add button and enter the following values in the right upper pane: Name: OBIEE PS Materialized View Creation Type: SQL 12 Database Connection: Target Table Type: All Target Valid Database Platforms: Oracle 5. Enter the following text in ‘SQL Statement’ tab in the right lower pane: BEGIN DBMS_MVIEW.REFRESH('getTableName()', 'F'); END; 6. Click OK to save the changes. Register Materialized Views 1. 2. 3. 4. 5. Open your PeopleSoft container and click Design Button -> Table tab in the right pane. Click ‘New’ and add OBIEE_PS_PROJ_RESOURCE_MV. Choose the table type Source. Add LAST_UPDATE_DT (DATE datatype) field to the table definition. Save the changes. Define Task 1. 2. 3. 4. 5. 6. Open your Peoplesoft container, click on Design -> Tasks tab -> ‘New’ button. Create a new task ‘Refresh_OBIEE_PS_PROJ_RESOURCE_MV’ and fill in the values per the screenshot below. Click on Sources tab and add ‘PROJ_RESOURCE’ source. Click on Targets tab and add ‘OBIEE_PS_PROJ_RESOURCE_MV’ source. Check the ‘Analyze’ checkbox. Save the changes. 13 Modify Tasks 1. Open your Peoplesoft container , click on the Design -> Tasks tab and query each of the depending tasks: a. SDE_PSFT_ProjectBudgetFact b. SDE_PSFT_ProjectCostLineFact c. SDE_PSFT_ProjectRevenueLineFact 2. For each of the tasks above, click Sources tab, remove PROJ_RESOURCE and add OBIEE_PS_PROJ_RESOURCE_MV. 3. Save the changes. 4. Open your Peoplesoft container and ensure that all the affected tasks are Active. If not, mark them as Active. Create Task Group 1. Open your PeopleSoft container and click on the Design -> Task Groups tab. 2. Click ‘New’ and create a new task group ‘TASK_GROUP_OBIEE_Load_ProjectFacts‘, and add all the tasks in the correct order, as shown in the screenshot below. Modify Subject Area 1. Open your PeopleSoft container, click on the Design -> Subject Areas and query your Projects subject area 2. Click on ‘Configuration Tags’ tab, remove three tags for PersistedStage and add three tags for NonPersistedStage. Refer to the screenshot below. 3. Save the changes. 14 Rebuild Execution Plan Reassemble your Subject Areas and rebuild your Execution plan with the new dependencies. Validate the correct order of the tasks in the Execution plan. Refer to BI Analytic Applications Administration Guide, chapter "Customizing DAC Objects and Designing Subject Areas" for more details. Database Triggers on Source Tables You can consider database triggers to capture new and updated records and populate auxiliary tables in a source database. This option requires careful implementation to minimize the overhead on OLTP environments, especially for high volume transaction tables. Here is an example of such trigger for Oracle database: CREATE OR REPLACE TRIGGER CDC_Trigger AFTER UPDATE OR INSERT ON Base_Table FOR EACH ROW BEGIN IF INSERTING THEN INSERT INTO AUX_TABLE VALUES(:new.TEST_ID, SYSTIMESTAMP); END IF; IF UPDATING THEN UPDATE AUX_TABLE SET LAST_UPDATE_DATE = SYSTIMESTAMP WHERE TEST_ID = :new.TEST_ID; END IF; END; / Review the additional considerations below: Ensure data integrity between the primary source and auxiliary CDC tables in your design. Consider adding a unique index on the auxiliary CDC table primary column will speed up updates. Measure carefully the impact on your source OLTP workload before you choose the trigger CDC approach, as it can easily generate significant overhead and impact transactional business users. Extract Workload Impact on Data Sources ETL workload impact on OLTP Data Sources is one of the critical factors in ETL optimization and performance. ETL Administrators may face the constraints for creating additional custom indexes on source tables, or employ database parallel processing for speeding up their incremental ETLs. On the other hand, the target hardware sized to handle much larger 15 workload from end user queries, can utilize more resources to offload data source and deliver the critical improvements during incremental ETL windows. When you find any critical extract mappings and you cannot use more OLTP data source resources, consider replicating the source data segments and any additional source objects to the target tier. This section will summarize high level steps without providing step-by-step examples, since most steps are already covered in other chapters of the document. Allocate Sufficient TEMP space OLTP Data Sources Oracle BI Analytic Applications Extract mappings may operate with large data volumes, compared to the small changes from OLTP transactional activities. As the result, OLTP Data Sources could run out TEMP space during heavy volume initial extracts. The source TEMP space varies by OLTP size and processed volumes. So, the recommended TEMP space for BI Applications ETL ranges from 100Gb to 1Tb. You should allocate sufficient storage for additional TEMP space in an OLTP environment. It is more practical to reclaim unused TEMP space after large volume ETL extracts completion, than restart long running mappings from the very beginning, because of TEMP space shortage during the ETL. Replicate Source Tables to Persistent Staging Layer on Target If you observe significant load from some Extract mappings on the OLTP Source environment and you face constraints for implementing change data capture mechanism, consider replicating the participating source objects to the target warehouse. You can create a persistence staging table (_PS) for each source table replica in a separate database schema on the data warehouse tier. This document already covered Golden Gate as an option for change data capture and source tables replication. You can also use Informatica to put together simple mappings, which will replicate source table attributes from SELECT and WHERE clauses to a smaller table on the target tier: Create a separate Informatica mapping for each source table replica on the target tier. It will capture incremental changes, as a part of source table extraction logic. Implement the logic to cover inserts and updates. You can use Informatica Update Strategy transformation to perform its default insert and update DMLs. If there are dependencies on other objects such as views, packages, etc., you should recreate them in your target persistence layer as well. Seed the runtime dependencies in DAC to execute the source table replication mappings concurrently. Utilize Target Resources to Speed up Extracts from Target Persistence Layer. The replicated Persistence Staging tables (_PS) will be smaller in size, compared to their original parent source tables, since the _PS objects most probably have fewer columns. Additionally, you can add desired indexes to improve the extracts performance. Partitioning implementation for _PS tables can help to parallelize the extract logic. You can further multiplex the logic by running the extracts on multiple sessions in a single workflow. The following example shows the high level steps to improve extract performance for SDE_ORA_BomItemFact by moving the extract logic to the target and multiplexing the extracts using Informatica. SDE_ORA_BomItemFact uses the following EBS source tables: 16 BOM_COMPONENTS_B BOM_STRUCTURES_B BOM_PARAMETERS FND_LOOKUP_VALUES MTL_SYSTEM_ITEMS_B Additionally, it uses custom CONNECT BY PLSQL API to explode BOM Items for each BOM Header. The original source BOM Explosion API may cause more workload on the OLTP source, hence an incremental ETL will use the custom CONNECT BY API to handle larger volumes for BOM Items explosion. The proposed changes are: 1. Create identified source dependencies, including the custom CONNECT BY API on the target tier. 2. Create an Informatica replication workflow for each of the tables above using LAST_UPDATE_DATE CDC logic. 3. Implement partitioning for W_BOM_HEADER_DS using ORG_ID and BOM_ITEM keys. You should analyze the data distribution for these two key value combinations. For example: Org_id Org_id Org_id Org_id Org_id Org_id Org_id Org_id = = = = = = = = 100 100 200 200 300 300 the the & bom_item=4 & bom_item != 4 & bom_item = 4 & bom_item !=4 & bom_item=4 (*) & bom_item !=4 rest & bom_item =4 rest & bom_item !=4 (*) split the combination into two, as it takes the longest time to complete 4. Multiplex the Informatica sessions to invoke the CONNECT BY API for each ORG_ID and BOM_ITEM combination. Custom Indexes in Oracle EBS for Incremental Loads Performance Introduction Oracle EBS source database tables contain mandatory LAST_UPDATE_DATE columns, which are used by Oracle BI Applications for capturing incremental data changes. Some source tables used by Oracle BI Applications do not have an index on LAST_UPDATE_DATE column, which hampers performance of incremental loads. There are three categories of such source EBS tables: Tables that do not have indexes on LAST_UPDATE_DATE in the latest EBS releases, but there are no performance implications reported with indexes on LAST_UPDATE_DATE column. Tables that have indexes on LAST_UPDATE_DATE columns, introduced in Oracle EBS Release 12. Tables that cannot have indexes on LAST_UPDATE_DATE because of serious performance degradations in the source EBS environments. Custom OBIEE indexes in EBS 11i and R12 systems The first category covers tables, which do not have indexes on LAST_UPDATE_DATE in any EBS releases. The creation of custom indexes on LAST_UPDATE_DATE columns for tables in this category has been reviewed and approved by Oracle’s EBS Performance Group. All Oracle EBS 11i and R12 customers should create the custom indexes using the DDL script provided below. If your source system is on of the following: EBS R12 17 - EBS 11i release 11.5.10 EBS 11i release 11.5.9 or lower and it has been migrated to OATM* then replace with APPS_TS_TX_IDX prior to running the DDL. If your source system is EBS 11i release 11.5.9 or lower and it has not been migrated to OATM*, replace with X, where is an owner of the table which will be indexed on LAST_UPDATE_DATE column. DDL script for custom index creation: CREATE index AP.OBIEE_AP_EXP_REP_HEADERS_ALL ON tablespace ; CREATE index AP.OBIEE_AP_INVOICE_PAYMENTS_ALL ON tablespace ; AP.AP_EXPENSE_REPORT_HEADERS_ALL(LAST_UPDATE_DATE) AP.AP_INVOICE_PAYMENTS_ALL(LAST_UPDATE_DATE) CREATE index AP.OBIEE_AP_PAYMENT_SCHEDULES_ALL ON AP.AP_PAYMENT_SCHEDULES_ALL(LAST_UPDATE_DATE) tablespace ; CREATE index AP.OBIEE_AP_INVOICES_ALL ON AP.AP_INVOICES_ALL(LAST_UPDATE_DATE) tablespace ; CREATE index AP.OBIEE_AP_HOLDS_ALL ON AP.HOLDS_ALL(LAST_UPDATE_DATE) tablespace ; CREATE index AP.OBIEE_AP_AE_HEADERS_ALL ON AP.AP_AE_HEADERS_ALL(LAST_UPDATE_DATE) tablespace ; CREATE index CST.OBIEE_CST_COST_TYPES ON CST.CST_COST_TYPES(LAST_UPDATE_DATE) tablespace ; CREATE index GL.OBIEE_GL_JE_HEADERS ON GL.GL_JE_HEADERS(LAST_UPDATE_DATE) tablespace ; CREATE index AR.OBIEE_HZ_ORGANIZATION_PROFILES ON AR.HZ_ORGANIZATION_PROFILES(LAST_UPDATE_DATE) tablespace ; CREATE index AR.OBIEE_HZ_CONTACT_POINTS ON AR.HZ_CONTACT_POINTS(LAST_UPDATE_DATE) tablespace ; CREATE index AR.OBIEE_HZ_CUST_SITE_USES_ALL ON AR.HZ_CUST_SITE_USES_ALL(LAST_UPDATE_DATE) tablespace ; CREATE index AR.OBIEE_HZ_LOCATIONS ON AR.HZ_LOCATIONS(LAST_UPDATE_DATE) tablespace ; CREATE index AR.OBIEE_HZ_RELATIONSHIPS ON AR.HZ_RELATIONSHIPS(LAST_UPDATE_DATE) tablespace ; CREATE index AR.OBIEE_HZ_CUST_ACCT_SITES_ALL ON AR. HZ_CUST_ACCT_SITES_ALL(LAST_UPDATE_DATE) tablespace ; CREATE index AR.OBIEE_HZ_CUST_ACCOUNT_ROLES ON AR.HZ_CUST_ACCOUNT_ROLES(LAST_UPDATE_DATE) tablespace ; CREATE index AR.OBIEE_HZ_PARTY_SITES ON AR.HZ_PARTY_SITES(LAST_UPDATE_DATE) tablespace ; 18 CREATE index AR.OBIEE_HZ_PERSON_PROFILES ON AR.HZ_PERSON_PROFILES(LAST_UPDATE_DATE) tablespace ; CREATE index ONT.OBIEE_OE_ORDER_HEADERS_ALL ON ONT.OE_ORDER_HEADERS_ALL(LAST_UPDATE_DATE) tablespace ; CREATE index ONT.OBIEE_OE_ORDER_HOLDS_ALL ON ONT.OE_ORDER_HOLDS_ALL(LAST_UPDATE_DATE) tablespace ; CREATE index PER.OBIEE_PAY_INPUT_VALUES_F ON PER.PAY_INPUT_VALUES_F (LAST_UPDATE_DATE) tablespace ; CREATE index PER.OBIEE_PAY_ELEMENT_TYPES_F ON PER.PAY_ELEMENT_TYPES_F (LAST_UPDATE_DATE) tablespace ; CREATE index PO.OBIEE_RCV_SHIPMENT_LINES ON PO.RCV_SHIPMENT_LINES (LAST_UPDATE_DATE) tablespace ; CREATE index PO.OBIEE_RCV_SHIPMENT_HEADERS ON PO.RCV_SHIPMENT_HEADERS (LAST_UPDATE_DATE) tablespace ; CREATE index AR.OBIEE_AR_CASH_RECEIPTS_ALL ON AR.AR_CASH_RECEIPTS_ALL (LAST_UPDATE_DATE) tablespace ; CREATE index WSH.OBIEE_WSH_DELIVERY_DETAILS ON WSH.WSH_DELIVERY_DETAILS (LAST_UPDATE_DATE) tablespace ; CREATE index WSH.OBIEE_WSH_NEW_DELIVERIES ON WSH.WSH_NEW_DELIVERIES (LAST_UPDATE_DATE) tablespace ; There is one more custom index, recommended for Supply Chain Analytics on AP_NOTES.SOURCE_OBJECT_ID column: CREATE index AP.OBIEE_AP_NOTES ON AP.AP_NOTES (SOURCE_OBJECT_ID) tablespace ; Important! You must use FND_STATS to compute statistics on the newly created indexes and update statistics on newly indexed table columns in the EBS database. Important! All indexes introduced in this section have the prefix “OBIEE_” and they do not follow the standard Oracle EBS Index naming conventions. If a future Oracle EBS patch creates an index on LAST_UPDATE_DATE columns for the tables listed below, Oracle EBS’s Autopatch may fail. In such cases the conflicting OBIEE_ indexes must be dropped, and the Autopatch can be restarted. Custom EBS indexes in EBS 11i source systems The second category covers tables, which have indexes on LAST_UPDATE_DATE, officially introduced Oracle EBS Release 12. All Oracle EBS 11i and R12 customers should create the custom indexes using the DDL script provided below. Do not change the index name avoid any future patch or upgrade failures on the source EBS side. If your source system is one of the following: EBS R12 EBS 11i release 11.5.10 EBS 11i release 11.5.9 or lower and it has been migrated to OATM* then replace with APPS_TS_TX_IDX prior to running the DDL. 19 If you source system is EBS 11i release 11.5.9 or lower and it has not been migrated to OATM*, replace with X, where is an owner of the table which will be indexed on LAST_UPDATE_DATE column. DDL script for custom index creation: CREATE index PO.RCV_TRANSACTIONS_N23 ON PO.RCV_TRANSACTIONS (LAST_UPDATE_DATE) INITIAL 4K NEXT 2M MINEXTENTS 1 MAXEXTENTS 50 PCTINCREASE 0 INITRANS 2 MAXTRANS 255 PCTFREE 10 tablespace ; CREATE index PO.PO_DISTRIBUTIONS_N13 ON PO.PO_DISTRIBUTIONS_ALL (LAST_UPDATE_DATE) INITIAL 4K NEXT 2M MINEXTENTS 1 MAXEXTENTS 50 PCTINCREASE 0 INITRANS 2 MAXTRANS 255 PCTFREE 10 tablespace ; CREATE index PO.PO_LINE_LOCATIONS_N11 ON PO.PO_LINE_LOCATIONS_ALL (LAST_UPDATE_DATE) INITIAL 4K NEXT 2M MINEXTENTS 1 MAXEXTENTS 50 PCTINCREASE 0 INITRANS 2 MAXTRANS 255 PCTFREE 10 tablespace ; CREATE index PO.PO_LINES_N10 ON PO.PO_LINES_ALL (LAST_UPDATE_DATE) INITIAL 4K NEXT 4K MINEXTENTS 1 MAXEXTENTS 50 PCTINCREASE 0 INITRANS 2 MAXTRANS 255 PCTFREE 10 tablespace ; CREATE index PO.PO_REQ_DISTRIBUTIONS_N6 ON PO.PO_REQ_DISTRIBUTIONS_ALL (LAST_UPDATE_DATE) INITIAL 4K NEXT 250K MINEXTENTS 1 MAXEXTENTS 50 PCTINCREASE 0 INITRANS 4 MAXTRANS 255 PCTFREE 10 tablespace ; CREATE index PO.PO_REQUISITION_LINES_N17 ON PO.PO_REQUISITION_LINES_ALL (LAST_UPDATE_DATE) INITIAL 4K NEXT 250K MINEXTENTS 1 MAXEXTENTS 50 PCTINCREASE 0 INITRANS 4 MAXTRANS 255 PCTFREE 10 tablespace ; CREATE index PO.PO_HEADERS_N9 ON PO.PO_HEADERS_ALL (LAST_UPDATE_DATE) INITIAL 4K NEXT 1M MINEXTENTS 1 MAXEXTENTS 50 PCTINCREASE 0 INITRANS 2 MAXTRANS 255 PCTFREE 10 tablespace ; CREATE index PO.PO_REQUISITION_HEADERS_N6 ON PO.PO_REQUISITION_HEADERS_ALL (LAST_UPDATE_DATE) INITIAL 4K NEXT 250K MINEXTENTS 1 MAXEXTENTS 50 PCTINCREASE 0 INITRANS 4 MAXTRANS 255 PCTFREE 10 tablespace ; CREATE index AR.RA_CUSTOMER_TRX_N14 ON AR.RA_CUSTOMER_TRX_ALL (LAST_UPDATE_DATE) INITIAL 4K NEXT 4M MINEXTENTS 1 MAXEXTENTS 50 PCTINCREASE 0 INITRANS 4 MAXTRANS 255 PCTFREE 10 tablespace ; Important! You should use FND_STATS to compute statistics on the newly created indexes and update statistics on newly indexed table columns in the EBS database. Since all custom indexes above follow Oracle EBS index standard naming conventions, any future upgrades would not be affected. *) Oracle Applications Tablespace Model (OATM): Oracle EBS release 11.5.9 and lower uses two tablespaces for each Oracle Applications product, one for the tables and one for the indexes. The old tablespace model standard naming convention for tablespaces is a product's Oracle schema name with the suffixes D for Data tablespaces and X for Index tablespaces. For example, the default tablespaces for Oracle Payables tables and indexes are APD and APX, respectively. Oracle EBS 11.5.10 and R12 use the new Oracle Applications Tablespace Model. OATM uses 12 locally managed tablespaces across all products. Indexes on transaction tables are held in a separate tablespace APPS_TS_TX_IDX, designated for transaction table indexes. Customers running pre-11.5.10 releases can migrate to OATM using OATM Migration utility. Refer to Oracle Support Note 248857.1 for more details. 20 Oracle EBS tables with high transactional load The following Oracle EBS tables are used for high volume transactional data processing, so introduction of indexes on LAST_UPDATE_DATE may cause additional overhead for some OLTP operations. For the majority of all customer implementations the changes will not have any significant impact on OLTP Applications performance. Oracle BI Applications customers may consider creating custom indexes on LAST_UPDATE_DATE for these tables only after benchmarking incremental ETL performance and analyzing OLTP applications impact. To analyze the impact on EBS source database, you can generate an Automatic Workload Repository (AWR) report during the execution of OLTP batch programs, producing heavy inserts / updates into the tables below, and review Segment Statistics section for resource contentions caused by custom LAST_UPDATE_DATE indexes. Refer to Oracle RDBMS documentation for more details on AWR usage. Make sure you use the following pattern for creating custom indexes on the listed tables below: CREATE index .OBIEE_ ON . (LAST_UPDATE_DATE) tablespace ; Prod AP AP AP AP AR AR AR AR BOM BOM CST GL GL GL INV INV ONT PER PO WSH WSH Table Name AP_EXPENSE_REPORT_LINES_ALL AP_INVOICE_DISTRIBUTIONS_ALL AP_AE_LINES_ALL AP_PAYMENT_HIST_DISTS AR_PAYMENT_SCHEDULES_ALL AR_RECEIVABLE_APPLICATIONS_ALL RA_CUST_TRX_LINE_GL_DIST_ALL RA_CUSTOMER_TRX_LINES_ALL BOM_COMPONENTS_B BOM_STRUCTURES_B CST_ITEM_COSTS GL_BALANCES GL_DAILY_RATES GL_JE_LINES MTL_MATERIAL_TRANSACTIONS MTL_SYSTEM_ITEMS_B OE_ORDER_LINES_ALL PAY_PAYROLL_ACTIONS RCV_SHIPMENT_LINES WSH_DELIVERY_ASSIGNMENTS WSH_DELIVERY_DETAILS Custom EBS indexes on CREATION_DATE in EBS 11i source systems Oracle EBS source database tables contain another mandatory column CREATION_DATE, which can be used by Oracle BI Applications for capturing initial data subsets. You may consider creating custom indexes on CREATION_DATE if your initial ETL extracts a subset of historic data. You can use the same guidelines for creating custom indexes on CREATION_DATE columns for improving initial ETL performance after careful benchmarking of EBS source environment performance. 21 Oracle Warehouse Recommendations for Better Performance Database configuration parameters Oracle Business Intelligence Applications version 7.9.6 is certified with Oracle RDBMS 10g and 11g. Since Oracle BI Applications extensively use bitmap indexes, partitioned tables, and other database features in both ETL and front-end queries logic, it is important that Oracle BI Applications customers install the latest database releases for their Data Warehouse tiers: Oracle 10g customers should use Oracle 10.2.0.5 or higher. Oracle 11g customers should use Oracle 11.1.0.7 or higher. Important! Oracle 10.2.0.1 customers must upgrade their Oracle Business Analytics Warehouses to the latest Patchset. Oracle BI Applications include template init.ora files with recommended and required parameters, located in the \dwrep\Documentation\ directory: init10gR2.ora - init.ora template for Oracle RDBMS 10g init11g.ora – init.ora template for Oracle RDBMS 11g init11gR2.ora – init.ora template for Oracle RDBMS 11gR2 Review an appropriate init.ora template file and follow its guidelines to configure target database parameters specific to your data warehouse tier hardware. Note: init.ora template for Exadata / 11gR2 is provided in Exadata section of this document. Oracle RDBMS 64-bit Recommendation Oracle strongly recommends deploying Oracle Business Analytics Warehouse on Oracle RDBMS 64-bit, running under 64-bit Operating System (OS). If 64-bit OS is not available, then consider implementing Very Large Memory (VLM) on Unix / Linux and Address Windowing Extensions (AWE) for Windows 32 bit Platforms. VLM/AWE implementations would increase database address space to allow for more database buffers or a larger indirect data buffer window. Refer to Oracle Metalink for VLM / AWE implementation for your platform. Note: You cannot use sga_target or db_cache_size parameters if you enable VLM / AWE by setting 'use_indirect_data_buffers = true'. You would have to manually resize all SGA memory components and use db_block_buffers instead of db_cache_size to specify your data cache. ETL impact on amount of generated REDO Logs Initial ETL may cause higher than usual generation of REDO logs, when loading large data volumes in a data warehouse database. If your target database is configured to run in ARCHIVELOG mode, you can consider two options: 1. Switch the database to NOARCHIVELOG mode, execute Initial ETL, take a cold backup and switch the database back to ARCHIVELOG mode. 2. Allocate up to 10-15% of additional space to accommodate for archived REDO logs during Initial ETL. Below is a calculation of generated REDO amount in an internal initial ETL run: redo log file sequence: start : 641 (11 Jan 21:10) end : 1624 (12 Jan 10:03) total # of redo logs : 983 log file size : 52428800 redo generated: 983*52428800 = 51537510400 (48 GB) Data Loaded in warehouse: SQL> select sum(bytes)/1024/1024/1024 Gb from dba_segments where owner='DWH' and segment_type='TABLE'; 22 Gb ---------280.49 Oracle RDBMS System Statistics Oracle has introduced workload statistics in Oracle 9i to gather important information about system such as single and multiple block read time, CPU speed, and various system throughputs. Optimizer takes system statistics into account, when it computes the cost of query execution plans. Failure to gather workload statistics may result in sub-optimal execution plans for queries, excessive temporary space consumption, and ultimately impact BI Applications performance. Oracle BI Applications customers are required to gather workload statistics on both source and target Oracle databases prior to running initial ETL. Oracle recommends two options to gather system statistics: Run the dbms_stats.gather_system_stats('start') procedure at the beginning of the workload window, then the dbms_stats.gather_system_stats('stop') procedure at the end of the workload window. Run dbms_stats.gather_system_stats('interval', interval=>N) where N is the number of minutes when statistics gathering will be stopped automatically. Important! Execute dbms_stats.gather_system_stats, when the database is not idle. Oracle computes desired system statistics when database is under significant workload. Usually half an hour is sufficient to generate the valid statistic values. Parallel Query configuration The Data Warehouse Administration Console (DAC) leverages the Oracle Parallel Query option for computing statistics and building indexes on target tables. By default DAC creates indexes with the 'PARALLEL' clause and computes statistics with precalculated degree of parallelism. Refer to the init.ora template files, located in \dwrep\Documentation for details on setting the following parameters: parallel_max_servers parallel_min_servers parallel_threads_per_cpu Important! You should carefully monitor your environment workload before changing any parallel query parameters. It could easily lead to increased resource contention, creating I/O bottlenecks, and increasing response time when the resources are shared by many concurrent transactions. Since DAC creates indexes and computes statistics on target tables in parallel on a single table and across multiple tables, the parallel execution may cause performance problems if the values parallel_max_servers and parallel_threads_per_cpu are too high. The system load from parallel operations can be observed by executing the following query: SQL> select name, value from v$sysstat where name like 'Parallel%'; Reduce the "parallel_threads_per_cpu" and "parallel_max_servers" value if the system is overloaded. Oracle Business Analytics Warehouse Tablespaces By default, DAC deploys all data warehouse entities into two tablespaces: all tables into a DATA tablespace, and all indexes into an INDEX tablespace. Depending on your hardware configuration on the target tier you can improve its performance by rearranging your data warehouse tablespaces. The following table summarizes space allocation estimates in a data warehouse by its data volume range: Target Data Volume Data Warehouse Size SMALL Up to 200 Gb MEDIUM 200 Gb to 1 Tb LARGE 1 Tb and higher 23 Temporary Tablespace DATA Tablespace INDEX Tablespace 50 – 75 Gb 150 Gb 50 Gb 75 – 300 Gb 150 – 800 Gb 50 – 200 Gb 150 – 250Gb > 800 Gb > 200 Gb Important! You should use Locally Managed tablespaces with AUTOALLOCATE clause. DO NOT use UNIFORM extents size, as it may cause excessive space consumption and result in queries slower performance. Use standard (primary) block size for your warehouse tablespaces. DO NOT build your warehouse on nonstandard block tablespaces. Note that the INDEX Tablespace may increase if you enable more query indexes in your data warehouse. During incremental loads, by default DAC drops and rebuilds indexes, so you should separate all indexes in a dedicated tablespace and, if you have multiple RAID / IO Controllers, move the INDEX tablespace to a separate controller. You may also consider isolating staging tables (_FS) and target fact tables (_F) on different controllers. Such configuration would help to speed up Target Load (SIL) mappings for fact tables by balancing I/O load on multiple RAID controllers. Bitmap Indexes usage for better queries performance Introduction Oracle Business Intelligence Applications Version 7.9.0 introduced the use of the Bitmap Index feature of the Oracle RDBMS. In comparison with B-Tree indexes, Bitmap indexes provide significant performance improvements on data warehouse star queries. The internal benchmarks showed performance gains when B-Tree indexes on the foreign keys and attributes were replaced with bitmap indexes. Although bitmap indexes improve star queries response time, their use may cause ETL performance degradations both in Oracle 10g and 11g. Dropping all bitmap indexes on a large table prior to an ETL run, and then recreating them after the ETL completion may be quite expensive and time consuming. This is especially the case when there are a large number of such indexes, or when there is little change expected in the number of records updated or inserted into a table during each ETL run. Conversely, the quality of the existing bitmap indexes may degrade as more updates, deletes, and inserts are performed with indexes in place, making such indexes less effective unless they are rebuilt. This section reviews the index processing behavior of the DAC and provides the recommendations for bitmap indexes handling during ETL runs. DAC properties for handling bitmap indexes during ETL DAC handles the same indexes differently for initial and incremental ETL runs. Prior to an initial load in a data warehouse, there are no indexes created on the tables except for the unique B-Tree indexes to preserve data integrity. During the initial ETL run, DAC will create ETL indexes on a loaded table, which will be required for faster execution of subsequent mappings. For an incremental ETL run, DAC’s index handling will vary based on the combination of the several DAC properties and individual index usage settings. The following table summarizes the list of parameters, available in DAC 10.1.3.4.1, to handle indexes during ETL runs: Name Type Values Effect Default 24 DAC will drop all indexes on a target table, truncated before a load, and then recreate them after loading the table. It is used mostly in small Execution plans. Initial ETL: Y – all indexes irrespective of any other settings will be dropped and created N - no indexes will be dropped during an initial ETL Incremental ETL: Drop/Create Execution Y|N Indices Plan Y - indexes with Always Drop & Create (Bitmap) will be dropped during an incremental ETL N - no indexes will be dropped during an incremental ETL Y DB2/390 customers may want to set it to N. The recommended default value for other platforms is Y, unless you are executing a micro ETL in which case it would be too expensive to drop and create all indexes, so the value should be changed to N. Important! When set to N, this parameter overrides all other index level properties. The property Always Drop and Create is an index specific property, applicable to bitmap indexes only. Always Drop & Create Index Bitmap Y|N Y - a Bitmap index will be dropped prior to an ETL run. N - a Bitmap index will not be dropped in an incremental ETL run only. N/A The index property Always Drop & Create Bitmap does not override Drop/Create Indices execution plan property if the latter is set to N'. If an index is inactivated in DAC, the index would not be dropped and recreated during subsequent ETL runs. The property applies to Oracle data warehouse platform only. The property Always Drop and Create is an index specific property, applicable to all indexes. Always Drop Index & Create Y|N - Y – an index will be dropped prior to an ETL run. N – an index will not be dropped in an incremental ETL run only. N/A The index property Always Drop & Create does not override Drop/Create Indices execution plan property if the latter is set to N'. If an index is inactivated in DAC, the index would not be dropped and recreated during subsequent ETL runs. Index Usage Index ETL | QUERY ETL - an index is required to improve subsequent ETL mappings performance. DAC drops ETL indexes on a table if it truncates the table before the load, or you set Drop/Create Indices, Always Drop and Create Bitmap or Always Drop & Create to True. DAC will re-create the dropped ETL indexes after loading N/A the table, since the indexes will be used to speed up subsequent mappings. Query - an index is required to improve web queries performance. 25 Verify And Create NonSystem Existing Indices - True – The DAC server will verify that all indexes defined in the DAC repository are created in the target database. False - DAC will not run any reconciliation checks between its repository and the target database. False True | False This parameter is useful when the current execution plan has Drop/Create Indexes set to True, and new indexes have been created in the DAC repository since the last ETL run. Number This parameter specifies the maximum number of indexes that the DAC server will create in parallel for a single table. 1 Num Parallel Physical Indexes per Data Table Source Bitmap Indexes handling strategies Review the following recommendations for effective bitmap indexes management in your environment. Disable redundant bitmap indexes in DAC Pre-packaged Oracle BI Applications releases include bitmap indexes, enabled in the DAC metadata repository, and therefore, created and maintained as part of ETL runs, even though the indexed columns might not be used in filtering conditions in the Oracle BI Server repository. Reducing the number of redundant bitmap indexes is an essential step for improving initial and incremental loads, especially for dimension and lookup tables. To identify all enabled BITMAP indexes on a table in DAC metadata repository: Log in into your repository through the DAC user interface, click on the Design button under top menu, select your custom container in the pull down menu and select the Indices tab in the right pane. Click Query sub-tab Enter Table name and check ‘Is Bitmap’ box in the query row and click Go. To identify the list of the exposed columns, included into filtering conditions in RPD repository, connect to BI Server Administration Tool and generate the list of dependencies for each column using Query Repository and Related To features. To disable the identified redundant indexes in DAC and drop them in Data Warehouse: Check the Inactive checkbox against the indexes, which should be permanently dropped in the target schema. Rebuild the DAC execution plan. Connect to your target database schema and drop the disabled indexes. Decide whether to drop or keep bitmap indexes during incremental loads Analyze the total time to build indexes and computing statistics during an incremental run. You can connect to your DAC repository and execute the following queries: SQL> alter session set nls_date_format='DD-MON-YYYY:HH24:MI:SS'; -- Identify your ETL Run and put its format into the subsequent queries: select ROW_WID, NAME ETL_RUN , EXTRACT(DAY FROM (END_TS - START_TS) DAY TO SECOND ) || ' days ' || EXTRACT(HOUR FROM (END_TS - START_TS) DAY TO SECOND ) || ' hrs ' || EXTRACT(MINUTE FROM (END_TS - START_TS) DAY TO SECOND ) || ' min ' || EXTRACT(SECOND FROM (END_TS - START_TS) DAY TO SECOND ) || ' sec ' PLAN_RUN_TIME from W_ETL_DEFN_RUN order by START_TS DESC; 26 -- Identify your custom Execution Plan Name: SELECT DISTINCT app.row_wid FROM w_etl_defn_run run , w_etl_app app , w_etl_defn_prm prm WHERE prm.etl_defn_wid = run.etl_defn_wid AND prm.app_wid = app.row_wid AND run.row_wid = '’; -- Indexes build time: SELECT ref_idx.tbl_name table_name , ref_idx.idx_name , sdtl.start_ts start_time , sdtl.end_ts end_time , EXTRACT(DAY FROM(sdtl.end_ts - sdtl.start_ts) DAY TO SECOND) || EXTRACT(HOUR FROM(sdtl.end_ts - sdtl.start_ts) DAY TO SECOND) || EXTRACT(MINUTE FROM(sdtl.end_ts - sdtl.start_ts) DAY TO SECOND) || EXTRACT(SECOND FROM(sdtl.end_ts - sdtl.start_ts) DAY TO SECOND) FROM w_etl_defn_run def , w_etl_run_step stp , w_etl_run_sdtl sdtl , (SELECT ind_ref.obj_wid , ind.name idx_name , tbl.name tbl_name FROM w_etl_index ind , w_etl_obj_ref ind_ref , w_etl_obj_ref tbl_ref , w_etl_table tbl , w_etl_app app WHERE ind_ref.obj_type = 'W_ETL_INDEX' AND ind_ref.soft_del_flg = custom Execution Plan Name from the second query>’ AND ind_ref.obj_wid = ind.row_wid AND tbl_ref.obj_type = 'W_ETL_TABLE' AND tbl_ref.soft_del_flg = custom Execution Plan Name from the second query>’ AND tbl_ref.obj_wid = tbl.row_wid AND tbl_ref.obj_ref_wid = ind.table_wid AND ind.app_wid = app.row_wid AND ind.inactive_flg = 'N' ) ref_idx WHERE def.row_wid = stp.run_wid AND def.row_wid ='’ AND sdtl.run_step_wid = stp.row_wid AND sdtl.type_cd = 'Create Index' AND sdtl.index_wid = ref_idx.obj_wid -- AND ref_idx.tbl_name = 'W_OPTY_D' ORDER BY sdtl.end_ts - sdtl.start_ts DESC || || || || ' ' ' ' days ' hrs ' min ' sec' idx_bld_time 'N' AND ind_ref.app_wid = ‘ run an incremental ETL -> run OBIEE reports 2. Disable query indexes -> run an incremental ETL -> enable query indexes -> run another incremental ETL -> run OBIEE reports To summarize, you can disable query indexes only for the following pattern: 1st ETL –> 2nd ETL –> OBIEE. You cannot use this option for 1st ETL –> OBIEE –> 2nd ETL sequence. Important! If you plan to implement partitioning for your warehouse tables and you want to take advantage of conversion scripts in the next section, then you need to have query indexes, created on the target tables prior to implementing partitioning. Identify and preserve all activated query indexes PRIOR to executing the first ETL run: CREATE TABLE psr_initial_query_idx AS SELECT ind_ref.obj_wid, ind.NAME idx_name, tbl.NAME tbl_name FROM w_etl_index ind, w_etl_obj_ref ind_ref, w_etl_obj_ref tbl_ref, 32 WHERE w_etl_table tbl, w_etl_app app ind_ref.obj_type = 'W_ETL_INDEX' AND ind_ref.soft_del_flg = 'N' AND ind_ref.app_wid = :APP_ID AND ind_ref.obj_wid = ind.row_wid AND tbl_ref.obj_type = 'W_ETL_TABLE' AND tbl_ref.soft_del_flg = 'N' AND tbl_ref.app_wid = :APP_ID AND tbl_ref.obj_wid = tbl.row_wid AND tbl_ref.obj_ref_wid = ind.table_wid AND ind.app_wid = app.row_wid AND ind.inactive_flg = 'N' AND ind.isunique = 'N' AND ind.type_cd = 'Query' AND (ind.DRP_CRT_ALWAYS_FLG = 'Y' OR ind.DRP_CRT_BITMAP_FLG = 'Y') where APP_ID can be identified from: SELECT row_wid FROM w_etl_app; Disable the identified query indexes PRIOR to starting the first ETL run: SQL> UPDATE w_etl_index SET inactive_flg = 'Y' WHERE row_wid IN (SELECT obj_wid FROM psr_initial_query_idx); SQL> commit; Execute your first ETL run. Enable all preserved indexes PRIOR to starting the second ETL run: SQL> UPDATE w_etl_index SET inactive_flg = 'N' WHERE row_wid IN (SELECT obj_wid FROM psr_initial_query_idx); SQL> commit; Execute your second ETL run. DAC will recreate all disabled query indexes. Partitioning guidelines for Large Fact tables Introduction Taking advantage of range, composite range-range, composite range-range using virtual columns and interval partitioning for fact tables will not only reduce index and statistics maintenance time during ETL, but also improve web queries performance. Since the majority of inserts and updates impact the last partition(s), you will only need to disable local indexes on a few impacted partitions, and then rebuild disabled indexes after the load and compute statistics on updated partitions only. Online reports and dashboards should also render results faster, since the optimizer would build more efficient execution plans using partitions elimination logic. Large fact tables, with more than 20 million rows, are good candidates for partitioning. To build an optimal partitioned table with reasonable data distribution, you can consider partitioning by month, quarter, year, etc. You can either identify and partition target fact tables before the initial run, or convert the populated tables into partitioned objects after the full load. To implement the support for partitioned tables in Oracle Business Analytics Data Warehouse, you will need to update DAC metadata and manually convert the candidates into partitioned tables in the target database. 33 Follow the steps below to implement fact table partitioning in your data warehouse schema and DAC repository. Please note that there are some steps, which apply for composite range-range partitioning. Range and Composite Range-Range Partitioning Perform the following steps to convert a regular table into a range partitioned table. Identify a partitioning key and decide on a partitioning interval Choosing the correct partitioning key is the most important factor for effective partitioning, since it defines how many partitions will be involved in web queries or ETL updates. Review the following guidelines for selecting a column for a partitioning key: Identify eligible columns of type DATE for implementing range partitioning. Connect to the Oracle BI Server repository and check the usage or dependencies on each column in the logical and presentation layers. Analyze the summarized data distribution in the target table by each potential partitioning key candidate and data volumes per time range, month, quarter or year. Basing on the compiled data, decide on the appropriate partitioning key and partitioning range for your future partitioned table. The recommended partitioning range for most implementations is a month, though you can consider a quarter or a year for your partitioning ranges. Some of the partitioning keys may consist of concatenated attributes, which makes it hard to ensure proper range partitioning. Consider using virtual columns feature in Oracle database and use a virtual column for a partitioning or sub-partitioning key. The proposed partitioning guidelines assume that the majority of incremental ETL volume data (~90%) are new records, which end up in the one or two latest partitions. Depending on the chosen range granularity, you may consider rebuilding local indexes for the most impacted latest partitions: Monthly range: you are advised to maintain two latest partitions, i.e. define index and table actions for PREVIOUS and CURRENT partitions Quarterly range: you may consider maintaining just one, CURRENT partition. Yearly range: you are recommended to maintain only one, CURRENT partition. The following table summarizes the recommended partitioning keys for some large Oracle BI Applications Fact tables: Area Financials Financials Financials Financials Financials Financials Sales Sales Table Name W_AP_XACT_F W_AR_XACT_F W_GL_REVN_F W_GL_COGS_F W_TAX_XACT_F W_GL_OTHER_F W_SALES_ORDER_LINE_F W_SALES_PICK_LINE_F Partitioning Key POSTED_ON_DT_WID POSTED_ON_DT_WID POSTED_ON_DT_WID POSTED_ON_DT_WID POSTED_ON_DT_WID ACCT_PERIOD_END_DT_WID ORDERED_ON_DT_WID PICKED_ON_DT_WID 34 Sales Sales Procurement Procurement Procurement Siebel Sales HR HR HR HR HR W_SALES_INVOICE_LINE_F W_SALES_SCHEDULE_LINE_F W_PURCH_SCHEDULE_LINE_F W_PURCH_RQSTN_LINE_F W_RQSTN_LINE_COST_F W_REVN_F W_WRKFC_EVT_MONTH_F W_ABSENCE_EVENT_F W_WRKFC_EVT_POW_F W_PAYROLL_F W_LM_ENROLLMENT_EVENT_F INVOICED_ON_DT_WID ORDERED_ON_DT_WID ORDERED_ON_DT_WID APPROVED_ON_DT_WID APPROVED_ON_DT_WID CLOSE_DT_WID EVENT_MONTH_WID ABSENCE_MONTH_WID EVENT_YEAR PAY_PERIOD_END_DT_WID STATUS_DT Consider implementing composite range-to-range partitioning for Financials and Projects large fact tables using the following partitioning and sub-partitioning keys: Area Table Name Partitioning Key Sub-partitioning Key Financials W_GL_LINKAGE_INFORMATION_G DISTRIBUTION_SOURCE POSTED_ON_DT_WID (*) Projects W_PROJ_EXP_LINE_F CHANGED_ON_DT EXPENDITURE_DT_WID (*) Implementing sub-partitioning for W_GL_LINKAGE_INFORMATION_G is recommended only if end users compress inactive sub-partitions with historic data to reclaim space. There are no queries which would benefit from partitioning on POSTED_ON_DT_WID column. Refer to Composite Range-Range Partitioning using Virtual Columns section for more fact tables and their partitioning keys. Create a partitioned table in Data Warehouse You can pre-create a partitioned table prior to the initial load, or load data into the regular table and then create its partitioned copy and migrate the summarized data. If you have already completed the initial load into a regular table and then decided to partition it, you DO NOT need to re-run the initial load. You can consider two options to convert a table into a partitioned one: (a) create table as select, or (b) create table exchange partition syntax and then split partitions. The internal tests show that the first option to create table as select is simpler and faster. The second option is preferred in high availability data warehouses when you have to carry out partitioning with end users accessing the data. The example below uses the following tables for converting into partitioned objects: W_WRKFC_EVT_MONTH_F - range partitioning W_PROJ_EXP_LINE_F - composite range-range partitioning 1. Rename the original table SQL> rename W_WRKFC_EVT_MONTH_F to W_WRKFC_EVT_MONTH_F_ORIG; 35 2. Create the partitioned table, using range partitioning by year: SQL> create table W_WRKFC_EVT_MONTH_F partition by range (EVENT_YEAR)( partition PART_MIN values less than (2006), partition PART_2006 values less than (2007), partition PART_2007 values less than (2008), partition PART_2008 values less than (2009), partition PART_2009 values less than (2010), partition PART_2010 values less than (2011), partition PART_MAX values less than (maxvalue) ) tablespace BIAPPS_DATA nologging parallel enable row movement as select * from W_WRKFC_EVT_MONTH_F_ORIG; EVENT_YEAR column in the example above uses number(4) precision, so the table partition values are defined using format YYYY. If you choose WID column for a partitioning key, then you have to define your partition ranges using format YYYYMMDD. If you implement composite range-range partitioning, use the following sample syntax: SQL> create table W_PROJ_EXP_LINE_F partition by range (CHANGED_ON_DT) subpartition by range (EXPENDITURE_DT_WID) (partition PART_MIN values less then (TO_DATE('01-JAN-2008','DD-MON-YYYY')) ( subpartition PART_MIN_MIN values less than (19980000) , subpartition PART_MIN_1998 values less than (19990000) , subpartition PART_MIN_1999 values less than (20010000) , subpartition PART_MIN_2001 values less than (20020000) , subpartition PART_MIN_2002 values less than (20030000) , subpartition PART_MIN_2003 values less than (20040000) , subpartition PART_MIN_2004 values less than (20050000) , subpartition PART_MIN_2005 values less than (20060000) , subpartition PART_MIN_2006 values less than (20070000) , subpartition PART_MIN_2007 values less than (20080000) , subpartition PART_MIN_2008 values less than (20090000) , subpartition PART_MIN_2009 values less than (20100000) , subpartition PART_MIN_MAX values less than (maxvalue) ) , partition PART_200801 values less than (TO_DATE('01-APR-2008','DD-MON-YYYY')) ( subpartition PART_200801_MIN values less than (19980000) , subpartition PART_200801_1998 values less than (19990000) , subpartition PART_200801_1999 values less than (20010000) , subpartition PART_200801_2001 values less than (20020000) , subpartition PART_200801_2002 values less than (20030000) , subpartition PART_200801_2003 values less than (20040000) , subpartition PART_200801_2004 values less than (20050000) , subpartition PART_200801_2005 values less than (20060000) , subpartition PART_200801_2006 values less than (20070000) , subpartition PART_200801_2007 values less than (20080000) , subpartition PART_200801_2008 values less than (20090000) , subpartition PART_200801_2009 values less than (20100000) , subpartition PART_200801_MAX values less than (MAXVALUE) ) ... ... , partition PART_MAX values less than (maxvalue) ( subpartition PART_MAX_MIN values less than (19980000) 36 , subpartition PART_MAX_1998 values less than , subpartition PART_MAX_1999 values less than , subpartition PART_MAX_2001 values less than , subpartition PART_MAX_2002 values less than , subpartition PART_MAX_2003 values less than , subpartition PART_MAX_2004 values less than , subpartition PART_MAX_2005 values less than , subpartition PART_MAX_2006 values less than , subpartition PART_MAX_2007 values less than , subpartition PART_MAX_2008 values less than , subpartition PART_MAX_2009 values less than , subpartition PART_MAX_MAX values less than ) ) nologging parallel enable row movement as (select * from W_PROJ_EXP_LINE_F_ORIG); (19990000) (20010000) (20020000) (20030000) (20040000) (20050000) (20060000) (20070000) (20080000) (20090000) (20100000) (maxvalue) The composite range-range example uses Quarter for partitioning and Year for sub-partitioning ranges. EXPENDITURE_DT_WID column has number(8) precision, so the table partition values are defined using format YYYYMMDD. Important! You must use the exact format YYYY, YYYYQQ or YYYYMMDD for partitioning by Year, Quarter or Month correspondingly. You should verify the partitioning column data type prior to partitioning a table. 3. Drop / Rename indexes on renamed table To drop indexes on the renamed table: SQL> spool drop_ind.sql SQL> SELECT 'DROP INDEX '|| INDEX_NAME||';' FROM USER_INDEXES WHERE TABLE_NAME = 'W_WRKFC_EVT_MONTH_F_ORIG'; SQL> spool off SQL> @drop_ind.sql If you want to keep indexes on the original renamed table until successful partitioning conversion completion, then use the following commands: SQL> spool rename_ind.sql SQL> SELECT ‘ALTER INDEX ‘|| INDEX_NAME ||’ rename to ‘|| INDEX_NAME || ‘_ORIG; ‘ FROM USER_INDEXES WHERE TABLE_NAME = ‘W_WRKFC_EVT_MONTH_F_ORIG’; SQL> spool off SQL> @rename_ind.sql 4. Create Global and Local indexes. Execute the following queries as DAC Repository owner: SQL> spool indexes.sql SQL> SELECT 'CREATE ' ||DECODE(ISUNIQUE,'Y','UNIQUE ') ||DECODE(ISBITMAP,'Y','BITMAP ') ||'INDEX ' ||I.NAME ||CHR(10) ||' ON ' ||T.NAME ||' (' ||MAX(DECODE(POSTN,1,C.NAME||' ASC')) ||CHR(10) ||MAX(DECODE(POSTN,2,' ,'||C.NAME||' ASC')) 37 ||MAX(DECODE(POSTN,3,' ,'||C.NAME||' ASC')) ||MAX(DECODE(POSTN,4,' ,'||C.NAME||' ASC')) ||MAX(DECODE(POSTN,5,' ,'||C.NAME||' ASC')) ||MAX(DECODE(POSTN,6,' ,'||C.NAME||' ASC')) ||MAX(DECODE(POSTN,7,' ,'||C.NAME||' ASC')) ||') tablespace USERS_IDX ' ||CHR(10) ||DECODE(ISUNIQUE,'Y','GLOBAL','LOCAL') ||' NOLOGGING;' FROM W_ETL_TABLE T, W_ETL_INDEX I, W_ETL_INDEX_COL C WHERE T.ROW_WID = I.TABLE_WID AND T.NAME = 'W_WRKFC_EVT_MONTH_F' AND I.ROW_WID = C.INDEX_WID AND I.INACTIVE_FLG = 'N' GROUP BY T.NAME,I.NAME,ISBITMAP,ISUNIQUE; SQL> spool off; The script creates indexes with a maximum of seven positions. If you have indexes with more than seven column positions, then update modify "MAX(DECODE(POSTN...))" sentence. Run the spooled file indexes.sql in warehouse schema. SQL> @indexes.sql Compute statistics on the partitioned table: SQL> BEGIN dbms_stats.Gather_table_stats( NULL, tabname => 'W_WRKFC_EVT_MONTH_F', CASCADE => true, estimate_percent => dbms_stats.auto_sample_size, method_opt => 'FOR ALL INDEXED COLUMNS SIZE AUTO'); END; Configure Informatica to support partitioned tables 1. Enable Row Movement 2. Set skip_unusable_indexes = TRUE in DataWarehouse Relational Connection in Informatica Workflow Manager. Open Workflow Manager -> Connections -> Relational -> edit DataWarehouse -> Update Connection Environment SQL: ALTER SESSION SET SKIP_UNUSABLE_INDEXES=TRUE; Configure DAC to support partitioned tables Create new source system parameters Important! This example below shows how to set up rebuilding indexes and maintaining statistics for the last two PREVIOUS and CURRENT partitions for range partitioning by year. You should consider implementing PREVIOUS and CURRENT partitions only for monthly or more granular ranges. If you choose quarterly or yearly range, then you can maintain CURRENT partition only. Maintaining PREVIOUS partition for partitioning by a quarter or a year may introduce unnecessary overhead and extend your incremental ETL execution time. Define the following source system parameters: Select Design Menu Click on Source System Parameters tab in the right pane 38 Click New Button and define two new parameters with the following attributes: Name: $$CURRENT_YEAR_WID Data Type: SQL Value (click on checkbox icon to define the following parameters): Logical Data Source: DBConnection_OLAP Enter the following SQL: SELECT TO_CHAR(ROW_WID) FROM W_YEAR_D WHERE W_CURRENT_CAL_YEAR_CODE = 'Current' Name: $$PREVIOUS_YEAR_WID Data Type: SQL Value (click on checkbox icon to define the following parameters): Logical Data Source: DBConnection_OLAP Enter the following SQL: SELECT TO_CHAR(ROW_WID) FROM W_YEAR_D WHERE W_CURRENT_CAL_YEAR_CODE = 'Previous' Important! Verify the correct Logical Data Source, DBConnection_OLAP, which points to your target data warehouse, when you define these new system parameters. If you choose monthly partitions, then use the following names and values: Name: $$PREVIOUS_MONTH_WID Value: SELECT TO_CHAR(ROW_WID) FROM W_MONTH_D WHERE W_CURRENT_CAL_MONTH_CODE ='Previous' Name: $$CURRENT_MONTH_WID Value: SELECT TO_CHAR(ROW_WID) FROM W_MONTH_D WHERE W_CURRENT_CAL_MONTH_CODE = 'Current' If you choose Quarterly partitions, then use the following names / values: Name: $$PREVIOUS_QTR_WID Value: SELECT TO_CHAR(ROW_WID) FROM W_QTR_D WHERE W_CURRENT_CAL_QTR_CODE = 'Previous' Name: $$CURRENT_QTR_WID Value: SELECT TO_CHAR(ROW_WID) FROM W_QTR_D WHERE W_CURRENT_CAL_QTR_CODE = 'Current' Note: If you need to maintain more than two partitions during the incremental ETLs, then you can create more variables and repeat the steps for them below. For example: Name: $$THIRD_MONTH_WID Value: SELECT to_char(add_months(TO_DATE(ROW_WID,'YYYYMMDD'), -2),'YYYYMM') FROM W_DAY_D WHERE W_CURRENT_CAL_DAY_CODE = 'Current' Name: $$FOURTH_MONTH_WID Value: SELECT to_char(add_months(TO_DATE(ROW_WID,'YYYYMMDD'), -3),'YYYYMM') FROM w_DAY_D WHERE W_CURRENT_CAL_DAY_CODE = 'Current' Update Index Action Framework Create the following Index Actions in DAC Action Framework: 1. Year Partitioning: Disable Local Index Parameter Navigate to Tools -> Seed Data -> Actions -> Index Actions -> New Enter Name: Year Partitioning: Disable Local Index Click on ‘Check’ Icon in Value field Click on Add button in the new open window 39 Define ‘PREVIOUS_YEAR_WID Local Index’ SQL: Name: Disable PREVIOUS_YEAR_WID Local Indexes Type: SQL Database Connection: target Valid Database Platform: ORACLE Enter the following command in the lower right Text Area: alter index getIndexName() modify partition PART_@DAC_$$PREVIOUS_YEAR_WID unusable Important! Do not use semicolon (;) at the end of SQLs in Text Area. Click ‘Add’ button to define the second SQL command. Define ‘CURRENT_YEAR_WID Local Index’ SQL: Name: Disable CURRENT_YEAR_WID Local Index Type: SQL Database Connection: target Valid Database Platform: ORACLE Enter the following command in the lower right Text Area: alter index getIndexName() modify partition PART_@DAC_$$CURRENT_YEAR_WID unusable Save the changes. Note: If you use Quarterly or Monthly partition range, then use PREVIOUS_MONTH_WID / CURRENT_MONTH_WID or PREVIOUS_QTR_WID / CURRENT_QTR_WID in Action names and SQLs. Important! If you implement partitioning by Year, Quarter, Month, then you need to define separate actions for each range. 2. Year Partitioning: Enable Local Index Parameter Click ‘New’ in Index Actions window to create a new parameter Enter Name: Year Partitioning: Enable Local Index Click on ‘Check’ Icon in Value field Click on Add button in the new open window Define the following two values: Name Enable PREVIOUS_YEAR_WID Local Index Type: SQL Database Connection: target Valid Database Platform: ORACLE Enter the following command in the lower right Text Area: alter index getIndexName() rebuild partition PART_@DAC_$$PREVIOUS_YEAR_WID nologging Name Enable CURRENT_YEAR_WID Local Index Type: SQL Database Connection: target Valid Database Platform: ORACLE 40 Enter the following command in the lower right Text Area: alter index getIndexName() rebuild partition PART_@DAC_$$CURRENT_YEAR_WID nologging Save the changes. Note: If you choose Quarterly or Monthly partition range, then use PREVIOUS_MONTH_WID / CURRENT_MONTH_WID or PREVIOUS_QTR_WID / CURRENT_QTR_WID in Action names and SQLs. 3. Year Partitioning: Enable Local Sub-Partitioned Index Parameter (for composite partitioning only) Click ‘New’ in Index Actions window to create a new parameter Enter Name: Year Partitioning: Enable Local Index Click on ‘Check’ Icon in Value field Click on Add button in the new open window Define the following value: Name Enable Local Sub-partitioned Index Type: Stored Procedure Database Connection: target Valid Database Platform: ORACLE Enter the following command in the lower right Text Area: DECLARE CURSOR C1 IS SELECT DISTINCT SUBPARTITION_NAME FROM USER_IND_SUBPARTITIONS WHERE INDEX_NAME='getIndexName()' AND STATUS = 'UNUSABLE'; BEGIN FOR REC IN C1 LOOP EXECUTE IMMEDIATE 'alter index getIndexName() rebuild subpartition '||REC.SUBPARTITION_NAME||''; END LOOP; END Save the changes. 4. Year Partitioning: Create Local Bitmap Index Parameter Click ‘New’ in Index Actions window to create a new parameter Enter Name: Year Partitioning: Create Local Bitmap Index Click on ‘Check’ Icon in Value field Click on Add button in the new open window Define the following value: Name Create Local Bitmap Indexes Type: SQL Database Connection: target Valid Database Platform: ORACLE Enter the following command in the lower right Text Area: 41 Create bitmap index getIndexName() on getTableName()(getUniqueColumns()) tablespace getTableSpace() local parallel nologging Save the changes. 5. Year Partitioning: Create Local B-Tree Index Parameter Click ‘New’ in Index Actions window to create a new parameter Enter Name: Year Partitioning: Create Local B-Tree Index Click on ‘Check’ Icon in Value field Click on Add button in the new open window Define the following value: Name Create Local B-Tree Index Type: SQL Database Connection: target Valid Database Platform: ORACLE Enter the following command in the lower right Text Area: Create index getIndexName() on getTableName()(getUniqueColumns()) tablespace getTableSpace() local parallel nologging Save the changes. 6. Year Partitioning: Create Global Unique Index Parameter Click ‘New’ in Index Actions window to create a new parameter Enter Name: Year Partitioning: Create Global Unique Index Click on ‘Check’ Icon in Value field Click on Add button in the new open window Define the following value: Name Create Local B-Tree Indexes Type: SQL Database Connection: target Valid Database Platform: ORACLE Enter the following command in the lower right Text Area: Create unique index getIndexName() on getTableName()(getUniqueColumns()) tablespace getTableSpace() global parallel nologging Save the changes. Update Table Action Framework Create the following Table Action in DAC Action Framework: 1. Year Partitioning: Gather Partition Stats Parameter Navigate to Tools -> Seed Data -> Actions -> Table Actions -> New Enter Name: Year Partitioning: Gather Partition Stats 42 Click on ‘Check’ Icon in Value field Click on Add button in the new open window Define the following value: Name: Gather Partition Stats Type: Stored Procedure Database Connection: target Valid Database Platform: ORACLE Enter the following command in the lower right Text Area: DECLARE CURSOR C1 IS SELECT DISTINCT UTP.PARTITION_NAME FROM USER_IND_PARTITIONS UIP, USER_PART_INDEXES UPI, USER_TAB_PARTITIONS UTP WHERE UIP.INDEX_NAME=UPI.INDEX_NAME AND UIP.STATUS = 'USABLE' AND UTP.TABLE_NAME=UPI.TABLE_NAME AND UTP.PARTITION_POSITION=UIP.PARTITION_POSITION AND UPI.TABLE_NAME = 'getTableName()' AND UTP.PARTITION_NAME IN ('PART_@DAC_$$CURRENT_YEAR_WID','PART_@DAC_$$PREVIOUS_YEAR_WID'); BEGIN FOR REC IN C1 LOOP DBMS_STATS.GATHER_TABLE_STATS( NULL, TABNAME => 'getTableName()', CASCADE => FALSE, PARTNAME => REC.PARTITION_NAME, ESTIMATE_PERCENT => DBMS_STATS.AUTO_SAMPLE_SIZE, GRANULARITY => 'PARTITION', METHOD_OPT => 'FOR ALL INDEXED COLUMNS SIZE AUTO', DEGREE => DBMS_STATS.DEFAULT_DEGREE); END LOOP; END; Save the changes. Note: If you Quarterly or Monthly partition range, then use PREVIOUS_MONTH_WID / CURRENT_MONTH_WID or PREVIOUS_QTR_WID / CURRENT_QTR_WID in Action names and SQLs. 2. Quarter Composite Partitioning: Gather Partition Stats Parameter (for composite partitioning only) Navigate to Tools -> Seed Data -> Actions -> Table Actions -> New Enter Name: Quarter Composite Partitioning: Gather Partition Stats Click on ‘Check’ Icon in Value field Click on Add button in the new open window Define the following value: Name: Gather Partition Stats Type: Stored Procedure Database Connection: target Valid Database Platform: ORACLE 43 Enter the following command in the lower right Text Area: DECLARE CURSOR C1 IS SELECT DISTINCT UTP.PARTITION_NAME FROM USER_IND_PARTITIONS UIP, USER_PART_INDEXES UPI, USER_TAB_PARTITIONS UTP WHERE UIP.INDEX_NAME=UPI.INDEX_NAME AND UIP.STATUS = 'USABLE' AND UTP.TABLE_NAME=UPI.TABLE_NAME AND UTP.PARTITION_POSITION=UIP.PARTITION_POSITION AND UPI.TABLE_NAME = 'getTableName()' AND UTP.PARTITION_NAME IN ('PART_@DAC_$$CURRENT_QTR_WID','PART_@DAC_$$PREVIOUS_QTR_WID'); BEGIN FOR REC IN C1 LOOP DBMS_STATS.GATHER_TABLE_STATS( NULL, TABNAME => 'getTableName()', CASCADE => FALSE, PARTNAME => REC.PARTITION_NAME, ESTIMATE_PERCENT => DBMS_STATS.AUTO_SAMPLE_SIZE, GRANULARITY => 'PARTITION', METHOD_OPT => 'FOR ALL INDEXED COLUMNS SIZE AUTO', DEGREE => DBMS_STATS.DEFAULT_DEGREE); END LOOP; END; Important! DO NOT change ‘Drop / Create Always’ or ‘Drop / Create Always Bitmap’ properties for the modified indexes. Un-checking these properties would signal DAC to skip any actions, defined in Index Action Framework. Attach Index Action to the desired indexes Retrieve all local indexes on partitioned tables. Navigate to Design -> Indices -> Query ->Table Name 'W_WRKFC_EVT_MONTH_F', check ‘Is Bitmap’ checkbox -> Go. Important! You must exclude the selected global index from the index query result set. The global index must NOT have any assigned index action tasks. Right click your mouse on the generated list (Upper right pane) and select ‘Add Actions’ Select ‘Drop Index’ from Action Type field Select ‘Incremental’ from Load Type field Click on Checkbox icon in Action field Select ‘Year Partitioning: Disable Local Indexes’ Action Name Click OK in Choose Action window Click OK in Add Actions window. Right click your mouse on the generated list (Upper right pane) and select ‘Add Actions’ one more time Select ‘Create Index’ from Action Type field Select ‘Incremental’ from Load Type field Click on Checkbox icon in Action field Select ‘Year Partitioning: Enable Local Indexes’ Action Name Click OK in Choose Action window 44 Click OK in Add Actions window. The steps above apply to all indexes, retrieved by your query. If you want to attach the defined Index Actions for an individual index, then select the desired index in the right upper pane, and click on ‘Actions’ sub-tab in the lower pane. Then click ‘New’ button in the lower pane and fill in the appropriate values in the new line. Repeat the same steps above to attach ‘Year Partitioning: Create Local Bitmap Index’, ‘Year Partitioning: Create Local B-Tree Index’ and ‘Year Partitioning: Create Global Unique Index’ to the appropriate indexes, used in an initial ETL run. Important! You must choose ‘Initial’ from Load Type field, when attaching ‘Year Partitioning: Create Local Bitmap Index’, ‘Year Partitioning: Create Local B-Tree Index’ and ‘Year Partitioning: Create Global Unique Index’ Index Action Tasks. Even though you select Drop/Create Index Action Type, DAC will override these actions with the steps, defined in Index Action Framework. Every time, DAC encounter ‘Drop Index’ step for an updated index, it will make it unusable for the last two partitions, and for ‘Create Index’ – rebuild the index for the last two partitions. Attach Table Action to the converted partitioned table Retrieve the partitioned tables. Navigate to Design -> Tables -> Query -> Name 'W_WRKFC_EVT_MONTH_F' -> Go. Right click your mouse on the generated list (Upper right pane) and select ‘Add Actions’ Select ‘Analyze Table’ from Action Type field Select ‘Incremental’ from Load Type field Click on Checkbox icon in Action field Select ‘Year Partitioning: Gather partition stats’ Action Name Click OK in Choose Action window Click OK in Add Actions window. Important! You must use ‘Quarter Composite Partitioning: Gather Partition Stats’ parameter for composite rangerange tables. If you want to attach the defined Table Action for an individual table, then select the desired table in the right upper pane, and click on ‘Actions’ sub-tab in the lower pane. Then click ‘New’ button in the lower pane and fill in the appropriate values in the new line. Whenever DAC encounter ‘Analyze Table’ step for an updated table, it will override the default action by the set of steps from Table Action Framework. Unit test the changes for converted partitioned tables in DAC You can generate the list of actions for a single task, which populates a partitioned table, to validate the correct sequence of steps without executing them. Follow the steps below to unit test the sequence of steps for a partitioned table: Select ‘Execute’ button from your top sub-menu Select your execution plan in the upper right pane Click ‘Ordered tasks’ sub-tab in the lower right pane Retrieve the task which populates your partitioned table Click ‘Unit test’ button in the lower right pane menu. 45 Click ‘Yes’ to proceed with unit testing. Validate the generated sequence of steps in the new output window. Important! DO NOT execute them in your data warehouse. Exit unit testing window. Composite Range-range Partitioning Using Virtual Columns There are few more facts, which can be partitioned using range-to-range composite partitioning by virtual columns, another useful Oracle database feature. Oracle does not store virtual columns, it derives their values on demand by computing defined functions or expressions. This feature is very handy when query filters use a substring in a physical column. For example, a WID column ‘201020110120000’ comprises date value ‘20110120’ in YYYYMMDD format. Implement such partitioning using virtual columns following W_GL_BALANCE_F table example: Identify the table’s partitioning key, and define a virtual column, which will be used as its sub-partitioning key: Add a virtual column to the fact table: ALTER TABLE W_GL_BALANCE_F add BALANCE_DT_V AS (TO_NUMBER(SUBSTR(BALANCE_DT_WID, 5, 8))); The table below consolidates all such facts and their recommended keys and virtual column values for BI Analytic Applications: Area Table Name Partitioning Key Sub-partitioning Key Sub-partitioning V-Column Value Financials W_GL_BALANCE_F CHANGED_ON_DT BALANCE_DT_V (TO_NUMBER(SUBSTR(BALANCE_DT_WID, 5, 8))) (TO_NUMBER(SUBSTR(PROJ_ACCOUNTING_DT _WID, 5, 8))) (TO_NUMBER(SUBSTR(GL_ACCOUNTING_DT_ WID, 5, 8))) Projects W_PROJ_COST_LINE_F CHANGED_ON_DT PROJ_ACCOUNTING_DT_V Projects W_PROJ_REVENUE_LINE_F CHANGED_ON_DT GL_ACCOUNTING_DT_V Rename the original table: RENAME W_GL_BALANCE_F TO W_GL_BALANCE_F_REF; Create a new partitioned table: CREATE TABLE W_GL_BALANCE_F PARTITION BY RANGE (CHANGED_ON_DT) SUBPARTITION BY RANGE (BALANCE_DT_V) (PARTITION PART_MIN VALUES LESS THAN (TO_DATE('01-JAN-2008', 'DD-MON-YYYY')) (SUBPARTITION PART_MIN_MIN VALUES LESS THAN (20080101), SUBPARTITION PART_MIN_2008 VALUES LESS THAN (20090101), SUBPARTITION PART_MIN_2009 VALUES LESS THAN (20100101), SUBPARTITION PART_MIN_2010 VALUES LESS THAN (20110101), SUBPARTITION PART_MIN_2011 VALUES LESS THAN (20120101), SUBPARTITION PART_MIN_MAX VALUES LESS THAN (MAXVALUE) ), PARTITION PART_2008 VALUES LESS THAN (TO_DATE('01-JAN-2009', 'DD-MON-YYYY')) (SUBPARTITION PART_2008_MIN VALUES LESS THAN (20080101), SUBPARTITION PART_2008_2008 VALUES LESS THAN (20090101), SUBPARTITION PART_2008_2009 VALUES LESS THAN (20100101), 46 SUBPARTITION PART_2008_2010 VALUES LESS THAN (20110101), SUBPARTITION PART_2008_2011 VALUES LESS THAN (20120101), SUBPARTITION PART_2008_MAX VALUES LESS THAN (MAXVALUE) ), PARTITION PART_2009 VALUES LESS THAN (TO_DATE('01-JAN-2010', 'DD-MON-YYYY')) (SUBPARTITION PART_2009_MIN VALUES LESS THAN (20080101), SUBPARTITION PART_2009_2008 VALUES LESS THAN (20090101), SUBPARTITION PART_2009_2009 VALUES LESS THAN (20100101), SUBPARTITION PART_2009_2010 VALUES LESS THAN (20110101), SUBPARTITION PART_2009_2011 VALUES LESS THAN (20120101), SUBPARTITION PART_2009_MAX VALUES LESS THAN (MAXVALUE) ), PARTITION PART_2010 VALUES LESS THAN (TO_DATE('01-JAN-2011', 'DD-MON-YYYY')) (SUBPARTITION PART_2010_MIN VALUES LESS THAN (20080101), SUBPARTITION PART_2010_2008 VALUES LESS THAN (20090101), SUBPARTITION PART_2010_2009 VALUES LESS THAN (20100101), SUBPARTITION PART_2010_2010 VALUES LESS THAN (20110101), SUBPARTITION PART_2010_2011 VALUES LESS THAN (20120101), SUBPARTITION PART_2010_MAX VALUES LESS THAN (MAXVALUE) ), PARTITION PART_2011 VALUES LESS THAN (TO_DATE('01-JAN-2012', 'DD-MON-YYYY')) (SUBPARTITION PART_2011_MIN VALUES LESS THAN (20080101), SUBPARTITION PART_2011_2008 VALUES LESS THAN (20090101), SUBPARTITION PART_2011_2009 VALUES LESS THAN (20100101), SUBPARTITION PART_2011_2010 VALUES LESS THAN (20110101), SUBPARTITION PART_2011_2011 VALUES LESS THAN (20120101), SUBPARTITION PART_2011_MAX VALUES LESS THAN (MAXVALUE) ), PARTITION PART_MAX VALUES LESS THAN (MAXVALUE) (SUBPARTITION PART_MAX_MIN VALUES LESS THAN (20080101), SUBPARTITION PART_MAX_2008 VALUES LESS THAN (20090101), SUBPARTITION PART_MAX_2009 VALUES LESS THAN (20100101), SUBPARTITION PART_MAX_2010 VALUES LESS THAN (20110101), SUBPARTITION PART_MAX_2011 VALUES LESS THAN (20120101), SUBPARTITION PART_MAX_MAX VALUES LESS THAN (MAXVALUE) ) ) NOLOGGING PARALLEL ENABLE ROW MOVEMENT AS (SELECT * FROM W_GL_BALANCE_F_REF); Follow the steps in Range and Composite Range-Range Partitioning section to complete the remaining configuration tasks in Informatica, DAC and database. Interval Partitioning Oracle 11G introduced a new partitioning type, Interval Partitioning. Oracle automatically creates new partitions with predefined range interval. With Interval Partitioning there is no need to pre-create partitions for data in the future. The majority of recommended partitioning keys in Oracle BI Applications are using DATE format YYYYMMDD. For example, the POSTED_ON_WID column is based on the monthly range partitions with values less than 20041101, 20041201, 20050101, 20050201, etc. You can specify INTERVAL 100 for such a range format. Oracle will skip creating partitions for ranges with no data. In the last example with POSTED_ON_WID there is a very large gap between ranges 20041201 and 20050101, so Oracle will not create any partitions in that range. For example, the syntax for creating an interval partitioned table: SQL> create table W_WRKFC_EVT_MONTH_F partition by range (EVENT_YEAR) interval(100) ( partition PART_MIN values less than (19900101)) 47 tablespace BIAPPS_DATA nologging parallel enable row movement as select * from W_WRKFC_EVT_MONTH_F_ORIG; You also need to use the following SQLs to assign to DAC variables: Name: $$PREVIOUS_MONTH_WID Value: SELECT partition_name FROM user_tab_partitions WHERE table_name = 'W_WRKFC_EVT_MONTH_F' AND partition_position = (SELECT MAX(partition_position)-1 FROM user_tab_partitions WHERE table_name = 'W_WRKFC_EVT_MONTH_F'); Name: $$CURRENT_MONTH_WID Value: SELECT partition_name FROM user_tab_partitions WHERE table_name = 'W_WRKFC_EVT_MONTH_F' AND partition_position = (SELECT MAX(partition_position) FROM user_tab_partitions WHERE table_name = 'W_WRKFC_EVT_MONTH_F'); Important! You must remove the prefix PART_ prefix from the partition names in the above DAC Action Framework scripts above. For example, use @DAC_$$PREVIOUS_MONTH_WID instead of PART_@DAC_$$PREVIOUS_MONTH_WID. Important! Oracle creates a new interval partition and partitioned local indexes, as soon as the first record exceeds the last partition range value. So during an ETL, when Oracle creates a new interval partition, you may expect possibly slower mapping performance, as all local indexes on the new partition will be enabled during the run. The impact may not be significant, since the DML operations with local indexes in place will be done only for a single day of incremental data. DAC will kick in its routine to turn off local indexes on the newly created partition during the next incremental ETL. Partitioning Pruning in Star Queries Effective partitioning implementation not only reduces Index and statistics maintenance during incremental ETLs, but also helps to improve end user queries performance. There are, however, several factors which could affect Oracle Optimizer plans and result in less efficient executions: a) By its original design BI Analytic Applications do not expose the fact attributes in OBIEE logical model (in RPD). They are resolved through foreign keys via joins to dimensional attributes. For example, if you partition your fact table using CHANGED_ON_DT column by month, and then run an OBIEE query to filter out records for the last month, OBIEE would not use the provided filter value directly in the fact predicate. Instead, it will resolve CHANGED_ON_DT through foreign key to the corresponding Time Dimension table and apply the filter to its Time Dimension attribute. b) BI Analytic Applications database design uses Star Schema and relies on Bitmap indexes for effective Star Transformation. When Optimizer chooses Star Transformation it may exclude partitioning pruning from its execution plan and use bitmap indexes instead. Partitioning Pruning and Star Transformation Scenarios The following example walks through various scenarios and shows the Optimizer’s behavior for different configurations. A sample OBIEE generated physical query below uses partitioned fact table W_SALES_ORDER_LINE_F (T90499) with the partitioning key ORDERED_ON_DT_WID. There are also four indexes: W_SLS_ORD_LN_F_T_F100 is a local bitmap index on PROFIT_CENTER_WID W_SLS_ORD_LN_F_T_F200 is a local bitmap index on ORDERED_ON_DT_WID , the table’s partitioning key W_SLS_ORD_LN_F_T_F300 is a local bitmap index on CHNL_TYPE_WID 48 W_SLS_ORD_LN_F_T_F500 is a local btree index on (ORDERED_ON_DT_WID, CHNL_TYPE_WID) WITH SAWITH0 AS (select T156337.MCAL_DAY_DT as c1, case when T96128.W_XACT_TYPE_CODE 'PAYMENT' then T90499.SALES_ORDER_NUM/*SALES_INVOICE_NUM*/ else NULL end T96094.W_STATUS_CODE as c3, T96094.STATUS_CODE as c4, T96128.W_XACT_TYPE_CODE as c5, T96128.W_XACT_SUBTYPE_CODE as c6, T157680.NAME as c7, T95085.PAYMENT_TERM_CODE as c8, T174959.MCAL_DAY_DT as c9, T175106.MCAL_DAY_DT as c10, T175253.MCAL_DAY_DT as c11, sum(T90499.NET_AMT /*.AR_DOC_AMT*/ * T90499.GLOBAL1_EXCHANGE_RATE) as c12, T156337.ROW_WID as c13 from W_MCAL_DAY_D T175106 /* Dim_W_MCAL_DAY_D_Invoice_Cleared_Date_Fiscal_Calendar */ , W_MCAL_DAY_D T174959 /* Dim_W_MCAL_DAY_D_Invoiced_Date_Fiscal_Calendar */ , W_MCAL_DAY_D T175253 /* Dim_W_MCAL_DAY_D_Payment_Due_Date_Fiscal_Calendar */ , W_MCAL_DAY_D T156337 /* Dim_W_MCAL_DAY_D_Fiscal_Day */ , W_PROFIT_CENTER_D T92473 /* Dim_W_PROFIT_CENTER_D */ , DWH_7962.W_PAYMENT_TERMS_D T95085 /* Dim_W_PAYMENT_TERMS_D */ , W_SALES_ORDER_LINE_F_TEST T90499--W_AR_XACT_F T90499 /* Fact_W_AR_XACT_F */ left outer join W_DAY_D T124588 /* Dim_W_DAY_D_ARSales Invoice Cleared Date */ On T90499.CANCELLED_ON_DT_WID/*CLEARED_ON_DT_WID*/ = T124588.ROW_WID, --W_GL_ACCOUNT_D T91397 /* Dim_W_GL_ACCOUNT_D */ , DWH_7962.W_STATUS_D T96094 /* Dim_W_STATUS_D_Generic */ , DWH_7962.W_XACT_TYPE_D T96128 /* Dim_W_XACT_TYPE_D_Financials */ , DWH_7962.W_PARTY_D T157680 where ( T90499.ENTERED_ON_DT_WID /*CLEARED_ON_DT_WID */= T175106.MCAL_DAY_DT_WID and T90499.CHNL_TYPE_WID/*MCAL_CAL_WID*/ = T175106.MCAL_CAL_WID and T174959.ADJUSTMENT_PERIOD_FLG = 'N' and T90499.BOOKED_ON_DT_WID /*INVOICED_ON_DT_WID*/ = T174959.MCAL_DAY_DT_WID and T90499.CHNL_TYPE_WID/*MCAL_CAL_WID*/ = T174959.MCAL_CAL_WID and T156337.ADJUSTMENT_PERIOD_FLG = 'N' and T90499.ORDERED_ON_DT_WID/*POSTED_ON_DT_WID*/ = T156337.MCAL_DAY_DT_WID and T90499.CHNL_TYPE_WID/*MCAL_CAL_WID*/ = T156337.MCAL_CAL_WID and T90499.PROFIT_CENTER_WID = T92473.ROW_WID and T90499.PAYMENT_TERMS_WID/*PAY_TERMS_WID*/ = T95085.ROW_WID --and T90499.GL_ACCOUNT_WID = T91397.ROW_WID and T90499.ORDER_STATUS_WID/*DOC_STATUS_WID*/ = T96094.ROW_WID and T90499.XACT_TYPE_WID/*DOC_TYPE_WID*/ = T96128.ROW_WID and T90499.CUSTOMER_WID = T157680.ROW_WID and T175106.ADJUSTMENT_PERIOD_FLG = 'N' and T90499.PROMISED_ON_DT_WID/*PAYMENT_DUE_DT_WID*/ = T175253.MCAL_DAY_DT_WID and T90499.CHNL_TYPE_WID/*MCAL_CAL_WID*/ = T175253.MCAL_CAL_WID and T90499.DELETE_FLG = 'N' and T92473.PROFIT_CENTER_NAME = 'Amazon.com, Inc.' and T156337.MCAL_PERIOD_NAME = 'JAN-05' and T175253.ADJUSTMENT_PERIOD_FLG = 'N' --and case when 0 > 0 then T91397.ACCOUNT_SEG5_CODE else 'All' end = 'All' --and case when 0 > 0 then T91397.ACCOUNT_SEG1_CODE else 'All' end = 'All' and TO_DATE('2011-03-10 00:00:00' , 'YYYY-MM-DD HH24:MI:SS') is not null ) group by T95085.PAYMENT_TERM_CODE, T96094.STATUS_CODE,T96094.W_STATUS_CODE, T96128.W_XACT_SUBTYPE_CODE,T96128.W_XACT_TYPE_CODE, T156337.ROW_WID, T156337.MCAL_DAY_DT, T157680.NAME, T174959.MCAL_DAY_DT, T175106.MCAL_DAY_DT, T175253.MCAL_DAY_DT, case when T96128.W_XACT_TYPE_CODE 'PAYMENT' then T90499.SALES_ORDER_NUM/*SALES_INVOICE_NUM */else NULL end , T92473.PROFIT_CENTER_NAME ) select SAWITH0.c1 as c1, SAWITH0.c2 as c2, SAWITH0.c3 as c3, SAWITH0.c4 as c4, SAWITH0.c5 as c5, SAWITH0.c6 as c6, SAWITH0.c7 as c7, SAWITH0.c8 as c8, SAWITH0.c9 as c9, SAWITH0.c10 as c10, SAWITH0.c11 as c11, SAWITH0.c12 as c12 as c2, 49 from SAWITH0 order by c1 desc Oracle Optimizer chooses star transformation when there are at least three dimension tables joining to the fact table and the fact attributes, used in the joins, have bitmap indexes (and, of course, there are no conflicting hints). The following combination does not produce Star Transformation: ALTER ALTER ALTER ALTER INDEX INDEX INDEX INDEX W_SLS_ORD_LN_F_T_F100 W_SLS_ORD_LN_F_T_F200 W_SLS_ORD_LN_F_T_F300 W_SLS_ORD_LN_F_T_F500 VISIBLE; VISIBLE; INVISIBLE; INVISIBLE; Execution Plan ------------------------------------------------------------------------------------------------------------------------------------------| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop | ------------------------------------------------------------------------------------------------------------------------------------------| 0 | SELECT STATEMENT | | 1 | 415 | 1342 (1)| 00:01:16 | | | | 1 | SORT GROUP BY | | 1 | 415 | 1342 (1)| 00:01:16 | | | | 2 | NESTED LOOPS | | | | | | | | | 3 | NESTED LOOPS | | 1 | 415 | 1341 (1)| 00:01:16 | | | | 4 | NESTED LOOPS | | 1 | 392 | 1340 (1)| 00:01:16 | | | | 5 | NESTED LOOPS | | 1 | 376 | 1339 (1)| 00:01:16 | | | | 6 | NESTED LOOPS | | 1 | 344 | 1338 (1)| 00:01:16 | | | |* 7 | HASH JOIN | | 1 | 315 | 1337 (1)| 00:01:16 | | | |* 8 | HASH JOIN | | 1 | 291 | 912 (1)| 00:00:52 | | | | 9 | NESTED LOOPS | | | | | | | | | 10 | NESTED LOOPS | | 1 | 267 | 486 (1)| 00:00:28 | | | |* 11 | HASH JOIN | | 30 | 7290 | 142 (1)| 00:00:09 | | | | 12 | NESTED LOOPS | | | | | | | | | 13 | NESTED LOOPS | | 40 | 8840 | 140 (0)| 00:00:08 | | | |* 14 | TABLE ACCESS BY INDEX ROWID | W_MCAL_DAY_D | 1 | 41 | 12 (0)| 00:00:01 | | | | 15 | BITMAP CONVERSION TO ROWIDS | | | | | | | | |* 16 | BITMAP INDEX SINGLE VALUE | W_MCAL_DAY_D_M4 | | | | | | | | 17 | PARTITION RANGE ITERATOR | | | | | | KEY | KEY | | 18 | BITMAP CONVERSION TO ROWIDS | | | | | | | | |* 19 | BITMAP INDEX SINGLE VALUE | W_SLS_ORD_LN_F_T_F200 | | | | | KEY | KEY | |* 20 | TABLE ACCESS BY LOCAL INDEX ROWID| W_SALES_ORDER_LINE_F_TEST | 76 | 13680 | 140 (0)| 00:00:08 | 1 | 1 | | 21 | TABLE ACCESS BY INDEX ROWID | W_PROFIT_CENTER_D | 2 | 44 | 1 (0)| 00:00:01 | | | | 22 | BITMAP CONVERSION TO ROWIDS | | | | | | | | |* 23 | BITMAP INDEX SINGLE VALUE | W_PROFT_CNTR_D_M11 | | | | | | | | 24 | BITMAP CONVERSION TO ROWIDS | | | | | | | | | 25 | BITMAP AND | | | | | | | | |* 26 | BITMAP INDEX SINGLE VALUE | W_MCAL_DAY_D_F2 | | | | | | | |* 27 | BITMAP INDEX SINGLE VALUE | W_MCAL_DAY_D_T_F1 | | | | | | | |* 28 | TABLE ACCESS BY INDEX ROWID | W_MCAL_DAY_D | 1 | 24 | 486 (1)| 00:00:28 | | | |* 29 | TABLE ACCESS FULL | W_MCAL_DAY_D | 2150 | 51600 | 425 (1)| 00:00:25 | | | |* 30 | TABLE ACCESS FULL | W_MCAL_DAY_D | 2150 | 51600 | 425 (1)| 00:00:25 | | | | 31 | TABLE ACCESS BY INDEX ROWID | W_PARTY_D | 1 | 29 | 1 (0)| 00:00:01 | | | |* 32 | INDEX UNIQUE SCAN | W_PARTY_D_P1 | 1 | | 0 (0)| 00:00:01 | | | | 33 | TABLE ACCESS BY INDEX ROWID | W_STATUS_D | 1 | 32 | 1 (0)| 00:00:01 | | | |* 34 | INDEX UNIQUE SCAN | W_STATUS_D_P1 | 1 | | 0 (0)| 00:00:01 | | | | 35 | TABLE ACCESS BY INDEX ROWID | W_PAYMENT_TERMS_D | 1 | 16 | 1 (0)| 00:00:01 | | | |* 36 | INDEX UNIQUE SCAN | W_PAYMNT_TRM_D_P1 | 1 | | 0 (0)| 00:00:01 | | | |* 37 | INDEX UNIQUE SCAN | W_XACT_TYPE_D_P1 | 1 | | 0 (0)| 00:00:01 | | | | 38 | TABLE ACCESS BY INDEX ROWID | W_XACT_TYPE_D | 1 | 23 | 1 (0)| 00:00:01 | | | ------------------------------------------------------------------------------------------------------------------------------------------ The next combination of indexes causes Optimizer to opt to Star Transformation: ALTER ALTER ALTER ALTER INDEX INDEX INDEX INDEX W_SLS_ORD_LN_F_T_F100 W_SLS_ORD_LN_F_T_F200 W_SLS_ORD_LN_F_T_F300 W_SLS_ORD_LN_F_T_F500 VISIBLE; VISIBLE; VISIBLE; INVISIBLE; Execution Plan ----------------------------------------------------------------------------------------------------------------------------------------------| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop | ----------------------------------------------------------------------------------------------------------------------------------------------| 0 | SELECT STATEMENT | | 1 | 403 | 4077 (1)| 00:03:51 | | | | 1 | TEMP TABLE TRANSFORMATION | | | | | | | | | 2 | LOAD AS SELECT | SYS_TEMP_0FD9D67D7_67849FF2 | | | | | | | |* 3 | TABLE ACCESS BY INDEX ROWID | W_MCAL_DAY_D | 1 | 41 | 12 (0)| 00:00:01 | | | 50 | 4 | BITMAP CONVERSION TO ROWIDS | | | | | | | | |* 5 | BITMAP INDEX SINGLE VALUE | W_MCAL_DAY_D_M4 | | | | | | | | 6 | SORT GROUP BY | | 1 | 403 | 4065 (1)| 00:03:51 | | | |* 7 | HASH JOIN | | 1 | 403 | 4064 (1)| 00:03:51 | | | |* 8 | HASH JOIN | | 1 | 380 | 2492 (1)| 00:02:22 | | | |* 9 | HASH JOIN | | 1 | 364 | 2485 (1)| 00:02:21 | | | |* 10 | HASH JOIN | | 1 | 340 | 2060 (1)| 00:01:57 | | | | 11 | NESTED LOOPS | | | | | | | | | 12 | NESTED LOOPS | | 13 | 4108 | 1635 (1)| 00:01:33 | | | |* 13 | HASH JOIN | | 13 | 3731 | 1622 (1)| 00:01:32 | | | |* 14 | TABLE ACCESS FULL | W_MCAL_DAY_D | 2150 | 51600 | 425 (1)| 00:00:25 | | | |* 15 | HASH JOIN | | 4281 | 1099K| 1197 (1)| 00:01:08 | | | | 16 | TABLE ACCESS FULL | W_STATUS_D | 173 | 5536 | 2 (0)| 00:00:01 | | | |* 17 | HASH JOIN | | 4281 | 965K| 1194 (1)| 00:01:08 | | | | 18 | TABLE ACCESS BY INDEX ROWID | W_PROFIT_CENTER_D | 2 | 44 | 1 (0)| 00:00:01 | | | | 19 | BITMAP CONVERSION TO ROWIDS | | | | | | | | |* 20 | BITMAP INDEX SINGLE VALUE | W_PROFT_CNTR_D_M11 | | | | | | | |* 21 | HASH JOIN | | 5704 | 1164K| 1192 (1)| 00:01:08 | | | | 22 | TABLE ACCESS FULL | SYS_TEMP_0FD9D67D7_67849FF2 | 1 | 29 | 2 (0)| 00:00:01 | | | | 23 | PARTITION RANGE SUBQUERY | | 5704 | 1002K| 1190 (1)| 00:01:08 |KEY(SQ)|KEY(SQ)| |* 24 | TABLE ACCESS BY LOCAL INDEX ROWID | W_SALES_ORDER_LINE_F_TEST | 5704 | 1002K| 1190 (1)| 00:01:08 |KEY(SQ)|KEY(SQ)| | 25 | BITMAP CONVERSION TO ROWIDS | | | | | | | | | 26 | BITMAP AND | | | | | | | | | 27 | BITMAP MERGE | | | | | | | | | 28 | BITMAP KEY ITERATION | | | | | | | | | 29 | BUFFER SORT | | | | | | | | | 30 | TABLE ACCESS FULL | SYS_TEMP_0FD9D67D7_67849FF2 | 1 | 13 | 2 (0)| 00:00:01 | | | |* 31 | BITMAP INDEX RANGE SCAN | W_SLS_ORD_LN_F_T_F200 | | | | |KEY(SQ)|KEY(SQ)| | 32 | BITMAP MERGE | | | | | | | | | 33 | BITMAP KEY ITERATION | | | | | | | | | 34 | BUFFER SORT | | | | | | | | | 35 | TABLE ACCESS BY INDEX ROWID | W_PROFIT_CENTER_D | 2 | 44 | 1 (0)| 00:00:01 | | | | 36 | BITMAP CONVERSION TO ROWIDS| | | | | | | | |* 37 | BITMAP INDEX SINGLE VALUE | W_PROFT_CNTR_D_M11 | | | | | | | |* 38 | BITMAP INDEX RANGE SCAN | W_SLS_ORD_LN_F_T_F100 | | | | |KEY(SQ)|KEY(SQ)| |* 39 | INDEX UNIQUE SCAN | W_PARTY_D_P1 | 1 | | 0 (0)| 00:00:01 | | | | 40 | TABLE ACCESS BY INDEX ROWID | W_PARTY_D | 1 | 29 | 1 (0)| 00:00:01 | | | |* 41 | TABLE ACCESS FULL | W_MCAL_DAY_D | 2150 | 51600 | 425 (1)| 00:00:25 | | | |* 42 | TABLE ACCESS FULL | W_MCAL_DAY_D | 2150 | 51600 | 425 (1)| 00:00:25 | | | | 43 | TABLE ACCESS FULL | W_PAYMENT_TERMS_D | 6227 | 99632 | 6 (0)| 00:00:01 | | | | 44 | TABLE ACCESS FULL | W_XACT_TYPE_D | 1885K| 41M| 1569 (1)| 00:01:29 | | | ----------------------------------------------------------------------------------------------------------------------------------------------- With a local b-tree index on the partitioning key column, Optimizer eliminates star query and switches to Partition Range Iterator Scan. If the b-Tree index is created as global, then Optimizer uses Nested Loops+Index Range Scan instead. ALTER ALTER ALTER ALTER INDEX INDEX INDEX INDEX W_SLS_ORD_LN_F_T_F100 W_SLS_ORD_LN_F_T_F200 W_SLS_ORD_LN_F_T_F300 W_SLS_ORD_LN_F_T_F500 VISIBLE; VISIBLE; VISIBLE; VISIBLE; -- local index on the partitioning key column Execution Plan -----------------------------------------------------------------------------------------------------------------------------------------| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop | -----------------------------------------------------------------------------------------------------------------------------------------| 0 | SELECT STATEMENT | | 1 | 415 | 475 (2)| 00:00:27 | | | | 1 | SORT GROUP BY | | 1 | 415 | 475 (2)| 00:00:27 | | | | 2 | NESTED LOOPS | | | | | | | | | 3 | NESTED LOOPS | | 1 | 415 | 474 (2)| 00:00:27 | | | | 4 | NESTED LOOPS | | 1 | 383 | 473 (2)| 00:00:27 | | | | 5 | NESTED LOOPS | | 1 | 367 | 472 (2)| 00:00:27 | | | | 6 | NESTED LOOPS | | 1 | 344 | 471 (2)| 00:00:27 | | | | 7 | NESTED LOOPS | | 1 | 315 | 470 (2)| 00:00:27 | | | | 8 | NESTED LOOPS | | 1 | 291 | 231 (2)| 00:00:14 | | | | 9 | NESTED LOOPS | | 1 | 267 | 112 (1)| 00:00:07 | | | |* 10 | HASH JOIN | | 30 | 7290 | 17 (6)| 00:00:01 | | | | 11 | NESTED LOOPS | | | | | | | | | 12 | NESTED LOOPS | | 40 | 8840 | 15 (0)| 00:00:01 | | | |* 13 | TABLE ACCESS BY INDEX ROWID | W_MCAL_DAY_D | 1 | 41 | 12 (0)| 00:00:01 | | | | 14 | BITMAP CONVERSION TO ROWIDS | | | | | | | | |* 15 | BITMAP INDEX SINGLE VALUE | W_MCAL_DAY_D_M4 | | | | | | | | 16 | PARTITION RANGE ITERATOR | | 1 | | 2 (0)| 00:00:01 | KEY | KEY | |* 17 | INDEX RANGE SCAN | W_SLS_ORD_LN_F_T_F500 | 1 | | 2 (0)| 00:00:01 | KEY | KEY | |* 18 | TABLE ACCESS BY LOCAL INDEX ROWID| W_SALES_ORDER_LINE_F_TEST | 76 | 15352 | 3 (0)| 00:00:01 | 1 | 1 | | 19 | TABLE ACCESS BY INDEX ROWID | W_PROFIT_CENTER_D | 2 | 44 | 1 (0)| 00:00:01 | | | | 20 | BITMAP CONVERSION TO ROWIDS | | | | | | | | |* 21 | BITMAP INDEX SINGLE VALUE | W_PROFT_CNTR_D_M11 | | | | | | | 51 |* 22 | TABLE ACCESS BY INDEX ROWID | W_MCAL_DAY_D | 1 | 24 | 112 (1)| 00:00:07 | | | | 23 | BITMAP CONVERSION TO ROWIDS | | | | | | | | | 24 | BITMAP AND | | | | | | | | |* 25 | BITMAP INDEX SINGLE VALUE | W_MCAL_DAY_D_F2 | | | | | | | |* 26 | BITMAP INDEX SINGLE VALUE | W_MCAL_DAY_D_T_F1 | | | | | | | |* 27 | TABLE ACCESS BY INDEX ROWID | W_MCAL_DAY_D | 1 | 24 | 231 (2)| 00:00:14 | | | | 28 | BITMAP CONVERSION TO ROWIDS | | | | | | | | |* 29 | BITMAP INDEX SINGLE VALUE | W_MCAL_DAY_D_F2 | | | | | | | |* 30 | TABLE ACCESS BY INDEX ROWID | W_MCAL_DAY_D | 1 | 24 | 470 (2)| 00:00:27 | | | | 31 | BITMAP CONVERSION TO ROWIDS | | | | | | | | |* 32 | BITMAP INDEX SINGLE VALUE | W_MCAL_DAY_D_F2 | | | | | | | | 33 | TABLE ACCESS BY INDEX ROWID | W_PARTY_D | 1 | 29 | 1 (0)| 00:00:01 | | | |* 34 | INDEX UNIQUE SCAN | W_PARTY_D_P1 | 1 | | 0 (0)| 00:00:01 | | | | 35 | TABLE ACCESS BY INDEX ROWID | W_XACT_TYPE_D | 1 | 23 | 1 (0)| 00:00:01 | | | |* 36 | INDEX UNIQUE SCAN | W_XACT_TYPE_D_P1 | 1 | | 0 (0)| 00:00:01 | | | | 37 | TABLE ACCESS BY INDEX ROWID | W_PAYMENT_TERMS_D | 1 | 16 | 1 (0)| 00:00:01 | | | |* 38 | INDEX UNIQUE SCAN | W_PAYMNT_TRM_D_P1 | 1 | | 0 (0)| 00:00:01 | | | |* 39 | INDEX UNIQUE SCAN | W_STATUS_D_P1 | 1 | | 0 (0)| 00:00:01 | | | | 40 | TABLE ACCESS BY INDEX ROWID | W_STATUS_D | 1 | 32 | 1 (0)| 00:00:01 | | | ------------------------------------------------------------------------------------------------------------------------------------------ And the plan for global b-Tree index W_SLS_ORD_LN_F_T_F500 on the partitioning key column: Execution Plan ------------------------------------------------------------------------------------------------------------------------------------------| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop | ------------------------------------------------------------------------------------------------------------------------------------------| 0 | SELECT STATEMENT | | 1 | 415 | 475 (2)| 00:00:27 | | | | 1 | SORT GROUP BY | | 1 | 415 | 475 (2)| 00:00:27 | | | | 2 | NESTED LOOPS | | | | | | | | | 3 | NESTED LOOPS | | 1 | 415 | 474 (2)| 00:00:27 | | | | 4 | NESTED LOOPS | | 1 | 383 | 473 (2)| 00:00:27 | | | | 5 | NESTED LOOPS | | 1 | 367 | 472 (2)| 00:00:27 | | | | 6 | NESTED LOOPS | | 1 | 344 | 471 (2)| 00:00:27 | | | | 7 | NESTED LOOPS | | 1 | 315 | 470 (2)| 00:00:27 | | | | 8 | NESTED LOOPS | | 1 | 291 | 231 (2)| 00:00:14 | | | | 9 | NESTED LOOPS | | 1 | 267 | 112 (1)| 00:00:07 | | | |* 10 | HASH JOIN | | 30 | 7290 | 17 (6)| 00:00:01 | | | | 11 | NESTED LOOPS | | | | | | | | | 12 | NESTED LOOPS | | 40 | 8840 | 15 (0)| 00:00:01 | | | |* 13 | TABLE ACCESS BY INDEX ROWID | W_MCAL_DAY_D | 1 | 41 | 12 (0)| 00:00:01 | | | | 14 | BITMAP CONVERSION TO ROWIDS | | | | | | | | |* 15 | BITMAP INDEX SINGLE VALUE | W_MCAL_DAY_D_M4 | | | | | | | |* 16 | INDEX RANGE SCAN | W_SLS_ORD_LN_F_T_F500 | 1 | | 2 (0)| 00:00:01 | | | |* 17 | TABLE ACCESS BY GLOBAL INDEX ROWID| W_SALES_ORDER_LINE_F_TEST | 76 | 15352 | 3 (0)| 00:00:01 | ROWID | ROWID | | 18 | TABLE ACCESS BY INDEX ROWID | W_PROFIT_CENTER_D | 2 | 44 | 1 (0)| 00:00:01 | | | | 19 | BITMAP CONVERSION TO ROWIDS | | | | | | | | |* 20 | BITMAP INDEX SINGLE VALUE | W_PROFT_CNTR_D_M11 | | | | | | | |* 21 | TABLE ACCESS BY INDEX ROWID | W_MCAL_DAY_D | 1 | 24 | 112 (1)| 00:00:07 | | | | 22 | BITMAP CONVERSION TO ROWIDS | | | | | | | | | 23 | BITMAP AND | | | | | | | | |* 24 | BITMAP INDEX SINGLE VALUE | W_MCAL_DAY_D_F2 | | | | | | | |* 25 | BITMAP INDEX SINGLE VALUE | W_MCAL_DAY_D_T_F1 | | | | | | | |* 26 | TABLE ACCESS BY INDEX ROWID | W_MCAL_DAY_D | 1 | 24 | 231 (2)| 00:00:14 | | | | 27 | BITMAP CONVERSION TO ROWIDS | | | | | | | | |* 28 | BITMAP INDEX SINGLE VALUE | W_MCAL_DAY_D_F2 | | | | | | | |* 29 | TABLE ACCESS BY INDEX ROWID | W_MCAL_DAY_D | 1 | 24 | 470 (2)| 00:00:27 | | | | 30 | BITMAP CONVERSION TO ROWIDS | | | | | | | | |* 31 | BITMAP INDEX SINGLE VALUE | W_MCAL_DAY_D_F2 | | | | | | | | 32 | TABLE ACCESS BY INDEX ROWID | W_PARTY_D | 1 | 29 | 1 (0)| 00:00:01 | | | |* 33 | INDEX UNIQUE SCAN | W_PARTY_D_P1 | 1 | | 0 (0)| 00:00:01 | | | | 34 | TABLE ACCESS BY INDEX ROWID | W_XACT_TYPE_D | 1 | 23 | 1 (0)| 00:00:01 | | | |* 35 | INDEX UNIQUE SCAN | W_XACT_TYPE_D_P1 | 1 | | 0 (0)| 00:00:01 | | | | 36 | TABLE ACCESS BY INDEX ROWID | W_PAYMENT_TERMS_D | 1 | 16 | 1 (0)| 00:00:01 | | | |* 37 | INDEX UNIQUE SCAN | W_PAYMNT_TRM_D_P1 | 1 | | 0 (0)| 00:00:01 | | | |* 38 | INDEX UNIQUE SCAN | W_STATUS_D_P1 | 1 | | 0 (0)| 00:00:01 | | | | 39 | TABLE ACCESS BY INDEX ROWID | W_STATUS_D | 1 | 32 | 1 (0)| 00:00:01 | | | ------------------------------------------------------------------------------------------------------------------------------------------- Leaving only two bitmap indexes on columns, which are used in join conditions between fact and dimension tables improves the query plan, but eliminates star transformation: T90499.ORDERED_ON_DT_WID = T156337.MCAL_DAY_DT_WID and T90499.CHNL_TYPE_WID = T156337.MCAL_CAL_WID ... and T90499.PROFIT_CENTER_WID = T92473.ROW_WID ... and T156337.MCAL_PERIOD_NAME = 'JAN-05' 52 The following combination of enabled indexes does not produce the star query plan: ALTER ALTER ALTER ALTER INDEX INDEX INDEX INDEX W_SLS_ORD_LN_F_T_F100 W_SLS_ORD_LN_F_T_F200 W_SLS_ORD_LN_F_T_F300 W_SLS_ORD_LN_F_T_F500 INVISIBLE; VISIBLE; VISIBLE; INVISIBLE; Execution Plan -----------------------------------------------------------------------------------------------------------------------------------------| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop | -----------------------------------------------------------------------------------------------------------------------------------------| 0 | SELECT STATEMENT | | 1 | 415 | 770 (1)| 00:00:44 | | | | 1 | SORT GROUP BY | | 1 | 415 | 770 (1)| 00:00:44 | | | | 2 | NESTED LOOPS | | | | | | | | | 3 | NESTED LOOPS | | 1 | 415 | 769 (1)| 00:00:44 | | | | 4 | NESTED LOOPS | | 1 | 392 | 768 (1)| 00:00:44 | | | | 5 | NESTED LOOPS | | 1 | 376 | 767 (1)| 00:00:44 | | | | 6 | NESTED LOOPS | | 1 | 344 | 766 (1)| 00:00:44 | | | | 7 | NESTED LOOPS | | 1 | 315 | 765 (1)| 00:00:44 | | | | 8 | NESTED LOOPS | | 1 | 291 | 379 (1)| 00:00:22 | | | | 9 | NESTED LOOPS | | 1 | 267 | 186 (1)| 00:00:11 | | | |* 10 | HASH JOIN | | 30 | 7290 | 41 (0)| 00:00:03 | | | | 11 | NESTED LOOPS | | | | | | | | | 12 | NESTED LOOPS | | 40 | 8840 | 40 (0)| 00:00:03 | | | |* 13 | TABLE ACCESS BY INDEX ROWID | W_MCAL_DAY_D | 1 | 41 | 12 (0)| 00:00:01 | | | | 14 | BITMAP CONVERSION TO ROWIDS | | | | | | | | |* 15 | BITMAP INDEX SINGLE VALUE | W_MCAL_DAY_D_M4 | | | | | | | | 16 | PARTITION RANGE ITERATOR | | | | | | KEY | KEY | | 17 | BITMAP CONVERSION TO ROWIDS | | | | | | | | | 18 | BITMAP AND | | | | | | | | |* 19 | BITMAP INDEX SINGLE VALUE | W_SLS_ORD_LN_F_T_F200 | | | | | KEY | KEY | |* 20 | BITMAP INDEX SINGLE VALUE | W_SLS_ORD_LN_F_T_F300 | | | | | KEY | KEY | |* 21 | TABLE ACCESS BY LOCAL INDEX ROWID| W_SALES_ORDER_LINE_F_TEST | 76 | 13680 | 40 (0)| 00:00:03 | 1 | 1 | | 22 | TABLE ACCESS BY INDEX ROWID | W_PROFIT_CENTER_D | 2 | 44 | 1 (0)| 00:00:01 | | | | 23 | BITMAP CONVERSION TO ROWIDS | | | | | | | | |* 24 | BITMAP INDEX SINGLE VALUE | W_PROFT_CNTR_D_M11 | | | | | | | |* 25 | TABLE ACCESS BY INDEX ROWID | W_MCAL_DAY_D | 1 | 24 | 186 (1)| 00:00:11 | | | | 26 | BITMAP CONVERSION TO ROWIDS | | | | | | | | | 27 | BITMAP AND | | | | | | | | |* 28 | BITMAP INDEX SINGLE VALUE | W_MCAL_DAY_D_F2 | | | | | | | |* 29 | BITMAP INDEX SINGLE VALUE | W_MCAL_DAY_D_T_F1 | | | | | | | |* 30 | TABLE ACCESS BY INDEX ROWID | W_MCAL_DAY_D | 1 | 24 | 379 (1)| 00:00:22 | | | | 31 | BITMAP CONVERSION TO ROWIDS | | | | | | | | |* 32 | BITMAP INDEX SINGLE VALUE | W_MCAL_DAY_D_F2 | | | | | | | |* 33 | TABLE ACCESS BY INDEX ROWID | W_MCAL_DAY_D | 1 | 24 | 765 (1)| 00:00:44 | | | | 34 | BITMAP CONVERSION TO ROWIDS | | | | | | | | |* 35 | BITMAP INDEX SINGLE VALUE | W_MCAL_DAY_D_F2 | | | | | | | | 36 | TABLE ACCESS BY INDEX ROWID | W_PARTY_D | 1 | 29 | 1 (0)| 00:00:01 | | | |* 37 | INDEX UNIQUE SCAN | W_PARTY_D_P1 | 1 | | 0 (0)| 00:00:01 | | | | 38 | TABLE ACCESS BY INDEX ROWID | W_STATUS_D | 1 | 32 | 1 (0)| 00:00:01 | | | |* 39 | INDEX UNIQUE SCAN | W_STATUS_D_P1 | 1 | | 0 (0)| 00:00:01 | | | | 40 | TABLE ACCESS BY INDEX ROWID | W_PAYMENT_TERMS_D | 1 | 16 | 1 (0)| 00:00:01 | | | |* 41 | INDEX UNIQUE SCAN | W_PAYMNT_TRM_D_P1 | 1 | | 0 (0)| 00:00:01 | | | |* 42 | INDEX UNIQUE SCAN | W_XACT_TYPE_D_P1 | 1 | | 0 (0)| 00:00:01 | | | | 43 | TABLE ACCESS BY INDEX ROWID | W_XACT_TYPE_D | 1 | 23 | 1 (0)| 00:00:01 | | | ------------------------------------------------------------------------------------------------------------------------------------------ When a global index on the partitioning key column is re-created using explicit partitioning syntax, Optimizer chooses partition pruning for the execution plan. DROP INDEX W_SLS_ORD_LN_F_T_F200; DROP INDEX W_SLS_ORD_LN_F_T_F400; DROP INDEX W_SLS_ORD_LN_F_T_F500; CREATE INDEX W_SLS_ORD_LN_F_T_F600 ON W_SALES_ORDER_LINE_F_TEST (ORDERED_ON_DT_WID) GLOBAL PARTITION BY RANGE(ORDERED_ON_DT_WID) ( PARTITION p1 VALUES LESS THAN(20050100) TABLESPACE dwh, PARTITION p2 VALUES LESS THAN(20050400) TABLESPACE dwh, PARTITION p3 VALUES LESS THAN(MAXVALUE) TABLESPACE dwh); ALTER INDEX W_SLS_ORD_LN_F_T_F100 VISIBLE; ALTER INDEX W_SLS_ORD_LN_F_T_F300 VISIBLE; ALTER INDEX W_SLS_ORD_LN_F_T_F600 VISIBLE; Execution Plan 53 ------------------------------------------------------------------------------------------------------------------------------------------| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop | ------------------------------------------------------------------------------------------------------------------------------------------| 0 | SELECT STATEMENT | | 1 | 415 | 2017 (1)| 00:01:55 | | | | 1 | SORT GROUP BY | | 1 | 415 | 2017 (1)| 00:01:55 | | | | 2 | NESTED LOOPS | | | | | | | | | 3 | NESTED LOOPS | | 1 | 415 | 2016 (1)| 00:01:55 | | | | 4 | NESTED LOOPS | | 1 | 383 | 2015 (1)| 00:01:55 | | | | 5 | NESTED LOOPS | | 1 | 367 | 2014 (1)| 00:01:54 | | | | 6 | NESTED LOOPS | | 1 | 344 | 2013 (1)| 00:01:54 | | | | 7 | NESTED LOOPS | | 1 | 315 | 2012 (1)| 00:01:54 | | | |* 8 | HASH JOIN | | 1 | 293 | 2011 (1)| 00:01:54 | | | |* 9 | HASH JOIN | | 1 | 269 | 1586 (1)| 00:01:30 | | | |* 10 | HASH JOIN | | 1 | 245 | 1161 (1)| 00:01:06 | | | | 11 | NESTED LOOPS | | | | | | | | | 12 | NESTED LOOPS | | 40 | 8840 | 735 (0)| 00:00:42 | | | |* 13 | TABLE ACCESS BY INDEX ROWID | W_MCAL_DAY_D | 1 | 41 | 12 (0)| 00:00:01 | | | | 14 | BITMAP CONVERSION TO ROWIDS | | | | | | | | |* 15 | BITMAP INDEX SINGLE VALUE | W_MCAL_DAY_D_M4 | | | | | | | | 16 | PARTITION RANGE ITERATOR | | 5704 | | 4 (0)| 00:00:01 | KEY | KEY | |* 17 | INDEX RANGE SCAN | W_SLS_ORD_LN_F_T_F600 | 5704 | | 4 (0)| 00:00:01 | KEY | KEY | |* 18 | TABLE ACCESS BY GLOBAL INDEX ROWID| W_SALES_ORDER_LINE_F_TEST | 76 | 16112 | 723 (0)| 00:00:41 | ROWID | ROWID | |* 19 | TABLE ACCESS FULL | W_MCAL_DAY_D | 2150 | 51600 | 425 (1)| 00:00:25 | | | |* 20 | TABLE ACCESS FULL | W_MCAL_DAY_D | 2150 | 51600 | 425 (1)| 00:00:25 | | | |* 21 | TABLE ACCESS FULL | W_MCAL_DAY_D | 2150 | 51600 | 425 (1)| 00:00:25 | | | |* 22 | TABLE ACCESS BY INDEX ROWID | W_PROFIT_CENTER_D | 1 | 22 | 1 (0)| 00:00:01 | | | |* 23 | INDEX UNIQUE SCAN | W_PROFT_CNTR_D_P1 | 1 | | 0 (0)| 00:00:01 | | | | 24 | TABLE ACCESS BY INDEX ROWID | W_PARTY_D | 1 | 29 | 1 (0)| 00:00:01 | | | |* 25 | INDEX UNIQUE SCAN | W_PARTY_D_P1 | 1 | | 0 (0)| 00:00:01 | | | | 26 | TABLE ACCESS BY INDEX ROWID | W_XACT_TYPE_D | 1 | 23 | 1 (0)| 00:00:01 | | | |* 27 | INDEX UNIQUE SCAN | W_XACT_TYPE_D_P1 | 1 | | 0 (0)| 00:00:01 | | | | 28 | TABLE ACCESS BY INDEX ROWID | W_PAYMENT_TERMS_D | 1 | 16 | 1 (0)| 00:00:01 | | | |* 29 | INDEX UNIQUE SCAN | W_PAYMNT_TRM_D_P1 | 1 | | 0 (0)| 00:00:01 | | | |* 30 | INDEX UNIQUE SCAN | W_STATUS_D_P1 | 1 | | 0 (0)| 00:00:01 | | | | 31 | TABLE ACCESS BY INDEX ROWID | W_STATUS_D | 1 | 32 | 1 (0)| 00:00:01 | | | ------------------------------------------------------------------------------------------------------------------------------------------- Conclusion All reviewed scenarios show that Oracle Optimizer switches between Star Transformation and Partitioning pruning in its execution plans depending on cost effectiveness of various index combinations. One combination of b-Tree and Bitmap indexes, local or global, could work well for one query and degrade other SQLs running against the same fact table. You should carefully review index usage and measure the impact before deciding which indexes to keep or drop in your warehouse schema. Note: You can consider using partitioning pruning if your Oracle Warehouse is running on Exadata platform. The combination of compressed partitioned tables, hash joins and no bitmap indexes could be very effective for larger set of OBIEE queries. Refer to Exadata section for more details. Table Compression implementation guidelines Table Compression Recommendations Oracle Database table compression can be applied effectively to optimize the space consumption and reduce memory use in the buffer cache in the Oracle Business Analytics Data Warehouse. Compressed tables require significantly less disk storage and result in improved query performance due to reduced I/O and buffer cache requirements. It is a valuable feature, especially in a warehouse environment, where data loaded once, and read many times by end user queries. Table compression requires careful analysis and planning to take the advantage of efficient space consumption, faster end user query performance, while keeping incremental ETL within acceptable execution time frame. Review the following recommendations and guidelines before table compression implementation: 1. The recommended Oracle Database version is 11.1.0.7 or higher. You must apply the following database patches 8834636 and 8930565. Check with Oracle Support for any additional database patches. 2. Table compression should be implemented for target tables after careful analysis of DML operation types, data volumes and ETL performance benchmarks. 54 3. The majority of Initial Informatica mappings use Bulk Load, so their target tables can be compressed to deliver comparable or better ETL performance. There is a smaller set of initial mappings, which use Normal Load type in Informatica. If you couldn’t change their Load type to Bulk, then leave their corresponding target tables uncompressed. 4. Oracle Business Intelligence Applications delivers several Informatica mappings, which perform mass updates during Initial ETL. The target tables for such mappings should NOT be compressed. W_POSITION_DH, updated by SIL_PositionDimensionHierarchy_AsIsUpdate_Full. is an example of compression exception. 5. Incremental Informatica mappings always use Normal Load mode, so table compression may cause performance overhead, especially for very large incremental volumes. You should carefully benchmark the mappings using compressed tables before implementing the compression in your production data warehouse. 6. Consider implementing table compression for Partitioned Fact tables at partition level: a. Active partitions, loaded during incremental ETLs, should be uncompressed b. Older, relatively static partitions can be good compression candidates 7. After compressing a table you need to rebuild all its indexes (ALTER INDEX …. REBUILD syntax). Row Chaining in Compressed Tables after DML Updates and Deletes DML operations, such as updates and deletes may result in row chaining for compressed tables, and cause regressions in queries performance. Such row chaining are not flagged by DBMS_STATS API, so you will not find any row chaining statistics in the database dictionary views (USER_TABLES, etc). To diagnose and troubleshoot this issue: 1. Check NUM_ROWS, BLOCKS and AVG_ROW_LEN statistics for your table in USER_TABLES. You can estimate #BLOCKS as NUM_ROWS * AVG_ROW_LEN * 1.16 (~16% Block overhead) / Block size. For example,W_GL_LINKAGE_INFORMATION_G table stats in 32K db_block_size environment are: Table Name W_GL_LINKAGE_INFORMATION_G Num Row s 26699924 Blocks 679674 Avg Row Len 125 Chain Cnt 0 Compression ENABLED The estimated # blocks: 26699924 num_rows * 125 avg_row_len *1.16 / 32768 =~ 118148 blocks compared to 679674 blocks in USER_TABLES, shows more than 6 times blocks usage, which means the table most probably was fragmented. Yet DBMS_STATS didn’t capture any row chaining, as CHAIN_CNT=0. 2. Connect to your warehouse schema and run the script $ORACLE_HOME/rdbms/admin/utlchain.sql or manually create the following table: create table CHAINED_ROWS ( owner_name varchar2(30), table_name varchar2(30), cluster_name varchar2(30), partition_name varchar2(30), subpartition_name varchar2(30), head_rowid rowid, analyze_timestamp date); 3. Run ‘analyze table’ command to capture chained row count into CHAINED_ROWS table: analyze table W_GL_LINKAGE_INFORMATION_G list chained rows into CHAINED_ROWS; 55 You can capture the similar information for partitioned tables by partition or sub-partition name: analyze table W_AR_XACT_F partition (PART_201104) list chained rows into chained_rows; 4. Query CHAINED_ROWS table to find out if you have any chained rows: select TABLE_NAME,PARTITION_NAAME,count(1) from CHAINED_ROWS group by table_name; 5. If you get chained rows for your compressed table, then you have to rebuild and re-compress the table, and possibly reconsider your compression approach for the identified data segment(s). ETL Aggregation using Materialized Views Introduction You may find some of PLP mappings acting as bottlenecks in your incremental ETL runs. If the logic permits, you can consider substituting them with fast-refreshable Materialized Views (MV). DAC provides the required flexibility in its Action Framework to define the required steps to handle MVs and MV Logs during the course of ETL executions. Important! You need to plan to add MV Logs on target tables very carefully. Avoid sharing an MV Log for two or more MVs. The MV Log would not be purged until all depending MVs get refreshed. Not purged MV Logs could grow in size, and affect the performance for DMLs on the base tables. Follow the steps in PLP_GLBalanceAggrByAcctSegCodes_Load example below to implement MV aggregation logic. Implement DAC Action Framework Support for MVs PLP_GLBalanceAggrByAcctSegCodes_Load populates W_GL_BALANCE_A, so you need to create two actions in DAC Framework: An action to create W_GL_BALANCE_A as a Materialized View and build Materialized View Logs to ensure the MV fast refresh. An action to perform complete and fast refresh for W_GL_BALANCE_A MV for initial and incremental ETLs accordingly. It will replace the logic for the original PLP_GLBalanceAggrByAcctSegCodes_Load_Full and PLP_GLBalanceAggrByAcctSegCodes_Load Informatica workflows. 1. Open DAC UI and select Tools > Seed Data > Actions > Task Action to create a new Task Action. 2. Create separate steps in Value dialog for each for the SQLs below to drop and recreate MV Logs, as well as drop and create the MV: drop materialized view log on W_GL_ACCOUNT_D; drop materialized view log on W_GLACCT_GRPACCT_TMP; drop materialized view log on W_GL_BALANCE_F; create materialized view log on W_GL_ACCOUNT_D with sequence, rowid ( ROW_WID ,account_seg1_code ,account_seg1_attrib ,account_seg2_code ,account_seg2_attrib ,account_seg3_code ,account_seg3_attrib ,account_seg4_code ,account_seg4_attrib ,account_seg5_code ,account_seg5_attrib 56 ,account_seg6_code ,account_seg6_attrib ) including new values; create materialized view log on W_GLACCT_GRPACCT_TMP with sequence, rowid (GROUP_ACCT_WID, gl_account_wid) including new values; create materialized view log on W_GL_BALANCE_F with sequence, rowid ( ledger_wid ,profit_center_wid ,company_org_wid ,BUSN_AREA_ORG_WID ,balance_dt_wid ,balance_tm_wid ,treasury_symbol_wid ,db_cr_ind ,acct_curr_code ,loc_curr_code ,datasource_num_id ,tenant_id --,x_custom ,translated_flag ,balance_acct_amt ,balance_loc_amt ,balance_global1_amt ,balance_global2_amt ,balance_global3_amt ,activity_acct_amt ,activity_loc_amt ,activity_global1_amt ,activity_global2_amt ,activity_global3_amt ,GL_ACCOUNT_WID ,x_begin_balance_amt_beq ,x_activity_amt_beq ) including new values; drop materialized view MV_GL_BALANCE_A; create materialized view MV_GL_BALANCE_A build immediate refresh fast as SELECT w_gl_balance_f.ledger_wid ,w_gl_balance_f.profit_center_wid ,w_gl_balance_f.company_org_wid ,w_gl_balance_f.busn_area_org_wid ,w_gl_account_d.group_acct_wid ,w_gl_balance_f.balance_dt_wid ,w_gl_balance_f.balance_tm_wid ,w_gl_balance_f.treasury_symbol_wid ,w_gl_balance_f.db_cr_ind ,w_gl_balance_f.acct_curr_code ,w_gl_balance_f.loc_curr_code ,w_gl_balance_f.datasource_num_id ,w_gl_balance_f.tenant_id ,w_gl_balance_f.translated_flag ,w_gl_account_d.account_seg1_code ,w_gl_account_d.account_seg1_attrib ,w_gl_account_d.account_seg2_code ,w_gl_account_d.account_seg2_attrib ,w_gl_account_d.account_seg3_code ,w_gl_account_d.account_seg3_attrib ,w_gl_account_d.account_seg4_code ,w_gl_account_d.account_seg4_attrib ,w_gl_account_d.account_seg5_code ,w_gl_account_d.account_seg5_attrib ,W_GL_ACCOUNT_D.ACCOUNT_SEG6_CODE 57 ,W_GL_ACCOUNT_D.ACCOUNT_SEG6_ATTRIB ,SUM (w_gl_balance_f.balance_acct_amt) balance_acct_amt ,SUM (W_GL_BALANCE_F.BALANCE_LOC_AMT) BALANCE_LOC_AMT ,SUM (w_gl_balance_f.x_begin_balance_amt_beq) x_begin_balance_amt_beq ,SUM (w_gl_balance_f.balance_global1_amt) balance_global1_amt ,SUM (w_gl_balance_f.balance_global2_amt) balance_global2_amt ,SUM (w_gl_balance_f.balance_global3_amt) balance_global3_amt ,SUM (w_gl_balance_f.activity_acct_amt) activity_acct_amt ,SUM (W_GL_BALANCE_F.ACTIVITY_LOC_AMT) ACTIVITY_LOC_AMT ,SUM (w_gl_balance_f.x_activity_amt_beq) x_activity_amt_beq ,SUM (w_gl_balance_f.activity_global1_amt) activity_global1_amt ,SUM (w_gl_balance_f.activity_global2_amt) activity_global2_amt ,SUM (W_GL_BALANCE_F.ACTIVITY_GLOBAL3_AMT) ACTIVITY_GLOBAL3_AMT ,COUNT (W_GL_BALANCE_F.BALANCE_ACCT_AMT) cBALANCE_ACCT_AMT ,COUNT (W_GL_BALANCE_F.BALANCE_LOC_AMT) cBALANCE_LOC_AMT ,COUNT (w_gl_balance_f.x_begin_balance_amt_beq) cx_begin_balance_amt_beq ,COUNT (W_GL_BALANCE_F.BALANCE_GLOBAL1_AMT) CBALANCE_GLOBAL1_AMT ,COUNT (w_gl_balance_f.balance_global2_amt) cbalance_global2_amt ,COUNT (W_GL_BALANCE_F.BALANCE_GLOBAL3_AMT) cBALANCE_GLOBAL3_AMT ,COUNT (W_GL_BALANCE_F.ACTIVITY_ACCT_AMT) cACTIVITY_ACCT_AMT ,COUNT (W_GL_BALANCE_F.ACTIVITY_LOC_AMT) cACTIVITY_LOC_AMT ,COUNT (w_gl_balance_f.x_activity_amt_beq) cx_activity_amt_beq ,COUNT (W_GL_BALANCE_F.ACTIVITY_GLOBAL1_AMT) cACTIVITY_GLOBAL1_AMT ,COUNT (w_gl_balance_f.activity_global2_amt) cactivity_global2_amt ,COUNT (W_GL_BALANCE_F.ACTIVITY_GLOBAL3_AMT) cACTIVITY_GLOBAL3_AMT ,COUNT(*) CNT ,cast (null as date) W_INSERT_DT ,cast (null as date) W_UPDATE_DT from W_GL_BALANCE_F , (select /*+ USE_HASH(W_GLACCT_GRPACCT_TMP, W_GL_ACCOUNT_D)*/ W_GLACCT_GRPACCT_TMP.GROUP_ACCT_WID ,w_gl_account_d.* FROM w_gl_account_d w_gl_account_d ,W_GLACCT_GRPACCT_TMP W_GLACCT_GRPACCT_TMP WHERE w_gl_account_d.row_wid = w_glacct_grpacct_tmp.gl_account_wid) w_gl_account_d WHERE 1 = 1 AND w_gl_balance_f.gl_account_wid = w_gl_account_d.row_wid GROUP BY w_gl_balance_f.ledger_wid ,w_gl_balance_f.profit_center_wid ,w_gl_balance_f.company_org_wid ,w_gl_balance_f.busn_area_org_wid ,w_gl_account_d.group_acct_wid ,w_gl_balance_f.balance_dt_wid ,w_gl_balance_f.balance_tm_wid ,w_gl_balance_f.treasury_symbol_wid ,w_gl_balance_f.db_cr_ind ,w_gl_balance_f.acct_curr_code ,w_gl_balance_f.loc_curr_code ,w_gl_balance_f.datasource_num_id ,w_gl_balance_f.tenant_id ,w_gl_balance_f.translated_flag ,w_gl_account_d.account_seg1_code ,w_gl_account_d.account_seg1_attrib ,w_gl_account_d.account_seg2_code ,w_gl_account_d.account_seg2_attrib ,w_gl_account_d.account_seg3_code ,w_gl_account_d.account_seg3_attrib ,w_gl_account_d.account_seg4_code ,w_gl_account_d.account_seg4_attrib ,w_gl_account_d.account_seg5_code ,w_gl_account_d.account_seg5_attrib ,W_GL_ACCOUNT_D.ACCOUNT_SEG6_CODE ,W_GL_ACCOUNT_D.ACCOUNT_SEG6_ATTRIB ,cast (null as date); 58 Important! Make sure that you mark all “drop” steps as Continue on Fail, so that the whole ETL process not halt because of non-existing objects. 3. Create a Task Action for the MV Fast refresh. Select Tools > Seed Data > Actions > Task Action and create a new Action. Enter the following anonymous PLSQL block into the SQL Statement text box: begin dbms_mview.refresh(list=>'MV_GL_BALANCE_A',method=>'F'); end; 59 4. Create another Task Action ‘Dummy Refresh’ for the Materialized View without entering any SQL commands. 5. Locate PLP_GLBalanceAggrByAcctSegCodes_Load task in the DAC Design view and change the Execution Type to SQL File. 6. Replace Command for Incremental Load with a call to the Fast Refresh Action Task action and Command for Full Load with a call to ‘Dummy Refresh’ Task Action: 60 7. Navigate to Target Tables tab and un‐check Truncate for Full Load checkbox, otherwise the DAC would automatically truncate the materialized view and cause ORA-32320 during its fast refresh. 61 8. Add a new Preceding Action for the task to run Create Materialized View Task Action. 9. Drop the original W_GL_BALANCE_A aggregate table using SQL*Plus before running an execution plan. 10. Regenerate the execution plan in DAC to pick all the changes. Updates Optimization using DBMS_PARALLEL_EXECUTE (11gR2) Some Oracle BI Analytic Applications ETL mappings may incur additional overhead from processing heavy volume updates. The impact can be even more severe for flattened hierarchies, such as Position Dimension Hierarchy. Oracle introduced a new PLSQL API DBMS_PARALLEL_EXECUTE in Oracle 11gR2, which can help to speed up such heavy updates. The new package allows to update a table in parallel by grouping sets of rows into smaller chunks. 62 Important! The user must have CREATE JOB system privilege to execute the updates in parallel using the API. The following example shows the use of the API for improving SIL_PositionDimensionHierarchy_AsIsUpdate_Full performance more than 2 times, using Degree of Parallelism (DOP) 10 with updated rows chunk size set to 50 rows. The original UPDATE SQL: UPDATE w_position_dh dh1 SET ( dh1.current_base_postn, dh1.current_base_postn_id, dh1.current_base_divn, dh1.current_base_login, dh1.current_base_emp_full_name, dh1.current_base_emp_id, dh1.current_lvl1anc_postn, dh1.current_lvl1anc_postn_id, dh1.current_lvl1anc_divn, dh1.current_lvl1anc_login, dh1.current_lvl1_emp_full_name, dh1.current_lvl1anc_emp_id, dh1.current_lvl2anc_postn, dh1.current_lvl2anc_postn_id, dh1.current_lvl2anc_divn, dh1.current_lvl2anc_login, … … dh1.current_top_lvl_divn, dh1.current_top_lvl_login, dh1.current_top_emp_full_name, dh1.current_top_lvl_emp_id ) = ( SELECT dh2.base_postn base_postn, dh2.base_postn_id base_postn_id, dh2.base_divn base_divn, dh2.base_login base_login, dh2.base_emp_full_name, dh2.base_emp_id base_emp_id, dh2.lvl1anc_postn, dh2.lvl1anc_postn_id, dh2.lvl1anc_divn, dh2.lvl1anc_login, dh2.lvl1_emp_full_name, dh2.lvl1anc_emp_id, … … dh2.top_emp_full_name, dh2.top_lvl_emp_id FROM w_position_dh dh2 WHERE dh2.current_flg = 'Y' AND dh1.base_postn_id = dh2.base_postn_id AND dh1.datasource_num_id = dh2.datasource_num_id) The PLSQL block below uses DBMS_PARALLEL_EXECUTE API to update W_POSITION_DH in parallel with DOP 10 by dividing the update rows into 50 row chunks. DECLARE l_sql_stmt clob; l_try NUMBER; l_status NUMBER; BEGIN -- Create the TASK DBMS_PARALLEL_EXECUTE.CREATE_TASK ('mytask'); -- Chunk the table by ROWID DBMS_PARALLEL_EXECUTE.CREATE_CHUNKS_BY_ROWID('mytask', USER, 'W_POSITION_DH', true, 50); -- Execute the DML in parallel l_sql_stmt := 'update /*+ ROWID (dda) */ w_position_dh dh1 SET ( dh1.current_base_postn, dh1.current_base_postn_id, 63 dh1.current_base_divn, dh1.current_base_login, dh1.current_base_emp_full_name, dh1.current_base_emp_id, dh1.current_lvl1anc_postn, dh1.current_lvl1anc_postn_id, dh1.current_lvl1anc_divn, dh1.current_lvl1anc_login, dh1.current_lvl1_emp_full_name, dh1.current_lvl1anc_emp_id, dh1.current_lvl2anc_postn, dh1.current_lvl2anc_postn_id, dh1.current_lvl2anc_divn, dh1.current_lvl2anc_login, dh1.current_lvl2_emp_full_name, dh1.current_lvl2anc_emp_id, dh1.current_lvl3anc_postn, dh1.current_lvl3anc_postn_id, dh1.current_lvl3anc_divn, dh1.current_lvl3anc_login, dh1.current_lvl3_emp_full_name, dh1.current_lvl3anc_emp_id, dh1.current_lvl4anc_postn, dh1.current_lvl4anc_postn_id, … … dh1.current_top_lvl_divn, dh1.current_top_lvl_login, dh1.current_top_emp_full_name, dh1.current_top_lvl_emp_id ) = ( SELECT dh2.base_postn base_postn, dh2.base_postn_id base_postn_id, dh2.base_divn base_divn, dh2.base_login base_login, dh2.base_emp_full_name, dh2.base_emp_id base_emp_id, dh2.lvl1anc_postn, dh2.lvl1anc_postn_id, dh2.lvl1anc_divn, dh2.lvl1anc_login, dh2.lvl1_emp_full_name, dh2.lvl1anc_emp_id, dh2.lvl2anc_postn, dh2.lvl2anc_postn_id, dh2.lvl2anc_divn, dh2.lvl2anc_login, … … FROM w_position_dh dh2 WHERE dh2.current_flg = ''Y'' AND dh1.base_postn_id = dh2.base_postn_id AND dh1.datasource_num_id = dh2.datasource_num_id) WHERE rowid BETWEEN :start_id AND :end_id'; DBMS_PARALLEL_EXECUTE.RUN_TASK('mytask', l_sql_stmt, DBMS_SQL.NATIVE, parallel_level => 10); -- If there is an error, RESUME it for at most 2 times. L_try := 0; L_status := DBMS_PARALLEL_EXECUTE.TASK_STATUS('mytask'); WHILE(l_try < 2 and L_status != DBMS_PARALLEL_EXECUTE.FINISHED) LOOP L_try := l_try + 1; DBMS_PARALLEL_EXECUTE.RESUME_TASK('mytask'); L_status := DBMS_PARALLEL_EXECUTE.TASK_STATUS('mytask'); END LOOP; -- Done with processing; drop the task DBMS_PARALLEL_EXECUTE.DROP_TASK('mytask'); END; / You can check the status of each chunk by running the following SQL: SQL> SELECT chunk_id, status, start_rowid, end_rowid 2 FROM user_parallel_execute_chunks 3 WHERE task_name = 'mytask' 64 4* and status='ASSIGNED CHUNK_ID ---------635969 635970 635971 635973 635975 635977 635966 635968 635974 635976 STATUS -------------------ASSIGNED ASSIGNED ASSIGNED ASSIGNED ASSIGNED ASSIGNED ASSIGNED ASSIGNED ASSIGNED ASSIGNED START_ROWID -----------------AABKDGAAHAAB2egAAA AABKDGAAHAAB2fAAAA AABKDGAAHAAB2iAAAA AABKDGAAHAAB2mgAAA AABKDGAAHAAB2sgAAA AABKDGAAHAAB2wAAAA AABKDGAAHAAB2WAAAA AABKDGAAHAAB2agAAA AABKDGAAHAAB2pgAAA AABKDGAAHAAB2tAAAA END_ROWID -----------------AABKDGAAHAAB2e/CcP AABKDGAAHAAB2ffCcP AABKDGAAHAAB2ifCcP AABKDGAAHAAB2m/CcP AABKDGAAHAAB2s/CcP AABKDGAAHAAB2wfCcP AABKDGAAHAAB2WfCcP AABKDGAAHAAB2a/CcP AABKDGAAHAAB2p/CcP AABKDGAAHAAB2tfCcP 10 rows selected. Wide tables with over 255 columns performance Introduction Oracle Database supports relational tables with up to 1000 columns. Though there are no any differences in logical wide table structure, the Oracle database will split wide table rows into 255 row-pieces for tables, exceeding 255 columns limit. Even if there is enough free space in a single block, Oracle will allocate another block for the next row-piece. As the result, Oracle will have to generate recursive calls to dynamically allocate space for the chained rows during their read/write time. Oracle BI Applications physical data model contains several wide dimension tables, such as W_ORG_D, W_SOURCE_D, W_PERSON_D, which could have over 255 columns after end user customizations. The table below shows the comparison statistics for a sample W_ORG_D with 254 and 300 columns: W_ORG_D with 300 columns W_ORG_D with 254 columns Time: 186 sec Time: 54 sec Statistics Statistics ---------------------------------------------------------- ---------------------------------------------------------657 recursive calls 0 recursive calls 0 db block gets 0 db block gets 134975 consistent gets 134888 consistent gets 134867 physical reads 134864 physical reads 0 redo size 0 redo size 382 bytes sent via SQL*Net to client 382 bytes sent via SQL*Net to client 372 bytes received via SQL*Net from client 372 bytes received via SQL*Net from client 2 SQL*Net roundtrips to/from client 2 SQL*Net roundtrips to/from client 6 sorts (memory) 0 sorts (memory) 0 sorts (disk) 0 sorts (disk) 1 rows processed 1 rows processed Depending on the queries complexity the amount of physical reads also could be much higher for wide tables with more than 255 columns. The described limitation would have critical impact on Oracle BI Applications Dashboards performance. Wide tables structure optimization Since the wide dimension tables were designed to consolidate attributes from multiple source databases, there are very few customers’ implementations, which would use all pre-defined attributes. Since the unused columns will store NULLs, consider rebuilding wide tables with over 255 columns and moving the columns with NULLs to the end. Oracle does not allocate space to NULL columns at the end of the table, so it would not create chained row-pieces. 65 Important! Optimized wide tables must be created from scratch, since the existing tables already have the chained rows. So, any ‘ALTER TABLE’ command would not resolve the chaining problem. After rebuilding a wide table, verify that all ETL and Query indexes get created as well. Guidelines for Oracle optimizer hints usage in ETL mappings Hash Joins versus Nested Loops in Oracle RDBMS Though Oracle optimizer chooses the most efficient plan with the least cost for a query, sometimes database hints can help to improve efficiency and increase overall ETL performance, in spite of the higher estimated query cost, reported in very large volume Oracle Business Analytics Data Warehouses. If tables, used in a query, have indexes defined on the joining columns in a WHERE clause, the optimizer might choose Nested loop join over Hash join accessing a table using an index defined on a column, used in a join. Although this approach may start returning results sooner the overall time to fetch all the records could be considerably longer. Specifying the hint USE_HASH would change the execution plan to use a full table scan (in some cases the optimizer might still use indexes, such as index fast full scan) for a table involved in the query. Initial records fetch may take more time as hash joins are built in memory, but the overall time for fetching all the records would be reduced quite dramatically. Important! Oracle might take up to 8-10 hours just to build hashes in memory for very large tables (over 100 million records), so it is important not to kill the query. ETL is a batch process, measured by overall time to load all the records, so you should avoid using nested loops by incorporating hint USE_HASH for tables with volumes over ten million records. The real life example below provides the comparison between NESTED LOOPS and HASH JOIN execution. The numbers are applicable to the specific test case configuration, which would vary depending on hardware specifications and database settings. Table --------------------PAY_RUN_RESULT_VALUES PAY_RUN_RESULTS PAY_ASSIGNMENT_ACTIONS PAY_INPUT_VALUES_F PAY_ELEMENT_TYPES_F PAY_PAYROLL_ACTIONS PAY_ELEMENT_CLASSIFICATIONS PER_TIME_PERIODS No of Rows ---------900 Million 14 Million 50 Million 10000 10000 1445896 1897 52728 SELECT PAY_ASSIGNMENT_ACTIONS.ASSIGNMENT_ACTION_ID, PAY_ASSIGNMENT_ACTIONS.ASSIGNMENT_ID, PAY_ELEMENT_TYPES_F.INPUT_CURRENCY_CODE, PAY_ELEMENT_TYPES_F.OUTPUT_CURRENCY_CODE, PER_TIME_PERIODS.END_DATE, PER_TIME_PERIODS.START_DATE, PAY_PAYROLL_ACTIONS.PAY_ADVICE_DATE, PAY_PAYROLL_ACTIONS.LAST_UPDATE_DATE, PAY_PAYROLL_ACTIONS.LAST_UPDATED_BY, PAY_PAYROLL_ACTIONS.CREATED_BY, PAY_PAYROLL_ACTIONS.CREATION_DATE, PAY_RUN_RESULT_VALUES.INPUT_VALUE_ID, PAY_RUN_RESULT_VALUES.RUN_RESULT_ID, PAY_RUN_RESULT_VALUES.RESULT_VALUE, PAY_RUN_RESULTS.ELEMENT_TYPE_ID, PAY_INPUT_VALUES_F.LAST_UPDATE_DATE LAST_UPDATE_DATE1, PAY_ELEMENT_TYPES_F.LAST_UPDATE_DATE LAST_UPDATE_DATE2 FROM PAY_RUN_RESULT_VALUES, PAY_RUN_RESULTS, 66 WHERE PAY_INPUT_VALUES_F, PAY_ASSIGNMENT_ACTIONS, PAY_ELEMENT_TYPES_F, PAY_PAYROLL_ACTIONS, PAY_ELEMENT_CLASSIFICATIONS, PER_TIME_PERIODS (PAY_PAYROLL_ACTIONS.LAST_UPDATE_DATE >= TO_DATE('01/01/2007 00:00:00','MM/DD/YYYY HH24:MI:SS') OR PAY_INPUT_VALUES_F.LAST_UPDATE_DATE >= TO_DATE('01/01/2007 00:00:00','MM/DD/YYYY HH24:MI:SS') OR PAY_ELEMENT_TYPES_F.LAST_UPDATE_DATE >= TO_DATE('01/01/2007 00:00:00','MM/DD/YYYY HH24:MI:SS')) AND PAY_PAYROLL_ACTIONS.ACTION_STATUS = 'C' AND PAY_PAYROLL_ACTIONS.ACTION_POPULATION_STATUS = 'C' AND PAY_ASSIGNMENT_ACTIONS.ACTION_STATUS = 'C' AND PAY_INPUT_VALUES_F.UOM = 'M' AND PAY_RUN_RESULT_VALUES.RUN_RESULT_ID = PAY_RUN_RESULTS.RUN_RESULT_ID AND PAY_RUN_RESULT_VALUES.INPUT_VALUE_ID = PAY_INPUT_VALUES_F.INPUT_VALUE_ID AND PAY_RUN_RESULTS.ASSIGNMENT_ACTION_ID = PAY_ASSIGNMENT_ACTIONS.ASSIGNMENT_ACTION_ID AND PAY_RUN_RESULTS.ELEMENT_TYPE_ID = PAY_ELEMENT_TYPES_F.ELEMENT_TYPE_ID AND PAY_ASSIGNMENT_ACTIONS.PAYROLL_ACTION_ID = PAY_PAYROLL_ACTIONS.PAYROLL_ACTION_ID AND PAY_PAYROLL_ACTIONS.EFFECTIVE_DATE BETWEEN PAY_INPUT_VALUES_F.EFFECTIVE_START_DATE AND PAY_INPUT_VALUES_F.EFFECTIVE_END_DATE AND PAY_PAYROLL_ACTIONS.EFFECTIVE_DATE BETWEEN PAY_ELEMENT_TYPES_F.EFFECTIVE_START_DATE AND PAY_ELEMENT_TYPES_F.EFFECTIVE_END_DATE AND PAY_ELEMENT_CLASSIFICATIONS.CLASSIFICATION_ID = PAY_ELEMENT_TYPES_F.CLASSIFICATION_ID AND PER_TIME_PERIODS.TIME_PERIOD_ID = PAY_PAYROLL_ACTIONS.TIME_PERIOD_ID AND PAY_INPUT_VALUES_F.NAME = 'Pay Value' AND CLASSIFICATION_NAME NOT LIKE '%Information%' AND CLASSIFICATION_NAME NOT LIKE '%Employer%' AND CLASSIFICATION_NAME NOT LIKE '%Balance%' AND PAY_RUN_RESULTS.SOURCE_TYPE IN ('I', 'E') The Explain Plan for the query is below: Plan hash value: 1498624813 Id 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Operation SELECT STATEMENT CONCATENATION NESTED LOOPS HASH JOIN TABLE ACCESS BY INDEX ROWID NESTED LOOPS HASH JOIN TABLE ACCESS FULL MERGE JOIN SORT JOIN HASH JOIN MERGE JOIN SORT JOIN TABLE ACCESS FULL FILTER SORT JOIN TABLE ACCESS FULL TABLE ACCESS FULL FILTER SORT JOIN TABLE ACCESS FULL INDEX RANGE SCAN TABLE ACCESS FULL TABLE ACCESS BY INDEX ROWID INDEX UNIQUE SCAN NESTED LOOPS HASH JOIN NESTED LOOPS PAY_ELEMENT_TYPES_F PAY_ASSIGNMENT_ACTIONS_N50 PAY_RUN_RESULTS PAY_RUN_RESULT_VALUES PAY_RUN_RESULT_VALUES_PK 1 1 4 4 1460 936 820 232K 654 654 35 9986K 190M 14 27468 27468 106 105 3 20007 3 2 19634 19630 19524 (3) (2) (0) (4) (0) (0) (1) (1) (1) 00:00:02 00:00:02 00:00:01 00:04:01 00:00:01 00:00:01 00:03:56 00:03:56 00:03:55 PAY_PAYROLL_ACTIONS PER_TIME_PERIODS 96393 96393 52728 3765K 3765K 1184K 11M 8424 7424 349 (4) (5) (1) 00:01:42 00:01:30 00:00:05 PAY_INPUT_VALUES_F PAY_ELEMENT_CLASSIFICATIONS PAY_ASSIGNMENT_ACTIONS 55 59 7 38937 5503 1626 5505 3369 3369 3527 15 15 12870 12980 147 7604K 961K 47154 806K 355K 355K 292K 675 675 8064K 83423 83304 7 47490 9053 13 9039 8931 8930 8579 156 155 (2) (2) (0) (1) (4) (0) (4) (4) (4) (4) (3) (2) 00:16:42 00:16:40 00:00:01 00:09:30 00:01:49 00:00:01 00:01:49 00:01:48 00:01:48 00:01:43 00:00:02 00:00:02 Name Rows 60 Bytes 14040 TempSp Cost (%CPU) c 111K (2) Time 00:22:23 67 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 NESTED LOOPS NESTED LOOPS NESTED LOOPS NESTED LOOPS TABLE ACCESS FULL TABLE ACCESS BY INDEX ROWID INDEX RANGE SCAN TABLE ACCESS BY INDEX ROWID INDEX UNIQUE SCAN TABLE ACCESS BY INDEX ROWID INDEX RANGE SCAN TABLE ACCESS BY INDEX ROWID INDEX RANGE SCAN TABLE ACCESS BY INDEX ROWID INDEX UNIQUE SCAN TABLE ACCESS FULL TABLE ACCESS BY INDEX ROWID INDEX UNIQUE SCAN NESTED LOOPS NESTED LOOPS HASH JOIN TABLE ACCESS BY INDEX ROWID NESTED LOOPS NESTED LOOPS NESTED LOOPS MERGE JOIN SORT JOIN TABLE ACCESS FULL FILTER SORT JOIN TABLE ACCESS FULL TABLE ACCESS BY INDEX ROWID INDEX UNIQUE SCAN TABLE ACCESS BY INDEX ROWID INDEX RANGE SCAN INDEX RANGE SCAN TABLE ACCESS FULL TABLE ACCESS BY INDEX ROWID INDEX UNIQUE SCAN TABLE ACCESS BY INDEX ROWID INDEX UNIQUE SCAN PAY_PAYROLL_ACTIONS PER_TIME_PERIODS PER_TIME_PERIODS_PK PAY_ASSIGNMENT_ACTIONS PAY_ASSIGNMENT_ACTIONS_N50 PAY_RUN_RESULTS_N50 PAY_ELEMENT_TYPES_F PAY_RUN_RESULT_VALUES PAY_RUN_RESULT_VALUES_PK PAY_ELEMENT_CLASSIFICATIONS PAY_ELEMENT_CLASSIFICATION_PK PAY_INPUT_VALUES_F PAY_RUN_RESULTS PAY_INPUT_VALUES_F PAY_PAYROLL_ACTIONS PAY_PAYROLL_ACTIONS_N5 PER_TIME_PERIODS PER_TIME_PERIODS_PK PAY_ASSIGNMENT_ACTIONS PAY_ASSIGNMENT_ACTIONS_N50 PAY_RUN_RESULTS PAY_RUN_RESULTS_N50 PAY_RUN_RESULT_VALUES PAY_RUN_RESULT_VALUES_PK PAY_ELEMENT_TYPES_F PAY_ELEMENT_CLASSIFICATION_S PAY_ELEMENT_CLASSIFICATION_PK 1552 1579 223 234 1 241 72295 1 1 7 35 1 20 1 1 9873 1 1 1 1 1 1 213 217 31 32 14 14 939 939 1 1 7 35 20 9873 1 1 1 1 225K 198K 24084 19890 45 9640 23 147 20 14 404K 29 234 205 191 20 31737 27993 3348 2720 630 630 37560 37560 23 147 14863 8538 6974 6740 155 6585 341 1 0 7 3 4 2 3 2 105 1 0 8809 8808 8805 4 8699 7829 7612 7580 156 155 7424 7423 1 0 7 3 2 (1) (1) (1) (1) (2) (1) (1) (0) (0) (0) (0) (0) (0) (0) (0) (2) (0) (0) (4) (4) (4) (0) (4) (4) (5) (5) (3) (2) (5) (5) (0) (0) (0) (0) (0) (2) (0) (0) (0) (0) 00:02:59 00:01:43 00:01:24 00:01:21 00:00:02 00:01:20 00:00:05 00:00:01 00:00:01 00:00:01 00:00:01 00:00:01 00:00:01 00:00:01 00:00:01 00:00:02 00:00:01 00:00:01 00:01:46 00:01:46 00:01:46 00:00:01 00:01:45 00:01:34 00:01:32 00:01:31 00:00:02 00:00:02 00:01:30 00:01:30 00:00:01 00:00:01 00:00:01 00:00:01 00:00:01 00:00:02 00:00:01 00:00:01 00:00:01 00:00:01 404K 14 29 105 3 2 1 0 The query took more than 48 hours to execute and produced 128 million records even though the first record was fetched within 1.5 hours of the execution. The reported throughput achieved is 700 RPS. Note: The optimizer chose to access the tables through index paths, and then joined the result sets using Nested Loops. After adding the hint USE_HASH(PAY_RUN_RESULT_VALUES PAY_RUN_RESULTS PAY_INPUT_VALUES_F PAY_ASSIGNMENT_ACTIONS PAY_ELEMENT_TYPES_F PAY_PAYROLL_ACTIONS PAY_ELEMENT_CLASSIFICATIONS PER_TIME_PERIODS) to the preceding query, the optimizer produced the following execution plan: Plan hash value: 3421230164 Id 0 1 2 3 4 5 6 Operation SELECT STATEMENT HASH JOIN HASH JOIN TABLE ACCESS FULL HASH JOIN HASH JOIN HASH JOIN PAY_INPUT_VALUES_F Name Rows 10 10 10 15 103K 1624 1700 Bytes 2340 2340 2050 675 15M 231K 204K TempSpc Cost (%CPU) 932K 932K 932K 155 932K 167K 166K (5) (5) (5) (2) (5) (3) (3) Time 03:06:29 03:06:29 03:06:28 00:00:02 03:06:27 00:33:28 00:33:23 68 7 8 9 10 11 12 13 14 15 TABLE ACCESS FULL HASH JOIN HASH JOIN TABLE ACCESS FULL TABLE ACCESS FULL TABLE ACCESS FULL TABLE ACCESS FULL TABLE ACCESS FULL TABLE ACCESS FULL PAY_ELEMENT_TYPES_F 10527 670K 682K 431K 51M 39M 3765K 203M 190M 1184K 11G 47154 47M 4896K 105 166K 128K 7424 105K 20007 349 751K 13 (2) (3) (3) (5) (3) (4) (1) (4) (0) 00:00:02 00:33:22 00:25:48 00:01:30 00:21:03 00:04:01 00:00:05 02:30:21 00:00:01 PAY_PAYROLL_ACTIONS PAY_ASSIGNMENT_ACTIONS PAY_RUN_RESULTS PER_TIME_PERIODS PAY_RUN_RESULT_VALUES PAY_ELEMENT_CLASSIFICATIONS 96393 10M 9986K 52728 912M 1626 Even though the estimated cost went up, the query completed much faster. Below is the summary of two executions: Query No Hints (nested loops) Hash Join hint CPU Cost 111K 923K First records Fetch Start Time After 1 hour 30 min After 5 hours Reported Informatica Throughput 700 rows / sec 3000 rows / sec Mapping Execution Time 48 hours 10 hours Oracle Database Hints Use in Oracle Business Intelligence Applications 7.9.6 Mappings The following table summarizes the database hints, which helped to improve Oracle Business Intelligence Applications 7.9.6 mappings performance in internal performance tests. Area Mapping ETL Hints Common Dimensions Siebel, OM, SCA OM Siebel PRJ, SCA, HCM, OM SCA, SCM, OM, PRJ SCA, SCM, OM, PRJ PRJ FIN, PRJ, SCA, OM FIN, OM, PRJ, SCA SIL_PartyDimension_Person SIL_PartyDimension_Organization SDE_PartyPersonDimension SDE_ORA_PartyPersonDimension_Customer Initial Initial Initial / Incr. Initial /*+ USE_HASH(PTY PER DS) NO_INDEX(PTY) */ /*+ NO_INDEX(ORG) */ set DTM Buffer Size to 32000000 set Default Buffer Block Size to 128000 $$HINT1: /*+ USE_HASH(PER PTY CNP SUP)*/ $$HINT2: /*+ USE_HASH(PP) */ $$HINT1: /*+ USE_HASH(HZ_ORGANIZATION_PROFILES HZ_PARTIES ) */ $$HINT2: /*+USE_HASH(DOM_ULT_DUNS, DOM_REL) */ /*+ USE_HASH(HZ_ORGANIZATION_PROFILES HZ_PARTIES) */ /*+ INDEX (TARGET_TABLE W_GL_ACCOUNT_D_U1) INDEX (SCD_OUTER W_GL_ACCOUNT_D_U1)*/ $$HINT1:/*+ INDEX(PP HZ_PARTIES_U1)*/ $$HINT2: /*+ USE_HL(OC TMP1)*/ /*+ FULL(PER_ALL_PEOPLE_F) */ SDE_ORA_PartyOrganizationDimension_Cust Initial omer_Full SDE_ORA_PartyOrganizationDimension_Cust Incr. omer SIL_GLAccountDimension_SCDUpdate SDE_ORA_PartyContactStaging SDE_ORA_INVENTORYPRODUCTDIMENSION _FULL Incr. Incr. Initial Siebel CRM SIL_ResponseFact_Full Initial /*+ NO_INDEX(w_regn_d) NO_INDEX(w_segment_d) NO_INDEX(offer) NO_INDEX(terr) NO_INDEX(W_WAVE_D) NO_INDEX(w_ld_wave_d) NO_INDEX(w_source_d) */ $$HINT1: /*+ USE_HASH(PTY PER DS) FULL(PTY) */ $$HINT1 /*+ NO_INDEX(SRC) NO_INDEX(OSRC) */ $$HINT2 /*+ FULL(W_CAMP_HIST_F) */ $$HINT3 /*+ FULL(W_CAMP_HIST_F) */ $$HINT1 /*+ NO_INDEX(SRC) NO_INDEX(OSRC) */ $$HINT2 /*+ FULL(W_CAMP_HIST_F) */ SIL_PartyDimension_Person SIL_Agg_OverlappingCampaign_Accounts Initial Incr. SIL_Agg_OverlappingCampaign_Contacts Incr. 69 $$HINT3 /*+ FULL(W_CAMP_HIST_F) */ SIL_Agg_ResponseCampaignOffer and SIL_Agg_ResponseCampaign SIL_Agg_ProductLineRevn_CloseDate SIL_Agg_ProductLineRevn_OpenDate SIL_Agg_SalesPipelineRevn_CloseDate SIL_Agg_SalesPipelineRevn_OpenDate Incr. Incr. /*+ FULL(W_PARTY_PER_D) */ /*+ FULL(W_REVN_F) */ EBS Supply Chain 11.5.10 SDE_ORA_PurchaseReceiptFact SDE_ORA_StandardCostGeneral_Full SIL_ExpenseFact_FULL SIL_APInvoiceDistributionFact_Full Initial / Incr. Initial / Incr. Initial Initial /*+ FULL(RCV_TRANSACTIONS) */ /+ USE_HASH(MTL_SYSTEM_ITEMS_B)/ /*+ USE_HASH(W_PROJECT_D) */ /*+ USE_HASH(W_AP_INV_DIST_FS PO_PLANT_LOC PO_RCPT_LOC OPERATING_UNIT_ORG PAYABLES_ORG PURCHASE_ORG W_LEDGER_D INV_TYPE DIST_TYPE SPEND_TYPE APPROVAL_STATUS PAYMENT_STATUS W_AP_TERMS_D W_PROJECT_D EXPENDITURE_ORG CREATED_BY CHANGED_BY W_XACT_SOURCE_D W_Financial_Resource_D W_GL_ACCOUNT_D W_PARTY_D W_SUPPLIER_ACCOUNT_D) */ /*+ FULL(M) */ /*+ USE_HASH(PPV1 PPV2 POR1 POR2 PPEVS1 PPE1 PPE2 PPA2) */ $$HINT1 /*+ USE_HASH(PA_TASKS PA_TASK_TYPES PA_PROJ_ELEMENT_VERSIONS PA_PROJ_ELEMENTS PA_PROJECT_STATUSES PA_PROJ_ELEM_VER_STRUCTURE PA_PROJECTS_ALL PA_PROJECT_TYPES_ALL PA_PROJ_ELEM_VER_SCHEDULE) */ $$HINT2 /*+ USE_HASH(PA_PROJECTS_ALL PA_PROJECT_TYPES_ALL PA_TASKS) */ $$HINT3 /*+ USE_HASH(PE PEV PPS) */ SIL_PRODUCTTRANSACTIONFACT SIL_PURCHASECOSTFACT SIL_APINVOICEDISTRIBUTIONFACT Initial Initial Incr. /*+ USE_HASH(SRC_PRO_D TO_PRO_D) */ /*+ USE_HASH(W_PROJECT_D) */ Apply hint to Lkp_W_AP_INV_DIST_F query: /*+ INDEX(TARGET_TABLE) */ SDE_ORA_BOMHeaderDimension_Full SDE_ORA_PROJECT_HIERARCHYDIMENSION _STAGE1 SDE_ORA_TASKS Initial Initial / Incr. Initial / Incr. EBS Human Resources R12 SDE_ORA_PayrollFact_Full Initial $$HINT1: /*+ USE_HASH( PAY_RUN_RESULT_VALUES PAY_RUN_RESULTS PAY_INPUT_VALUES_F PAY_ASSIGNMENT_ACTIONS PAY_ELEMENT_TYPES_F PAY_PAYROLL_ACTIONS PAY_ELEMENT_CLASSIFICATIONS PER_TIME_PERIODS ) */ $$HINT2: /*+ ORDERED USE_HASH( PAY_RUN_RESULT_VALUES PAY_RUN_RESULTS PAY_INPUT_VALUES_F PAY_ASSIGNMENT_ACTIONS PAY_ELEMENT_TYPES_F PAY_PAYROLL_ACTIONS PAY_ELEMENT_CLASSIFICATIONS PER_TIME_PERIODS ) */ $$HINT3: /*+ FULL(PER_ALL_ASSIGNMENTS_F) FULL(PER_ALL_PEOPLE_F) */ SDE_ORA_PayrollFact_Agg_Items_Derive_Fu Initial ll PLP_RECRUITMENTHIREAGGREGATE_LOAD PLP_WorkforceEventFact_Month Incr. Initial /*+ parallel(W_PAYROLL_FS,4)*/ $$HINT1: /*+ USE_HASH (FACT MONTH PERF LOC SOURCE AGE EMP)*/ /*+ FULL(suph) */ EBS Financials R12 SDE_ORA_APTransactionFact_LiabilityDistrib Incr. ution SDE_ORA_Stage_GLJournals_Derive Incr. /*+ parallel(AP_INVOICE_DISTRIBUTIONS_ALL,4) use_hash(AP_INVOICES_ALL AP_INVOICE_DISTRIBUTIONS_ALL PO_HEADERS_ALL PO_DISTRIBUTIONS_ALL PO_LINES_ALL)*/ /*+ PARALLEL (W_ORA_GL_JOURNALS_F_TMP, 4) */ 70 SDE_ORA_CustomerFinancialProfileDimensio Initial / n Incr. SDE_ORA_ARTransactionFact_CreditMemoA Incr. pplication PLP_APIncrActivityLoad PLP_APXactsGroupAccount_A_Stage_Full Incr. Initial /*+ USE_HASH (HZ_PARTIES)*/ /*+ USE_HASH(AR_PAYMENT_SCHEDULES_ALL RA_CUSTOMER_TRX_ALL RA_CUSTOMER_TRX_ALL1 AR_PAYMENT_SCHEDULES_ALL1 AR_DISTRIBUTIONS_ALL) */ /*+ index(W_AP_XACT_F, W_AP_XACT_F_M1) */ /*+ full(W_GL_ACCOUNT_D) full(W_STATUS_D) full(W_AP_XACT_F) full(W_XACT_TYPE_D) full(D1) full(D2) full( D3)*/ EBS Projects R12 SDE_ORA_ProjectFundingHeader SDE_ORA_ProjectInvoiceLine_Fact SDE_ORA_ProjectCostLine_Fact Initial / Incr. Initial Initial /*+ USE_HASH(PA_PROJECTS_ALL PA_TASKS PA_AGREEMENTS_ALL PA_SUMMARY_PROJECT_FUNDINGS) */ /*+ USE_HASH(pa_draft_invoice_items pa_tasks pa_draft_invoices_all pa_projects_all pa_agreements_all pa_lookups) */ /*+ USE_HASH(pa_cost_distribution_lines_all pa_expenditure_items_all pa_expenditures_all pa_implementations_all pa_implementations_all_1 gl_sets_of_books pa_project_assignments pa_resource_list_members pa_lookups pa_projects_all pa_project_types_all pa_expenditure_types) */ /*+ INDEX(LOOKUP_TABLE W_PARTY_D_M3) */ SIL_ProjectFundingHeader_Fact Incr. EBS Enterprise Sales 11.5.10 SIL_SalesPickLinesFact_Full SIL_SalesOrderLinesFact_Full SIL_SalesInvoiceLinesFact_Full SIL_SalesScheduleLinesFact_Full Initial Initial Initial Initial /*+ FULL(A18) FULL(A19) FULL(A20) FULL(A21) FULL(A22) */ /*+ FULL(A18) FULL(A19) FULL(A20) FULL(A21) FULL(A22) */ /*+ FULL(A18) FULL(A19) FULL(A20) FULL(A21) FULL(A22) */ /*+ FULL(A18) FULL(A19) FULL(A20) FULL(A21) FULL(A22) */ EBS Service 11.5.10 SDE_ORA_EntitlementDimension SDE_ORA_AgreeDimension SDE_ORA_AbsenceEvent SIL_ActivityFact_Full Initial Initial Initial Initial /*+ parallel(OKC_K_LINES_TL,4) parallel (OKC_K_LINES_B,4) */ /*+ NO_MERGE(fndv) */ /*+ use_hash(per_absence_attendances per_all_assignments_f per_absence_attendance_types per_abs_attendance_reasons ) */ /*+ use_hash(W_ACTIVITY_FS W_FS_ACT_CST_FS W_SOURCE_D W_ENTLMNT_D W_AGREE_D W_REGION_D W_SRVREQ_D W_ASSET_D) */ PeopleSoft HCM 8.9, 9.x SDE_PSFT_UserDimension_PersonalInformat Initial ion SDE_PSFT_SupplierAccountDimension Initial /*+ use_hash(login person address names perdata bus_email alt_email bus_phones cell_phones fax_phones pgr_phones) */ /*+ use_hash(v vaddr vcont vphn) */ Oracle Database Hints Use in Oracle Business Intelligence Applications 7.9.6.3 Mappings Review the additional hints, recommended for Bi Analytic Applications 7.9.6.3 in the table below. Area Mapping ETL Hints Common Dimensions All All All SDE_ORA_PartyContactStaging_Full Initial SQ: $$Hint1 = /*+ USE_HASH(HZ_ORGANIZATION_PROFILES HZ_PARTIES ) */ $$Hint2 = /*+USE_HASH(DOM_ULT_DUNS, DOM_REL) */ SQ: $$Hint1 = /*+ USE_HASH(PER PTY CNP SUP)*/ SDE_ORA_PartyOrganizationDimension_Cust Initial omer_Full SDE_ORA_PartyPersonDimension_Customer_ Initial Full. SDE_ORA_PartyPersonDimension_Customer_ Temporary_Full SIL_EmployeeDimension_SCDUpdate_Full Initial SRV, OM SQ: /*+ NO_MERGE (SCD_HISTORY)*/ 71 SRV, OM OM SIL_GLAccountDimension_SCDUpdate_Full SIL_GLAccountDimension_SCDUpdate Initial Incr. SQ: /*+ NO_MERGE (SCD_HISTORY)*/ /*+ FULL(RA_CUSTOMER_TRX_LINES_ALL1) FULL(RA_CUSTOMER_TRX_LINES_ALL) FULL(RA_CUSTOMER_TRX_ALL) FULL(RA_CUST_TRX_TYPES_ALL) FULL(OE_ORDER_HEADERS_ALL) FULL(OE_ORDER_LINES_ALL) */ /*+ NO_MERGE (SCD_HISTORY)*/ SQ: $$Hint1 = /*+ USE_NL(w_int_org_dh_tmp w_int_org_dh_tmp1 w_int_org_dh_tmp2 w_int_org_dh_tmp3 w_int_org_dh_tmp4 w_int_org_dh_tmp5 w_int_org_dh_tmp6 w_int_org_dh_tmp7 w_int_org_dh_tmp8 w_int_org_dh_tmp9 w_int_org_dh_tmp10 w_int_org_dh_tmp11 w_int_org_dh_tmp12) */ SQ: $$Hint1 = /*+ USE_HASH(PER PT ASGN ASGNT JOB ORG) */ /*+ USE_NL(TMP, B, L1, L2, L3, L4, L5, L6, L7, L8, L9, L10, L11, L12, L13, L14, L15, L16, T )*/ /*+ NO_MERGE (SCD_HISTORY)*/ /*+ NO_MERGE (SCD_HISTORY)*/ /*+ NO_MERGE (SCD_HISTORY)*/ /*+ NO_MERGE (SCD_HISTORY)*/ /*+ NO_MERGE (SCD_HISTORY)*/ /*+USE_HASH(HR_ALL_ORGANIZATION_UNITS, HR_ALL_ORGANIZATION_UNITS,HR_LOCATIONS_ALL)*/ SRV, OM SRV SIL_PartyPersonDimension_SCDUpdate_Full Initial SDE_ORA_InternalOrganizationDimensionHie Incr. / rarchy_Flatten Initial SRV SRV, OM OM OM OM OM OM OM SDE_ORA_PositionDimension, SDE_ORA_PositionDimension_Full SIL_PositionDimensionHierarchy SIL_EmployeeDimension_SCDUpdate SIL_PositionDimension_SCDUpdate Incr. / Initial Incr. Incr. Incr. SIL_InventoryProductDimension_SCDUpdate Initial _Full SIL_InventoryProductDimension_SCDUpdate Incr. SIL_PartyOrganizationDimension_SCDUpdate Initial _Full SDE_ORA_InternalOrganizationDimension_Fu Incr. ll PeopleSoft FSCM PSFT_90 SDE_PSFT_GLRevenueFact_ARItems_Full Initial /*+ USE_NL(PS_ITEM_ACTIVITY, PS_ITEM)*/ When count(1) of PS_ITEM_DST update opb_cfg_attr set attr_value='512000' where attr_value='128000' and attr_id = 5; SQL> commit; Important! You should test the changes in your development repository and benchmark ETL performance before making changes to your production environment. Informatica Load: Bulk vs. Normal The Informatica writer thread may become a bottleneck in some mappings that use bulk mode to load very large volumes (>200M) into a data warehouse. The analysis of a trace file from a Writer database session shows that Informatica uses direct path insert to load data in Bulk mode. The database session performs two direct path writes to insert each new portion of data. Every time Oracle scans for 12 contiguous blocks in a target table to perform a new write transaction. As the table grows larger, it takes longer and longer to scan the segment for chunks of 12 contiguous blocks. Even though it does bypass database block cache, the Informatica Writer thread may slow down the mapping’s overall performance. To determine whether your mapping, which loads very large data in bulk mode, slows down because of writer thread, open its Informatica session log, and compute the time to write the same set of blocks (usually 10,000) at the beginning and the end of the log. If you observe significant increase in the writer execution time at the end of the log, then you should consider either increasing commit size for the mapping or changing the session load mode from Bulk to Normal in Informatica Workflow Manager, and test the mapping with the updated setting. Informatica Bulk Load: Table Fragmentation Informatica Bulk Load for very large volumes may not only slow down the mapping performance but also cause significant table fragmentation. 90 The internal tests showed that the commit size for Normal load did not affect the number of allocated extents for one million rows in W_RESPONSE_F fact, used in the internal benchmarks. However for the Bulk Load the number of extents increased rather significantly with commit size going down. The commit size also affected the mapping performance for both Normal and Bulk load; the drop in throughput has been more significant for the latter scenario. The table below shows the number of extents (ext) and throughput (rps) for each tested scenario. Informatica Load type 1M commit 80 ext / 34K rps Normal mode Bulk mode 80 ext / 55.5K rps 100K commit 80 ext / 33K rps 190 ext / 55.5K rps 10K commit 80 ext / 30K rps 200 ext / 37K rps 1K commit 80 ext / 27K rps 960 ext / 8K rps 10 rows commit 80 ext / 14K rps > 5K ext (out of space) / 600 rps Important! To ensure bulk load performance and avoid or minimize target table fragmentation, use larger commit size in Informatica mappings. Use of NULL Ports in Informatica Mappings The use of connected or disconnected ports with hard-coded NULL values in Informatica mappings can be yet another reason for slower ETL mappings performance. The internal study showed that, depending on the number of NULL ports, such mappings performance can drop two times or even more. The performance gap becomes larger when more ports are used in a mapping. The session CPU time grows nearly proportionally to the number of connected ports, so does the row width, processed by Informatica. As soon as certain threshold of ports reached, the internal Informatica session processing for wide mappings becomes even more complex, and its execution runtime slows down dramatically. The internal tests demonstrated that Informatica treats equally NULL and non-NULL values and allocates critical resources for processing NULL ports. It also includes NULL values into INSERT statements, executed by WRITER thread on data warehouse tier. To ensure effective performance of Informatica mappings: Avoid using NULL ports in Informatica transformations. Try to keep the total number of ports no greater than 50 per mapping. Review slow mappings for NULL ports or any other potentially redundant ports, which could be eliminated. Informatica Parallel Sessions Load on ETL tier Informatica mappings with complex transformations and heavy lookups typically consume larger amounts of memory during ETL execution. While processing large data volumes and executing in parallel, such mappings may easily overload the ETL server and cause very heavy memory swapping and paging. As the result, the overall ETL execution would take much longer time to complete. To avoid such potential bottlenecks: Consider implementing Informatica 64-bit version on your ETL tier. Ensure you have enough physical memory on your ETL tier server. Refer to Hardware Recommendations section for more details. Keep in mind that too many Informatica sessions, running in parallel, may overload either source or target database. Set smaller number of connections to Informatica Integration Service in DAC. Navigate to DAC’s Setup screen -> Informatica Servers tab -> Maximum Sessions in the lower pane for both Informatica and Repository connections. The recommended range is from 5 to 10 sessions. Benchmark your ETL performance in your test environment prior to implementing the change in the production system. Informatica Workflow Partitioning This section covers techniques and recommendations for mapping partitioning to speed up workflows executions for large volume mappings or slow ETL jobs. 91 Workflow Session Partitioning for Writer Updates Row by row updates can significantly slow down mappings performance, making Informatica Writer Thread the primary bottleneck during ETL. You can quickly find such cases by analyzing Thread Busy % and volume of updates in Informatica session logs. For example: LOAD SUMMARY ============ WRT_8036 Target: W_CAMP_HIST_F (Instance Name: [W_CAMP_HIST_F]) WRT_8041 Updated rows - Requested: 3753687 Applied: 3753687 3753687 Rejected: 0 Affected: WRITER_1_*_1> WRT_8043 *****END LOAD SESSION***** WRITER_1_*_1> WRT_8006 Writer run completed. MANAGER> PETL_24031 ***** RUN INFO FOR TGT LOAD ORDER GROUP [1], CONCURRENT SET [1] ***** Thread [READER_1_1_1] created for [the read stage] of partition point [SQ_JOINER] has completed. Total Run Time = [10753.562755] secs Total Idle Time = [5467.169323] secs Busy Percentage = [49.159460] Thread [TRANSF_1_1_1] created for [the transformation stage] of partition point [SQ_JOINER] has completed. Total Run Time = [5758.883913] secs Total Idle Time = [4606.931512] secs Busy Percentage = [20.003050] Thread work time breakdown: … … Thread [WRITER_1_*_1] created for [the write stage] of partition point [W_CAMP_HIST_F] has completed. Total Run Time = [10696.082997] secs Total Idle Time = [5244.599181] secs Busy Percentage = [50.967105] The Writer shows that all processed rows were updates, and Informatica reported Writer thread Busy Percentage =50%. Small volume updates can be sped up by ensuring indexes on columns in WHERE clause of UPDATE statement. In our example the following UPDATE statement in WRITER should have the index on ROW_WID column: WRITER WRITER_1_*_1> WRT_8124 Target Table W_CAMP_HIST_F :SQL UPDATE statement: UPDATE W_CAMP_HIST_F SET PARTY_WID = ?, … X_LAST_UPD_WID = ? WHERE ROW_WID = ? Otherwise every single row update would perform Full Table Scan and result in very low throughput of few rows per second. Important! You should have the required indexes for your Update transformations to use Index (if possible, Unique) Scans rather than expensive Full Table Scans for each update record. The additional improvements for long running update mappings can be achieved by parallelizing the concurrent updates in the same target table. Requirements for Implementing Concurrent Updates 1. You should create an index on your target table columns in WHERE clause of your UPDATE statement to use Index Access path for each UPDATE DML. 2. Ensure no BITMAP indexes on the Target table during the concurrent UPDATE executions. Otherwise you may end up with deadlocks during your ETL. Implement Staging Table HASH Partitioning Oracle Table Partitioning provides an option to implement hash partitions, which will ensure even data distribution across all table partitions. Every time you execute an incremental ETL, DAC will truncate staging tables (_DS, _FS, etc), and then Informatica SDE mappings populate them with incremental changes extracted from Source environments. Hash Partitioning 92 the identified staging table (W_GEO_DS in our example) will ensure even data distribution across all partitions for each incremental ETL run: SQL> RENAME w_camp_hist_fs TO w_camp_hist_fs_bak; SQL> CREATE TABLE w_camp_hist_fs PARTITION BY HASH(integration_id) PARTITIONS 4 AS SELECT * FROM w_camp_hist_fs_bak; SQL> SELECT partition_name FROM user_tab_partitions WHERE table_name='W_CAMP_HIST_FS'; PARTITION_NAME -----------------------------SYS_P41 SYS_P42 SYS_P43 SYS_P44 Note: No changes need to be done to the table definition in DAC. General recommendations for hash partitioning implementation: 1. When picking the partitioning key, consider using the unique keys, such as ROW_WID, INTEGRATION_ID, etc. If there are no unique keys, choose the column with the largest value of distinct keys. 2. Important! If there are any indexes on the original staging table, you must create them on the hash partitioned table as well. You do not need to create them as global or local; otherwise you will have to use Action Framework for them. 3. Create 4-6 hash partitions at most. Building more hash partitions and corresponding parallel sessions would not make the mapping running faster. The larger number of parallel sessions would increase the load on Informatica tier when building CDC Lookups for each hash partition, as well as Target database tier performing more concurrent updates. Create Parallel Sessions in Workflow Manager Create the same number of the sessions as the number of hash partitions, each session running against a dedicated partition and configure the workflow to run the sessions in parallel: 1. Open the desired workflow in Informatica Workflow Manager. 2. Create four copies of the original Session in the opened Workflow. 3. Override each session’s SQL override, hard-coding a unique partition name instead of the staging table name, i.e. FROM W_CAMP_HIST_FS partition(SYS_P41) W_CAMP_HIST_FS 4. If there is a CDC Lookup, which joins a staging and a target table, then make sure you update it to point to a dedicated partition of the staging table for each of the four sessions. 5. Configure your workflow to run the four new sessions in parallel and remove the original session. 6. Save the changes and test the updated mapping. You may consider applying the same approach to such mappings as SIL_PositionDimensionHierarchy_AsIsUpdate, which reads and updates W_POSITION_DH table. In this case you apply hash partitioning to W_POSITION_DH table using ROW_WID for its partitioning key. Informatica Pipeline Partitioning Informatica Pipeline Partitioning can help to speed up an Informatica workflow performance by implementing pipelines for its session(s). Each session can have one or more pipelines. A pipeline consists of a source qualifier and all the transformations and targets that receive data from the source qualifier. When the Integration Service runs a session, it partitions its pipeline(s) and performs extract, transformation, and load for each partition in parallel. 93 Important! The Pipeline Partitioning Option requires an additional license from Informatica. Please consult Informatica Power Center Workflow Administration Guide and Power Center Performance Tuning Guide for detailed instructions on how to enable and configure pipeline partitioning. Oracle BI Applications SIL mappings with large fraction of row updates can benefit the most from using Informatica Pipeline Partitioning. Such mappings run default UPDATE actions for each input row, and produce the throughput ranging from 400 to 800 rows per second depending on the hardware specifications. You can mitigate the slower performance by running multiple update threads in parallel, assuming both Informatica and target database boxes have sufficient resources. In general, a single update response time is determined by an average time it takes to locate the read block. The internal tests for a target table updates using a unique index on the table PK show that it takes three logical IOs and one physical IO per update operation. Assuming logical IO’s equal to 0.1 milliseconds and physical IO - 3 milliseconds on an average hardware, you can get 1.3 millisecond per update or approximately 770 rows per second. Typically the SIL source qualifier can operate with much higher throughput. It reads data blocks straight from the staging table and it normally takes no more than 10% of physical reads, the rest is cached in DB buffer cache. A single read delivers more than one row into the client’s buffer, typically 5 to 10 rows per read. A conservative estimate for 0.4 milliseconds per one fetch of five rows gives the throughput of 12,500 rows per second. Even though its READER thread can operate much faster, the mapping’s performance is determined by its slowest thread, its WRITER, operating at max 800 rows per second. So, the READER remains idle for 84% of its time, while the WRITER works at 100% of its capacity. At the same time the WRITER thread consumes a tiny fraction of the target hardware resources for performing row-by-row updates. You can add an additional WRITER partition to a pipeline so that they both work concurrently. Then the READER’s busy percentage will go up from 16% to 32%, and the session’s overall throughput will double. As you proceed adding more and more WRITER partitions, they will start competing for both the Informatica and the target resources, so the number of pipeline partitions should not exceed more than four. Then you can expect to get 2.5-3 times better throughput for your mapping. You should monitor the mapping threads workload and idle percentage and try to achieve a balance among all three threads, READER, TRANS and WRITER. It is important to configure the pipeline partitioning within the overall ETL execution plan context. Suspend and Resume Informatica Mappings (Oracle RDBMS) After a long running Reader query session in a source database, ETL Administrators may encounter poor Informatica Writer performance in a target database. A typical case may involve redundant indexes on the target table, left in the database by oversight. Rather than terminating the session and re-running the expensive Reader SQL, consider suspending Informatica session, dropping the index and resuming the session: Identify the Informatica Session’s Process ID in Oracle database and then use the oradebug suspend/resume commands: SQL> SELECT p.spid, s.process FROM v$process p, s$session WHERE p.addr=s.addr AND s.module like ‘%pmcmd%’; SQL> oradebug setorapid 172 SQL> oradebug suspend SQL> DROP INDEX W_PAYROLL_FS_U1; SQL> oradebug resume 94 Oracle MERGE in Informatica to Improve Updates Performance You may find several bottleneck mappings, performing heavy row-by-row updates as well as inserts in your ETL runs. Such mappings use default INSERT and UPDATE DMLs in Informatica Writer thread. As an alternative, you can use Oracle RDBMS MERGE DML to achieve better performance. This chapter will cover three ways to use Oracle MERGE: 1. MERGE SQL in Informatica Update Override 2. MERGE in Post SQL in Update Override 3. MERGE in Informatica SQL Transformation Each option may cover different implementation scenarios and ETL logic requirements. MERGE SQL in Informatica Update Override Some BI Analytics Applications Informatica mappings use Update Override option in Target Definition. If you find a Merge SQL to be a better performing option, then simply use the updated MERGE SQL instead of UPDATE in Update Override. The following example shows the use of Oracle MERGE in PLP_PayrollFact_PositionHierarchy_Update mapping. The replacement MERGE SQL eliminates costly full table scan of a major W_PAYROLL_F table, produces much more effective execution plan, and delivers significant runtime improvement. The original explain plan: ----------------------------------------------------------------------------------------------------------------| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | ----------------------------------------------------------------------------------------------------------------| 0 | UPDATE STATEMENT | | 383K| 31M| 1149K (34)| 18:04:32 | | 1 | UPDATE | W_PAYROLL_F | | | | | |* 2 | HASH JOIN RIGHT SEMI | | 383K| 31M| 199 (3)| 00:00:12 | | 3 | VIEW | VW_SQ_1 | 1 | 39 | 2 (0)| 00:00:01 | | 4 | NESTED LOOPS | | 1 | 85 | 2 (0)| 00:00:01 | | 5 | NESTED LOOPS | | 1 | 70 | 0 (0)| 00:00:01 | | 6 | INDEX FULL SCAN | W_POSITION_DH_PRE_CHG_TMP_M1 | 1 | 26 | 0 (0)| 00:00:01 | |* 7 | INDEX RANGE SCAN | W_POSITION_DH_POST_CHG_TMP_M1 | 1 | 44 | 0 (0)| 00:00:01 | | 8 | TABLE ACCESS BY INDEX ROWID| W_DAY_D | 47 | 705 | 2 (0)| 00:00:01 | |* 9 | INDEX RANGE SCAN | W_DAY_D_M39 | 1 | | 1 (0)| 00:00:01 | | 10 | TABLE ACCESS FULL | W_PAYROLL_F | 383K| 17M| 196 (3)| 00:00:12 | | 11 | NESTED LOOPS | | 1 | 85 | 2 (0)| 00:00:01 | | 12 | NESTED LOOPS | | 1 | 41 | 2 (0)| 00:00:01 | | 13 | TABLE ACCESS BY INDEX ROWID | W_DAY_D | 1 | 15 | 2 (0)| 00:00:01 | |* 14 | INDEX UNIQUE SCAN | W_DAY_D_P1 | 1 | | 1 (0)| 00:00:01 | |* 15 | INDEX RANGE SCAN | W_POSITION_DH_PRE_CHG_TMP_M1 | 1 | 26 | 0 (0)| 00:00:01 | |* 16 | INDEX RANGE SCAN | W_POSITION_DH_POST_CHG_TMP_M1 | 1 | 44 | 0 (0)| 00:00:01 | ----------------------------------------------------------------------------------------------------------------- The MERGE SQL Override: MERGE INTO W_PAYROLL_F USING (SELECT DISTINCT TMP_NEW.ROW_WID TMP_NEW_ROW_WID, W_PAYROLL_F.rowid rw FROM W_DAY_D, W_POSITION_DH_PRE_CHG_TMP TMP_OLD, W_POSITION_DH_POST_CHG_TMP TMP_NEW, W_PAYROLL_F WHERE W_PAYROLL_F.PAY_PERIOD_END_DT_WID = W_DAY_D.ROW_WID AND W_PAYROLL_F.EMP_POSTN_DH_WID = TMP_OLD.ROW_WID AND TMP_OLD.SCD1_WID = TMP_NEW.SCD1_WID AND TMP_NEW.EFFECTIVE_FROM_DT W_DAY_D.DAY_DT AND W_PAYROLL_F.EMP_POSTN_DH_WID TMP_NEW.ROW_WID ) TMP on (W_PAYROLL_F.rowid = TMP.rw) WHEN MATCHED THEN UPDATE SET W_UPDATE_DT = :TU.W_UPDATE_DT, ETL_PROC_WID = :TU.ETL_PROC_WID, 95 EMP_POSTN_DH_WID = TMP_NEW_ROW_WID The MERGE SQL Explain Plan: ------------------------------------------------------------------------------------------------------------------| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | ------------------------------------------------------------------------------------------------------------------| 0 | MERGE STATEMENT | | 1 | 48 | 11 (0)| 00:00:01 | | 1 | MERGE | W_PAYROLL_F | | | | | | 2 | VIEW | | | | | | | 3 | NESTED LOOPS | | 1 | 1027 | 11 (0)| 00:00:01 | | 4 | NESTED LOOPS | | 1 | 123 | 10 (0)| 00:00:01 | | 5 | NESTED LOOPS | | 1 | 97 | 10 (0)| 00:00:01 | | 6 | NESTED LOOPS | | 1 | 59 | 2 (0)| 00:00:01 | | 7 | INDEX FULL SCAN | W_POSITION_DH_POST_CHG_TMP_M1 | 1 | 44 | 0 (0)| 00:00:01 | | 8 | TABLE ACCESS BY INDEX ROWID| W_DAY_D | 47 | 705 | 2 (0)| 00:00:01 | |* 9 | INDEX RANGE SCAN | W_DAY_D_M39 | 1 | | 1 (0)| 00:00:01 | |* 10 | TABLE ACCESS BY INDEX ROWID | W_PAYROLL_F | 20 | 760 | 10 (0)| 00:00:01 | | 11 | BITMAP CONVERSION TO ROWIDS| | | | | | |* 12 | BITMAP INDEX SINGLE VALUE | W_PAYROLL_F_F12 | | | | | |* 13 | INDEX RANGE SCAN | W_POSITION_DH_PRE_CHG_TMP_M1 | 1 | 26 | 0 (0)| 00:00:01 | | 14 | TABLE ACCESS BY USER ROWID | W_PAYROLL_F | 1 | 904 | 1 (0)| 00:00:01 | ------------------------------------------------------------------------------------------------------------------- To implement Update Override, check out a mapping in Informatica Designer, double-click on Target Definition, click Properties tab and paste an updated MERGE SQL into Update Override field. Save the changes and check in the mapping. MERGE in Post SQL in Update Override If an Informatica mapping use Update Override, you can implement MERGE is to use Post SQL in Informatica Target Definition: 1. 2. 3. 4. 5. Double-click Target Definition for the chosen Informatica mapping in Designer. Click Properties tab Delete Update Override Put a MERGE syntax in Post SQL field Save the changes Such approach can be used not only for substituting default UPDATE logic, but also for more effective DELETEs. You can suppress the source qualifier query by adding ‘1=2’ predicate to its WHERE clause, and then use a manual DELETE in the Target Definition Post SQL. MERGE in Informatica SQL Transformation The next case covers more complex scenario, where a BI Analytics Applications mapping, typically load into a fact table, uses Update Strategy Transformation to perform inserts and updates depending on specific flags (ports) values. With a small volume of updates it is often enough to ensure unique indexes presence for the columns used in UPDATE DML WHERE clause. It is a bigger challenge to accommodate good performance for such mappings with very high update volumes. The following example uses SIL_APTransactionFact mapping to show Oracle MERGE implementation using Informatica SQL Transformation. Workflow Logic for AP Transaction Fact Load with MERGE 1. Truncate an auxiliary table W_AP_XACT_F_TMP. 2. Load table W_AP_XACT_F_TMP using the modified SIL_APTransactionFact session with INSERTs only, using Bulk mode. 3. MERGE table W_AP_XACT_F_TMP with W_AP_XACT_F using Oracle MERGE statement. Implement SIL_APTransactionFact Mapping and Session Changes The steps below will modify SIL_APTransactionFact mapping and session to load data into an auxiliary empty table W_AP_XACT_F_TMP, instead of the original target Fact table W_AP_XACT_F. 96 1. Create a new table W_AP_XACT_F_TMP using the following statement: SQL> CREATE TABLE W_AP_XACT_F_TMP AS SELECT * FROM W_AP_XACT_F WHERE 1 = 0; 2. Create a new Target in a scratch folder (WORK) by importing the table definition from the database. 3. Export the original SIL_APTransactionFact mapping into an XML file. Make sure you keep the original version backup. 4. Edit the XML file, replace all strings “W_AP_XACT_F” (double quotes included) with “W_AP_XACT_F_TMP” 5. Import edited XML file into the working folder WORK and save it in your Informatica repository. 6. Open the imported mapping in Informatica Designer. 7. Double-click expression Exp_W_AP_XACT_F_Update_Flg, click Ports tab and locate Update_Flg port. 8. Double-click Expression field to open Expression Editor. Replace IIF expression with ‘I’: Create MERGE_APTransactionFact Mapping Follow the steps below to create a new mapping MERGE_APTransactionFact, which will merge the auxiliary table W_AP_XACT_F_TMP into the original target Fact table W_AP_XACT_F: 1. Create flat file based source qualifier: a. Create and save a text file containing MERGE statement. Refer to the MERGE SQL section below. b. Open the working folder WORK and create a new Source from the text file. Make sure you specify the full path to the text file. c. Choose Delimited with semi column symbol as a field separator. d. Create a column ‘SQL_query’ of type string 2. Create a new Target for storing SQL error messages a. Create a new Target, using Flat File as a database type, in WORK Folder. b. Add a column ‘SQL_Errors’ of type string 97 3. Create a new mapping MERGE_APTransactionFact a. Create a new mapping MERGE_APTransactionFact b. Add a new transformation of ‘SQL Transformation’ type c. Open the new SQL Transformation Properties window and navigate to SQL Ports tab d. Add a new SQL Port ‘Query_Port’: i. Enter the size of the query file from step 1 in Precision field ii. Enter ~SQL_Port~ in SQL Query field 4. Add flat file source to the mapping 5. Add flat file target to the mapping 6. Connect Source Qualifier Port SQL_Query to SQL Transformation Port Query_Port 7. Connect SQL Transformation Port SQL_Error to Target Port SQL_Errors. 8. Save the newly created mapping in the repository. Create SIL_APTransactionFact and MERGE_APTransactionFact Sessions Open Informatica Workflow Manager and create two new sessions for SIL_APTransactionFact and MERGE_APTransactionFact mappings. 1. Create a new session SIL_APTransactionFact using WORK.SIL_APTransactionFact mapping in WORK Folder. 2. Open Session Properties Editor and set Commit Interval to 100,000. 3. Make sure both $sources and $target are set to $DBConnection_OLAP in Connections properties. 4. Select Source Qualifier and make sure it’s set to $DBConnection_OLAP. 5. Select Target and ensure it’s set to $DBConnection_OLAP. 6. Make sure Target load type is set to Bulk. 98 7. Create the second session MERGE_APTransactionFact using WORK. MERGE_APTransactionFact 8. Open Connections properties editor and enter $DBConnection_OLAP for SQL Transformation. 9. Click on SQ_import Source and check Source file directory and Source file name properties. 99 10. Copy the text file with SQL MERGE statement to the location, defined by Source file directory on Informatica server (default: $PMSourceFileDir\). Create SIL_APTransactionFact Workflow Create a new workflow SIL_APTransactionFact in WORK Folder and include both modified SIL_APTransactionFact and MERGE_APTransactionFact sessions sequentially. ORACLE MERGE SQL for SIL_APTransactionFact Refer to the MERGE SQL statement for MERGE_APTransactionFact Source Qualifier below. MERGE INTO W_AP_XACT_F T USING (SELECT GL_ACCOUNT_WID, BUDGET_ORG_WID, CUSTOMER_WID, CUSTOMER_FIN_PROFL_WID, SUPPLIER_WID, SPLR_ACCT_WID, SALES_REP_WID, SERVICE_REP_WID, ACCT_REP_WID, PURCH_REP_WID, PRODUCT_WID, SALES_PROD_WID, INVENTORY_PROD_WID, SUPPLIER_PROD_WID, COMPANY_LOC_WID, PLANT_LOC_WID, OPERATING_UNIT_ORG_WID, PAYABLES_ORG_WID, LEDGER_WID, COMPANY_ORG_WID, BUSN_AREA_ORG_WID, CTRL_AREA_ORG_WID, FIN_AREA_ORG_WID, SALES_ORG_WID, PURCHASE_ORG_WID, ISSUE_ORG_WID, DOC_TYPE_WID, CLRNG_DOC_TYPE_WID, REF_DOC_TYPE_WID, POSTING_TYPE_WID, CLRNG_POST_TYPE_WID, COST_CENTER_WID, PROFIT_CENTER_WID, DOC_STATUS_WID, BANK_WID, TAX_TYPE_WID, PAY_TERMS_WID, PAY_METHOD_WID, PROJECT_WID, TASK_WID, FINANCIAL_RESOURCE_WID, EXPENDITURE_ORG_WID, SOURCE_WID, TRANSACTION_DT_WID, TRANSACTION_TM_WID, POSTED_ON_DT_WID, POSTED_ON_TM_WID, CONVERSION_DT_WID, ORDERED_ON_DT_WID, INVOICED_ON_DT_WID, PURCH_ORDER_DT_WID, SPLR_ORDER_DT_WID, INVOICE_RECEIPT_DT_WID, CLEARED_ON_DT_WID, CLEARING_DOC_DT_WID, BASELINE_DT_WID, PLANNING_DT_WID, PAYMENT_DUE_DT_WID, MCAL_CAL_WID, AP_DOC_AMT, AP_LOC_AMT, AP_REMAINING_DOC_AMT, AP_REMAINING_LOC_AMT, XACT_QTY, UOM_CODE, DB_CR_IND, ACCT_DOC_ID, ACCT_DOC_NUM, ACCT_DOC_ITEM, ACCT_DOC_SUB_ITEM, CLEARING_DOC_NUM, CLEARING_DOC_ITEM, SALES_ORDER_NUM, SALES_ORDER_ITEM, SALES_SCH_LINE, SALES_INVOICE_NUM, SALES_INVOICE_ITEM, PURCH_ORDER_NUM, PURCH_ORDER_ITEM, PURCH_INVOICE_NUM, PURCH_INVOICE_ITEM, CUST_PUR_ORD_NUM, CUST_PUR_ORD_ITEM, SPLR_ORDER_NUM, SPLR_ORDER_ITEM, REF_DOC_NUM, REF_DOC_ITEM, DOC_HEADER_TEXT, LINE_ITEM_TEXT, ALLOCATION_NUM, GL_BALANCE_ID, BALANCE_ID, FED_BALANCE_ID, GL_RECONCILED_ON_DT, DOC_CURR_CODE, 100 LOC_CURR_CODE, LOC_EXCHANGE_RATE, GLOBAL1_EXCHANGE_RATE, GLOBAL2_EXCHANGE_RATE, GLOBAL3_EXCHANGE_RATE, CREATED_BY_WID, CHANGED_BY_WID, CREATED_ON_DT, CHANGED_ON_DT, AUX1_CHANGED_ON_DT, AUX2_CHANGED_ON_DT, AUX3_CHANGED_ON_DT, AUX4_CHANGED_ON_DT, DELETE_FLG, W_INSERT_DT, W_UPDATE_DT, TENANT_ID, INTEGRATION_ID, DATASOURCE_NUM_ID, X_CUSTOM FROM W_AP_XACT_F_TMP) S ON (T.INTEGRATION_ID = S.INTEGRATION_ID AND T.DATASOURCE_NUM_ID = S.DATASOURCE_NUM_ID) WHEN MATCHED THEN UPDATE SET T.GL_ACCOUNT_WID = S.GL_ACCOUNT_WID, T.BUDGET_ORG_WID = S.BUDGET_ORG_WID, T.CUSTOMER_WID = S.CUSTOMER_WID, T.CUSTOMER_FIN_PROFL_WID = S.CUSTOMER_FIN_PROFL_WID, T.SUPPLIER_WID = S.SUPPLIER_WID, T.SPLR_ACCT_WID = S.SPLR_ACCT_WID, T.SALES_REP_WID = S.SALES_REP_WID, T.SERVICE_REP_WID = S.SERVICE_REP_WID, T.ACCT_REP_WID = S.ACCT_REP_WID, T.PURCH_REP_WID = S.PURCH_REP_WID, T.PRODUCT_WID = S.PRODUCT_WID, T.SALES_PROD_WID = S.SALES_PROD_WID, T.INVENTORY_PROD_WID = S.INVENTORY_PROD_WID, T.SUPPLIER_PROD_WID = S.SUPPLIER_PROD_WID, T.COMPANY_LOC_WID = S.COMPANY_LOC_WID, T.PLANT_LOC_WID = S.PLANT_LOC_WID, T.OPERATING_UNIT_ORG_WID = S.OPERATING_UNIT_ORG_WID, T.PAYABLES_ORG_WID = S.PAYABLES_ORG_WID, T.LEDGER_WID = S.LEDGER_WID, T.COMPANY_ORG_WID = S.COMPANY_ORG_WID, T.BUSN_AREA_ORG_WID = S.BUSN_AREA_ORG_WID, T.CTRL_AREA_ORG_WID = S.CTRL_AREA_ORG_WID, T.FIN_AREA_ORG_WID = S.FIN_AREA_ORG_WID, T.SALES_ORG_WID = S.SALES_ORG_WID, T.PURCHASE_ORG_WID = S.PURCHASE_ORG_WID, T.ISSUE_ORG_WID = S.ISSUE_ORG_WID, T.DOC_TYPE_WID = S.DOC_TYPE_WID, T.CLRNG_DOC_TYPE_WID = S.CLRNG_DOC_TYPE_WID, T.REF_DOC_TYPE_WID = S.REF_DOC_TYPE_WID, T.POSTING_TYPE_WID = S.POSTING_TYPE_WID, T.CLRNG_POST_TYPE_WID = S.CLRNG_POST_TYPE_WID, T.COST_CENTER_WID = S.COST_CENTER_WID, T.PROFIT_CENTER_WID = S.PROFIT_CENTER_WID, T.DOC_STATUS_WID = S.DOC_STATUS_WID, T.BANK_WID = S.BANK_WID, T.TAX_TYPE_WID = S.TAX_TYPE_WID, T.PAY_TERMS_WID = S.PAY_TERMS_WID, T.PAY_METHOD_WID = S.PAY_METHOD_WID, T.PROJECT_WID = S.PROJECT_WID, T.TASK_WID = S.TASK_WID, T.FINANCIAL_RESOURCE_WID = S.FINANCIAL_RESOURCE_WID, T.EXPENDITURE_ORG_WID = S.EXPENDITURE_ORG_WID, T.SOURCE_WID = S.SOURCE_WID, T.TRANSACTION_DT_WID = S.TRANSACTION_DT_WID, T.TRANSACTION_TM_WID = S.TRANSACTION_TM_WID, T.POSTED_ON_DT_WID = S.POSTED_ON_DT_WID, T.POSTED_ON_TM_WID = S.POSTED_ON_TM_WID, T.CONVERSION_DT_WID = S.CONVERSION_DT_WID, T.ORDERED_ON_DT_WID = S.ORDERED_ON_DT_WID, T.INVOICED_ON_DT_WID = S.INVOICED_ON_DT_WID, T.PURCH_ORDER_DT_WID = S.PURCH_ORDER_DT_WID, T.SPLR_ORDER_DT_WID = S.SPLR_ORDER_DT_WID, T.INVOICE_RECEIPT_DT_WID = S.INVOICE_RECEIPT_DT_WID, T.CLEARED_ON_DT_WID = S.CLEARED_ON_DT_WID, T.CLEARING_DOC_DT_WID = S.CLEARING_DOC_DT_WID, T.BASELINE_DT_WID = S.BASELINE_DT_WID, T.PLANNING_DT_WID = S.PLANNING_DT_WID, T.PAYMENT_DUE_DT_WID = S.PAYMENT_DUE_DT_WID, T.MCAL_CAL_WID = S.MCAL_CAL_WID, T.AP_DOC_AMT = S.AP_DOC_AMT, T.AP_LOC_AMT = S.AP_LOC_AMT, T.AP_REMAINING_DOC_AMT = S.AP_REMAINING_DOC_AMT, T.AP_REMAINING_LOC_AMT = S.AP_REMAINING_LOC_AMT, T.XACT_QTY = S.XACT_QTY, T.UOM_CODE = S.UOM_CODE, T.DB_CR_IND = S.DB_CR_IND, T.ACCT_DOC_ID = S.ACCT_DOC_ID, T.ACCT_DOC_NUM = S.ACCT_DOC_NUM, T.ACCT_DOC_ITEM = S.ACCT_DOC_ITEM, T.ACCT_DOC_SUB_ITEM = S.ACCT_DOC_SUB_ITEM, T.CLEARING_DOC_NUM = S.CLEARING_DOC_NUM, T.CLEARING_DOC_ITEM = S.CLEARING_DOC_ITEM, T.SALES_ORDER_NUM = S.SALES_ORDER_NUM, T.SALES_ORDER_ITEM = S.SALES_ORDER_ITEM, T.SALES_SCH_LINE = S.SALES_SCH_LINE, T.SALES_INVOICE_NUM = S.SALES_INVOICE_NUM, T.SALES_INVOICE_ITEM = S.SALES_INVOICE_ITEM, T.PURCH_ORDER_NUM = S.PURCH_ORDER_NUM, T.PURCH_ORDER_ITEM = S.PURCH_ORDER_ITEM, T.PURCH_INVOICE_NUM = S.PURCH_INVOICE_NUM, T.PURCH_INVOICE_ITEM = S.PURCH_INVOICE_ITEM, T.CUST_PUR_ORD_NUM = S.CUST_PUR_ORD_NUM, T.CUST_PUR_ORD_ITEM = S.CUST_PUR_ORD_ITEM, T.SPLR_ORDER_NUM = S.SPLR_ORDER_NUM, T.SPLR_ORDER_ITEM = S.SPLR_ORDER_ITEM, T.REF_DOC_NUM = S.REF_DOC_NUM, T.REF_DOC_ITEM = S.REF_DOC_ITEM, T.DOC_HEADER_TEXT = S.DOC_HEADER_TEXT, T.LINE_ITEM_TEXT = S.LINE_ITEM_TEXT, T.ALLOCATION_NUM = S.ALLOCATION_NUM, T.GL_BALANCE_ID = S.GL_BALANCE_ID, T.BALANCE_ID = S.BALANCE_ID, T.FED_BALANCE_ID = S.FED_BALANCE_ID, T.GL_RECONCILED_ON_DT = S.GL_RECONCILED_ON_DT, T.DOC_CURR_CODE = S.DOC_CURR_CODE, T.LOC_CURR_CODE = S.LOC_CURR_CODE, T.LOC_EXCHANGE_RATE = S.LOC_EXCHANGE_RATE, T.GLOBAL1_EXCHANGE_RATE = S.GLOBAL1_EXCHANGE_RATE, T.GLOBAL2_EXCHANGE_RATE = S.GLOBAL2_EXCHANGE_RATE, T.GLOBAL3_EXCHANGE_RATE = S.GLOBAL3_EXCHANGE_RATE, T.CREATED_BY_WID = S.CREATED_BY_WID, T.CHANGED_BY_WID = S.CHANGED_BY_WID, T.CREATED_ON_DT = S.CREATED_ON_DT, T.CHANGED_ON_DT = S.CHANGED_ON_DT, T.AUX1_CHANGED_ON_DT = S.AUX1_CHANGED_ON_DT, T.AUX2_CHANGED_ON_DT = S.AUX2_CHANGED_ON_DT, T.AUX3_CHANGED_ON_DT = S.AUX3_CHANGED_ON_DT, T.AUX4_CHANGED_ON_DT = S.AUX4_CHANGED_ON_DT, T.DELETE_FLG = S.DELETE_FLG, T.W_INSERT_DT = S.W_INSERT_DT, T.W_UPDATE_DT = S.W_UPDATE_DT, T.TENANT_ID = S.TENANT_ID, T.X_CUSTOM = S.X_CUSTOM WHEN NOT MATCHED THEN INSERT (T.GL_ACCOUNT_WID, T.BUDGET_ORG_WID, T.CUSTOMER_WID, T.CUSTOMER_FIN_PROFL_WID, T.SUPPLIER_WID, T.SPLR_ACCT_WID, T.SALES_REP_WID, T.SERVICE_REP_WID, T.ACCT_REP_WID, T.PURCH_REP_WID, T.PRODUCT_WID, T.SALES_PROD_WID, T.INVENTORY_PROD_WID, T.SUPPLIER_PROD_WID, T.COMPANY_LOC_WID, T.PLANT_LOC_WID, T.OPERATING_UNIT_ORG_WID, T.PAYABLES_ORG_WID, T.LEDGER_WID, T.COMPANY_ORG_WID, T.BUSN_AREA_ORG_WID, T.CTRL_AREA_ORG_WID, T.FIN_AREA_ORG_WID, T.SALES_ORG_WID, T.PURCHASE_ORG_WID, T.ISSUE_ORG_WID, T.DOC_TYPE_WID, T.CLRNG_DOC_TYPE_WID, T.REF_DOC_TYPE_WID, T.POSTING_TYPE_WID, T.CLRNG_POST_TYPE_WID, T.COST_CENTER_WID, T.PROFIT_CENTER_WID, T.DOC_STATUS_WID, T.BANK_WID, T.TAX_TYPE_WID, T.PAY_TERMS_WID, T.PAY_METHOD_WID, T.PROJECT_WID, 101 T.TASK_WID, T.FINANCIAL_RESOURCE_WID, T.EXPENDITURE_ORG_WID, T.SOURCE_WID, T.TRANSACTION_DT_WID, T.TRANSACTION_TM_WID, T.POSTED_ON_DT_WID, T.POSTED_ON_TM_WID, T.CONVERSION_DT_WID, T.ORDERED_ON_DT_WID, T.INVOICED_ON_DT_WID, T.PURCH_ORDER_DT_WID, T.SPLR_ORDER_DT_WID, T.INVOICE_RECEIPT_DT_WID, T.CLEARED_ON_DT_WID, T.CLEARING_DOC_DT_WID, T.BASELINE_DT_WID, T.PLANNING_DT_WID, T.PAYMENT_DUE_DT_WID, T.MCAL_CAL_WID, T.AP_DOC_AMT, T.AP_LOC_AMT, T.AP_REMAINING_DOC_AMT, T.AP_REMAINING_LOC_AMT, T.XACT_QTY, T.UOM_CODE, T.DB_CR_IND, T.ACCT_DOC_ID, T.ACCT_DOC_NUM, T.ACCT_DOC_ITEM, T.ACCT_DOC_SUB_ITEM, T.CLEARING_DOC_NUM, T.CLEARING_DOC_ITEM, T.SALES_ORDER_NUM, T.SALES_ORDER_ITEM, T.SALES_SCH_LINE, T.SALES_INVOICE_NUM, T.SALES_INVOICE_ITEM, T.PURCH_ORDER_NUM, T.PURCH_ORDER_ITEM, T.PURCH_INVOICE_NUM, T.PURCH_INVOICE_ITEM, T.CUST_PUR_ORD_NUM, T.CUST_PUR_ORD_ITEM, T.SPLR_ORDER_NUM, T.SPLR_ORDER_ITEM, T.REF_DOC_NUM, T.REF_DOC_ITEM, T.DOC_HEADER_TEXT, T.LINE_ITEM_TEXT, T.ALLOCATION_NUM, T.GL_BALANCE_ID, T.BALANCE_ID, T.FED_BALANCE_ID, T.GL_RECONCILED_ON_DT, T.DOC_CURR_CODE, T.LOC_CURR_CODE, T.LOC_EXCHANGE_RATE, T.GLOBAL1_EXCHANGE_RATE, T.GLOBAL2_EXCHANGE_RATE, T.GLOBAL3_EXCHANGE_RATE, T.CREATED_BY_WID, T.CHANGED_BY_WID, T.CREATED_ON_DT, T.CHANGED_ON_DT, T.AUX1_CHANGED_ON_DT, T.AUX2_CHANGED_ON_DT, T.AUX3_CHANGED_ON_DT, T.AUX4_CHANGED_ON_DT, T.DELETE_FLG, T.W_INSERT_DT, T.W_UPDATE_DT, T.TENANT_ID, T.INTEGRATION_ID, T.DATASOURCE_NUM_ID, T.X_CUSTOM) VALUES (S.GL_ACCOUNT_WID, S.BUDGET_ORG_WID, S.CUSTOMER_WID, S.CUSTOMER_FIN_PROFL_WID, S.SUPPLIER_WID, S.SPLR_ACCT_WID, S.SALES_REP_WID, S.SERVICE_REP_WID, S.ACCT_REP_WID, S.PURCH_REP_WID, S.PRODUCT_WID, S.SALES_PROD_WID, S.INVENTORY_PROD_WID, S.SUPPLIER_PROD_WID, S.COMPANY_LOC_WID, S.PLANT_LOC_WID, S.OPERATING_UNIT_ORG_WID, S.PAYABLES_ORG_WID, S.LEDGER_WID, S.COMPANY_ORG_WID, S.BUSN_AREA_ORG_WID, S.CTRL_AREA_ORG_WID, S.FIN_AREA_ORG_WID, S.SALES_ORG_WID, S.PURCHASE_ORG_WID, S.ISSUE_ORG_WID, S.DOC_TYPE_WID, S.CLRNG_DOC_TYPE_WID, S.REF_DOC_TYPE_WID, S.POSTING_TYPE_WID, S.CLRNG_POST_TYPE_WID, S.COST_CENTER_WID, S.PROFIT_CENTER_WID, S.DOC_STATUS_WID, S.BANK_WID, S.TAX_TYPE_WID, S.PAY_TERMS_WID, S.PAY_METHOD_WID, S.PROJECT_WID, S.TASK_WID, S.FINANCIAL_RESOURCE_WID, S.EXPENDITURE_ORG_WID, S.SOURCE_WID, S.TRANSACTION_DT_WID, S.TRANSACTION_TM_WID, S.POSTED_ON_DT_WID, S.POSTED_ON_TM_WID, S.CONVERSION_DT_WID, S.ORDERED_ON_DT_WID, S.INVOICED_ON_DT_WID, S.PURCH_ORDER_DT_WID, S.SPLR_ORDER_DT_WID, S.INVOICE_RECEIPT_DT_WID, S.CLEARED_ON_DT_WID, S.CLEARING_DOC_DT_WID, S.BASELINE_DT_WID, S.PLANNING_DT_WID, S.PAYMENT_DUE_DT_WID, S.MCAL_CAL_WID, S.AP_DOC_AMT, S.AP_LOC_AMT, S.AP_REMAINING_DOC_AMT, S.AP_REMAINING_LOC_AMT, S.XACT_QTY, S.UOM_CODE, S.DB_CR_IND, S.ACCT_DOC_ID, S.ACCT_DOC_NUM, S.ACCT_DOC_ITEM, S.ACCT_DOC_SUB_ITEM, S.CLEARING_DOC_NUM, S.CLEARING_DOC_ITEM, S.SALES_ORDER_NUM, S.SALES_ORDER_ITEM, S.SALES_SCH_LINE, S.SALES_INVOICE_NUM, S.SALES_INVOICE_ITEM, S.PURCH_ORDER_NUM, S.PURCH_ORDER_ITEM, S.PURCH_INVOICE_NUM, S.PURCH_INVOICE_ITEM, S.CUST_PUR_ORD_NUM, S.CUST_PUR_ORD_ITEM, S.SPLR_ORDER_NUM, S.SPLR_ORDER_ITEM, S.REF_DOC_NUM, S.REF_DOC_ITEM, S.DOC_HEADER_TEXT, S.LINE_ITEM_TEXT, S.ALLOCATION_NUM, S.GL_BALANCE_ID, S.BALANCE_ID, S.FED_BALANCE_ID, S.GL_RECONCILED_ON_DT, S.DOC_CURR_CODE, S.LOC_CURR_CODE, S.LOC_EXCHANGE_RATE, S.GLOBAL1_EXCHANGE_RATE, S.GLOBAL2_EXCHANGE_RATE, S.GLOBAL3_EXCHANGE_RATE, S.CREATED_BY_WID, S.CHANGED_BY_WID, S.CREATED_ON_DT, S.CHANGED_ON_DT, S.AUX1_CHANGED_ON_DT, S.AUX2_CHANGED_ON_DT, S.AUX3_CHANGED_ON_DT, S.AUX4_CHANGED_ON_DT, S.DELETE_FLG, S.W_INSERT_DT, S.W_UPDATE_DT, S.TENANT_ID, S.INTEGRATION_ID, S.DATASOURCE_NUM_ID, S.X_CUSTOM); SIL_APTransactionFact MERGE Version: Test Results on Exadata V2.2 ¼ Rack The internal benchmarks for SIL_APTransactionFact with MERGE SQL showed significant improvement on large update volumes. The target table W_AP_XACT_F had 533,805,574 rows, and the update volume in the test scenarios was 1,206,431 rows. The original version completed in 45 min with the average Writer throughput 550 RPS. The MERGE version ranged from 17 to 25 min. Oracle spawned 50 processes for the MERGE SQL Parallel execution and completed within 7-10 min. The results from the traced MERGE session are below: call count ------- -----Parse 51 Execute 51 Fetch 0 ------- -----total 102 cpu elapsed disk query current -------- ---------- ---------- ---------- ---------0.06 1.62 0 908 1 3624.75 14570.56 1841896 2060130 1510235 0.00 0.00 0 0 0 -------- ---------- ---------- ---------- ---------3624.82 14572.19 1841896 2061038 1510236 rows ---------0 1206431 0 ---------1206431 Rows (1st) Rows (avg) Rows (max) ---------- ---------- ---------- Row Source Operation --------------------------------------------------- 102 0 0 0 MERGE W_AP_XACT_F (cr=1306 pr=0 pw=0 time=5756109 us) 1206431 23656 1206431 PX COORDINATOR (cr=1290 pr=0 pw=0 time=4982213 us) 0 0 0 PX SEND QC (RANDOM) :TQ10002 (cr=0 pr=0 pw=0 time=0 us cost=308063 size=13245817572 card=1226124) 0 20639 22170 VIEW (cr=0 pr=1742 pw=1742 time=49057851 us) 0 20639 22170 HASH JOIN OUTER BUFFERED (cr=0 pr=1742 pw=1742 time=49039766 us cost=308063 size=13245817572 card=1226124) 0 20639 22170 BUFFER SORT (cr=0 pr=0 pw=0 time=3333175 us) 0 20639 22170 PX RECEIVE (cr=0 pr=0 pw=0 time=3293974 us cost=17352 size=11659590591 card=1132109) 0 0 0 PX SEND HASH :TQ10000 (cr=0 pr=0 pw=0 time=0 us cost=17352 size=11659590591 card=1132109) 1206431 23656 1206431 TABLE ACCESS STORAGE FULL W_AP_XACT_F_TMP (cr=1250 pr=0 pw=0 time=27361 us cost=17352 size=11659590591 card=1132109) 0 9893402 10518024 PX RECEIVE (cr=0 pr=0 pw=0 time=37570509 us cost=138045 size=291380050080 card=578135020) 0 0 0 PX SEND HASH :TQ10001 (cr=0 pr=0 pw=0 time=0 us cost=138045 size=291380050080 card=578135020) 0 454908 11869354 PX BLOCK ITERATOR (cr=39089 pr=34374 pw=0 time=970735 us cost=138045 size=291380050080 card=578135020) 0 454908 11869354 TABLE ACCESS STORAGE FULL W_AP_XACT_F (cr=39089 pr=34374 pw=0 time=894154 us cost=138045 size=291380050080 card=578135020) The stats show the accumulated elapsed query time for 50 workers equal 14,571 seconds, or 291 seconds for the MERGE query. Informatica Load Balancing Implementation To improve the performance on the ETL tier, consider implementing Informatica Load Balancing to balance the Informatica load across multiple ETL tiers and to speed up the mappings execution. You can register one or more Informatica servers and the Informatica Repository Server in DAC, and you can specify the number of workflows that can be executed in parallel. The DAC server automatically load balances across the servers. It does not run more sessions than the value specified for each of them. To implement Informatica Load Balancing in DAC perform the following steps. 1. Register additional Informatica Server(s) in DAC. Refer to the section Registering Informatica Servers in the DAC Client in the publication Oracle Business Intelligence Applications Installation Guide for Informatica PowerCenter Users, Version 7.9.6 Configure the database connection information in Informatica Workflow Manager. Refer to the section Process of Configuring the Informatica Repository in Workflow Manager in the publication Oracle Business Intelligence Applications Installation Guide for Informatica PowerCenter Users, Version 7.9.6. 2. Important! Deploying multiple Informatica domains and repository services on different server nodes would cause additional maintenance overhead. Any repository updates or configuration changes, performed on one node, must be replicated across all the participating nodes in the multiple domains configuration. To minimize the overhead from Informatica repositories maintenance, consider the load balancing implementation below: Configure a single Informatica domain and deploy a single PowerCenter Repository service in it. Create Informatica services on each Informatica node and subscribe them to the single domain OBIEE Queries Performance Recommendations Introduction Oracle BI Applications uses Oracle BI Server Enterprise Edition (OBIEE) for building reports and dashboards as well as running ad-hoc queries in OBIEE Answers. End users can run stored reports from OBIEE Catalog, or put together custom queries using the Presentation Layer components in Oracle BI Presentation Server. Each report or a query corresponds to a single Logical SQL (LSQL), and each LSQL can spawn one or more Physical SQLs (PSQL), running in a target database (warehouse). A dashboard is a collection of reports or LSQLs, and each LSQL spawns one and more PSQLs in database. If you set parallelism too high in database, you could end up with spikes in the database workload, especially during peak hours with more business 103 users running their reports. So, careful sizing, configuration and monitoring of all BI Apps hardware tiers is essential to ensure desired scalability for OBIEE reports. OBIEE deployments are available for a single node, or cluster configuration across multiple nodes for better scalability and load balanced. Oracle also released Exalytics for addressing high volume / scalability requirements. Refer to additional documentation on OBIEE cluster configuration and Exalytics for more details. This chapter covers general techniques and examples to address end user queries performance. Refer to OBIEE System Administrator Guide, “Managing Performance Tuning and Query Caching” for additional information. OBIEE Configuration, Diagnostics and Performance Analysis OBIEE Logging Using LOGLEVEL=7 OBIEE provides comprehensive logging of all user activities by writing the detailed diagnostic information into its NQQuery.log. It records the most comprehensive diagnostic information when its logging level is set to 7 in OBIEE Repository (RPD). Refer to OBIEE Documentation how to set LOGLEVEL in RPD. Most Oracle BI Apps implementations can operate with permanent LOGLEVEL=7 without noticeable impact to OBIEE performance. Level 7 does introduce additional overhead in OBIEE, so for high workload implementations you may consider setting it to value = 7 for a specific period of time to capture desired statistics, and then switch it back to lower value. You need to change LOGLEVEL for each node in OBIEE Cluster configuration. OBIEE records detailed logging events in chronological order in its NQQuery.log file. Oracle BI Applications Performance team developed NQQuery.log parser, delivered in the patch 11847038, and Oracle Database schema and APEX GUI in the patch 13581927 for parsing and assembling all OBIEE LSQL transactions, uploading and analyzing the parsed data. Both patches are refreshed monthly on Oracle Support Website. Refer to the patches readme for prerequisite and implementation details. You can install the log parser and periodically load your captured and parsed data into your local database, analyze performance bottlenecks and monitor trends, concurrency, and other useful information using APEX GUI. Note: NQQuery.log default size is 10 Mb. You can set it up to 100Mb to capture more details. You can consider merging _old and .log files in correct chronological order and then run the parser for the merged file. Refer to the patch readme on merging and processing OBIEE Cluster log files. Important! OBIEE may write some transactions (LSQL) events into multiple NQQuery.log files (during the file switch), so you will get Incomplete or orphan transactions in APEX GUI. They are reported as a separate category in UI. OBIEE Init Blocks Overhead Each OBIEE session executes all initialization blocks, defined in RPD, before it start running any reports. Init Blocks could be one of primary sources of significant overhead in OBIEE, so make sure you monitor their use, disable / delete any outdated and resolve failing blocks. NQQuery.log parser and APEX GUI do capture and publish init blocks statistics, however the parser may take longer time to digest init blocks statistics. Some init blocks can even spawn logical and physical SQLs, which may result in longer execution time. So, make sure you carefully utilize all the flexibility provided in OBIEE session initialization. OBIEE Cache Optimization OBIEE Cache can help to improve reports performance and offload physical data sources (data warehouse). Refer to OBIEE configuration parameters in NQSConfig.ini or EM to set up their values. You may consider changing the default values such as MAX_ROWS_PER_CACHE_ENTRY, MAX_CACHE_ENTRY_SIZE, MAX_CACHE_ENTRIES to higher values to improve your caching utilization. OBIEE automatically purges its cache depending on the defined limits. You can review the cache statistics in the APEX GUI after you parse NQQuery.log. 104 OBIEE Database Features OBIEE supports critical database features, which can optimize queries performance much more effectively. Make sure you read carefully about the features, enabled by default, which you want to turn off. Some of them, such as DERIVED_TABLES_SUPPORTED, could have significant impact on reports performance. Turning it off would result in dramatic overhead on database, since OBIEE would fire more physical SQLs per reports, generate redundancy in database and fetch larger row counts from database. OBIEE NQQuery.log Statistics OBIEE records quite few statistics for every logical SQL transaction. It is important to use the correct parameters for measuring queries performance. The table below shows two reports from a sample log file. Hashid c062a5c4c3204862fae853 36732ad21c8c0be021 bc2858b1067803c17a91ca 64dde3c57fc76ff858 Lpath /shared/Supply Chain and Order Management/Sales Revenue/Customer Report/Recent Customer Invoices /shared/Supply Chain and Order Management/Sales Revenue/Customer Report/Customer Scorecard #Ran 1 Max Lresp 0:04:04 Max Lresp (s) 244 Max #PSQL 1 Max Lrows 65050 Max Sum Prows 324406 1 0:00:16 16 2 10 10 Logical Response, s, (LResp, s) is the most appropriate measure of reports (LSQL) runtime. NqDur(s) / Dur(s) define lifetime for open cursors for corresponding OBIEE sessions. They should NOT be used for measuring reports runtime. LRows shows the number of records fetched or prepared by BI Server to fetch onto a dashboard. Some reports may produce many more records, but customers scroll through a smaller set. PRows is the sum of physical rows returned by all physical SQLs, spawned by LSQL (report). BI Server may join PSQL resultsets and produce smaller volume, so Logical rows may not match Physical rows. The example above shows stats for two sample reports. The first report has a potential issue with lack of good filters, since it has only one physical SQL, returning 324,406 rows. In contrast, the second report doesn’t show any red flags and completes in 16 seconds. Inadequate Filtering in OBIEE Reports Some reports may have too generic filter values or lack good filters, and generate very high row counts. Prows and Lrows can be used to flag potential performance issues in such queries with bad filters. End users may not be aware of the final rowcounts, and keep scrolling for more data, or worse, fetch all records at once. After you identify such reports: 1. Request the report owners to further constrain the row counts by adding more efficient filters. 2. Remove such reports from default dashboards. 3. Define them as links on dashboards. OBIEE Queries Optimization Using Materialized Views Introduction Oracle BI Server Enterprise Edition (OBIEE) logical model for Oracle Business Intelligence Applications allows for building logical business queries, which may result in rather complex physical SQLs (sometimes multiple physical SQLs per logical query). Preaggregation, using Oracle Materialized Views (MV) to build complex views and pre-compute summaries, in conjunction with Query Rewrite can significantly improve the end user queries performance. 105 Query Rewrite is critical for BI Analytics Warehouse logical queries, handled by OBIEE. The database optimizer transparently rewrites a physical SQL, generated by OBIEE, to use a custom MV. You do not need to expose the MV in in RPD physical or logical layers, or make any changes to your logical SQL. Since query rewrite is transparent, MVs can be added or dropped in the physical warehouse schema without invalidating the original logical maps in OBIEE. Important! Depending on the set of logical SQLs, which run against target fact tables, and the aggregation scenarios, you may not always be able to implement the aggregation logic in a single MV, and end up creating more and more MVs. You should carefully benchmark the overhead from refreshing all MVs. If the overhead become too expensive, you can consider building an aggregate table and updating your RPD logical model instead of using MVs. Database Configuration Requirements for using MVs 1. You should set the following parameters in your Target Warehouse init.ora: query_rewrite_enabled = true query_rewrite_integrity = trusted star_transformation_enabled = true 2. Issue the following database grants to your warehouse schema: GRANT query rewrite TO ; GRANT create materialized view TO ; Custom Materialized View Guidelines The following example provides step-by-step instructions how to build an MV and ensure query rewrite. 1. Identify a slow physical SQL generated by OBIEE, and review the SQL logic: SELECT SUM(CASE WHEN T263758.W_STATUS_CODE = 'APPROVED' THEN (T631953.LINE_AMT - T631953.CANCELLED_AMT) * T631953.GLOBAL1_EXCHANGE_RATE ELSE 0 END) AS c1, T31328.PER_NAME_YEAR AS c2, T31328.CAL_MONTH AS c3, SUBSTR(T31328.MONTH_NAME, 1, 3) AS c5, NVL(T257401.XV_LOB, 'Unknown') AS c6 FROM W_INVENTORY_PRODUCT_D T257401 /* Dim_W_INVENTORY_PRODUCT_D */, W_DAY_D T31328 /* Dim_W_DAY_D_Common */, W_STATUS_D T263758 /* Dim_W_STATUS_D_Purchase_Order_Status */, W_STATUS_D T278452 /* Dim_W_STATUS_D_Purchase_Order_Cycle_Status */, W_XACT_TYPE_D T473562 /* Dim_W_XACT_TYPE_D_Purchase_Order_Shipment_Type */, W_XACT_TYPE_D T476739 /* Dim_W_XACT_TYPE_D_Purchase_Order_Consigned_Type */, W_PURCH_SCHEDULE_LINE_F T631953 /* Fact_W_PURCH_SCHEDULE_LINE_F_POApproval_Date */ WHERE (T31328.ROW_WID = T631953.ORDERED_ON_DT_WID AND T257401.ROW_WID = T631953.INVENTORY_PROD_WID AND T263758.ROW_WID = T631953.APPROVAL_STATUS_WID AND T278452.ROW_WID = T631953.CYCLE_STATUS_WID AND T473562.ROW_WID = T631953.SHIPMENT_TYPE_WID AND T31328.PER_NAME_YEAR = '2010' AND T476739.ROW_WID = T631953.CONSIGNED_TYPE_WID AND T631953.DELETE_FLG = 'N' AND T278452.W_SUBSTATUS_CODE 'CANCELLED' AND T473562.W_XACT_TYPE_CODE 'PREPAYMENT' AND (T278452.ROW_WID IN (0) OR T278452.W_STATUS_CLASS IN ('PURCH_CYCLE')) AND 106 T476739.W_XACT_TYPE_CODE 'CONSIGNED-CONSUMED') GROUP BY T31328.CAL_MONTH, T31328.PER_NAME_YEAR, SUBSTR(T31328.MONTH_NAME, 1, 3), NVL(T257401.XV_LOB, 'Unknown'); Elapsed: 00:02:06.26 The query execution plan is below: Plan hash value: 909913791 --------------------------------------------------------------------------------------------------------------------------------------| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time | Pstart| Pstop | --------------------------------------------------------------------------------------------------------------------------------------| 0 | SELECT STATEMENT | | 51 | 8670 | | 250K (4)| 01:15:01 | | | | 1 | HASH GROUP BY | | 51 | 8670 | | 250K (4)| 01:15:01 | | | |* 2 | HASH JOIN | | 670K| 108M| | 249K (4)| 01:15:00 | | | | 3 | INDEX FULL SCAN | W_STATUS_D_U2 | 68 | 816 | | 1 (0)| 00:00:01 | | | |* 4 | HASH JOIN | | 670K| 100M| | 249K (4)| 01:14:59 | | | | 5 | VIEW | index$_join$_006 | 108 | 1080 | | 3 (34)| 00:00:01 | | | |* 6 | HASH JOIN | | | | | | | | | | 7 | BITMAP CONVERSION TO ROWIDS | | 108 | 1080 | | 1 (0)| 00:00:01 | | | |* 8 | BITMAP INDEX FULL SCAN | IDX_XACT_TYPE_D | | | | | | | | | 9 | INDEX FAST FULL SCAN | W_XACT_TYPE_D_P1 | 108 | 1080 | | 1 (0)| 00:00:01 | | | |* 10 | HASH JOIN | | 673K| 95M| | 249K (4)| 01:14:59 | | | | 11 | VIEW | index$_join$_005 | 108 | 1080 | | 3 (34)| 00:00:01 | | | |* 12 | HASH JOIN | | | | | | | | | | 13 | BITMAP CONVERSION TO ROWIDS | | 108 | 1080 | | 1 (0)| 00:00:01 | | | |* 14 | BITMAP INDEX FULL SCAN | IDX_XACT_TYPE_D | | | | | | | | | 15 | INDEX FAST FULL SCAN | W_XACT_TYPE_D_P1 | 108 | 1080 | | 1 (0)| 00:00:01 | | | |* 16 | HASH JOIN | | 676K| 89M| 65M| 249K (4)| 01:14:59 | | | |* 17 | HASH JOIN | | 676K| 58M| | 54434 (4)| 00:16:20 | | | |* 18 | TABLE ACCESS FULL | W_STATUS_D | 5 | 115 | | 2 (0)| 00:00:01 | | | |* 19 | HASH JOIN | | 1554K| 99M| | 54417 (4)| 00:16:20 | | | | 20 | PART JOIN FILTER CREATE | :BF0000 | 372 | 6696 | | 8 (0)| 00:00:01 | | | | 21 | TABLE ACCESS BY INDEX ROWID| W_DAY_D | 372 | 6696 | | 8 (0)| 00:00:01 | | | |* 22 | INDEX RANGE SCAN | X_PER_NAME_YEAR | 372 | | | 1 (0)| 00:00:01 | | | | 23 | PARTITION RANGE JOIN-FILTER | | 8811K| 411M| | 54328 (4)| 00:16:18 |:BF0000|:BF0000| |* 24 | TABLE ACCESS FULL | W_PURCH_SCHEDULE_LINE_F | 8811K| 411M| | 54328 (4)| 00:16:18 |:BF0000|:BF0000| | 25 | TABLE ACCESS FULL | W_INVENTORY_PRODUCT_D | 23M| 1064M| | 148K (5)| 00:44:28 | | | -------------------------------------------------------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------2 - access("T263758"."ROW_WID"="T631953"."APPROVAL_STATUS_WID") 4 - access("T476739"."ROW_WID"="T631953"."CONSIGNED_TYPE_WID") 6 - access(ROWID=ROWID) 8 - filter("T476739"."W_XACT_TYPE_CODE"'CONSIGNED-CONSUMED') 10 - access("T473562"."ROW_WID"="T631953"."SHIPMENT_TYPE_WID") 12 - access(ROWID=ROWID) 14 - filter("T473562"."W_XACT_TYPE_CODE"'PREPAYMENT') 16 - access("T257401"."ROW_WID"="T631953"."INVENTORY_PROD_WID") 17 - access("T278452"."ROW_WID"="T631953"."CYCLE_STATUS_WID") 18 - filter(("T278452"."W_STATUS_CLASS"='PURCH_CYCLE' OR "T278452"."ROW_WID"=0) AND "T278452"."W_SUBSTATUS_CODE"'CANCELLED') 19 - access("T31328"."ROW_WID"="T631953"."ORDERED_ON_DT_WID") 22 – access("T31328"."PER_NAME_YEAR"='2010' 2. Create a Materialized View. This query can be rewritten to move the aggregation logic into a Materialized View: Note: Consider using the same aliases to physical tables in your MV as in the original physical SQL. CREATE MATERIALIZED VIEW CUST_W_PURCH_SCHED_LINE_F_MV1 BUILD IMMEDIATE REFRESH COMPLETE ENABLE QUERY REWRITE AS SELECT t31328.per_name_year, t31328.CAL_MONTH, t31328.MONTH_NAME, t631953.inventory_prod_wid, t631953.approval_status_wid, t631953.cycle_status_wid, t631953.shipment_type_wid, t631953.consigned_type_wid, t631953.delete_flg, sum(t631953.line_amt) line_amt, 107 sum(t631953.cancelled_amt) cancelled_amt, sum((t631953.line_amt - t631953.cancelled_amt )* t631953.global1_exchange_rate) amt, SUM ( CASE WHEN t263758.w_status_code = 'APPROVED' THEN (t631953.line_amt - t631953.cancelled_amt) * t631953.global1_exchange_rate ELSE 0 END ) AS amt0 FROM w_purch_schedule_line_f t631953, w_day_d t31328, w_status_d t263758 WHERE t631953.ordered_on_dt_wid = t31328.row_wid AND t263758.row_wid = t631953.approval_status_wid GROUP BY t31328.per_name_year, t31328.CAL_MONTH, t31328.MONTH_NAME, t631953.inventory_prod_wid, t631953.approval_status_wid, t631953.cycle_status_wid, t631953.shipment_type_wid, t631953.consigned_type_wid, t631953.delete_flg; / Elapsed: 00:01:17.08 The MV will be populated as soon as you execute ‘CREATE MATERIALIZED VIEW’ DDL. The subsequent refreshes will be handled via DBMS_MVIEW.MVIEW_REFRESH. Note: Starting from Oracle 10g, query rewrite is now possible when your SELECT statements contain analytic functions, full outer joins, and set operations such as UNION, MINUS or INTERSECT. Important! Depending on the logic complexity and data volumes collected in an MV you can consider adding indexes on MV columns for improving MV query performance as well. 3. Compute statistics on each created MV: BEGIN DBMS_STATS.GATHER_TABLE_STATS(USER, 'CUST_W_PURCH_SCHED_LINE_F_MV1', method_opt => 'FOR ALL COLUMNS'); END; / 4. Verify the use of MV and query rewrite in the original physical SQL by re-running the query and checking its plan: -------------------------------------------------------------------------------------------------------------------| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | -------------------------------------------------------------------------------------------------------------------| 0 | SELECT STATEMENT | | 51 | 7089 | 97151 (1)| 00:29:09 | | 1 | HASH GROUP BY | | 51 | 7089 | 97151 (1)| 00:29:09 | | 2 | NESTED LOOPS | | | | | | | 3 | NESTED LOOPS | | 48291 | 6555K| 97147 (1)| 00:29:09 | |* 4 | HASH JOIN | | 48291 | 4291K| 412 (6)| 00:00:08 | | 5 | VIEW | index$_join$_006 | 108 | 1080 | 3 (34)| 00:00:01 | |* 6 | HASH JOIN | | | | | | | 7 | BITMAP CONVERSION TO ROWIDS | | 108 | 1080 | 1 (0)| 00:00:01 | |* 8 | BITMAP INDEX FULL SCAN | IDX_XACT_TYPE_D | | | | | | 9 | INDEX FAST FULL SCAN | W_XACT_TYPE_D_P1 | 108 | 1080 | 1 (0)| 00:00:01 | |* 10 | HASH JOIN | | 48522 | 3838K| 408 (5)| 00:00:08 | | 11 | VIEW | index$_join$_005 | 108 | 1080 | 3 (34)| 00:00:01 | |* 12 | HASH JOIN | | | | | | | 13 | BITMAP CONVERSION TO ROWIDS| | 108 | 1080 | 1 (0)| 00:00:01 | 108 |* 14 | BITMAP INDEX FULL SCAN | IDX_XACT_TYPE_D | | | | | | 15 | INDEX FAST FULL SCAN | W_XACT_TYPE_D_P1 | 108 | 1080 | 1 (0)| 00:00:01 | |* 16 | HASH JOIN | | 48755 | 3380K| 405 (5)| 00:00:08 | |* 17 | TABLE ACCESS FULL | W_STATUS_D | 5 | 115 | 2 (0)| 00:00:01 | |* 18 | MAT_VIEW REWRITE ACCESS FULL| CUST_W_PURCH_SCHED_LINE_F_MV1 | 112K| 5250K| 401 (5)| 00:00:08 | |* 19 | INDEX UNIQUE SCAN | W_INV_PROD_D_P1 | 1 | | 1 (0)| 00:00:01 | | 20 | TABLE ACCESS BY INDEX ROWID | W_INVENTORY_PRODUCT_D | 1 | 48 | 2 (0)| 00:00:01 | -------------------------------------------------------------------------------------------------------------------Predicate Information (identified by operation id): -------------------------------------------------4 - access("T476739"."ROW_WID"="CUST_W_PURCH_SCHED_LINE_F_MV1"."CONSIGNED_TYPE_WID") 6 - access(ROWID=ROWID) 8 - filter("T476739"."W_XACT_TYPE_CODE"'CONSIGNED-CONSUMED') 10 - access("T473562"."ROW_WID"="CUST_W_PURCH_SCHED_LINE_F_MV1"."SHIPMENT_TYPE_WID") 12 - access(ROWID=ROWID) 14 - filter("T473562"."W_XACT_TYPE_CODE"'PREPAYMENT') 16 - access("T278452"."ROW_WID"="CUST_W_PURCH_SCHED_LINE_F_MV1"."CYCLE_STATUS_WID") 17 - filter(("T278452"."W_STATUS_CLASS"='PURCH_CYCLE' OR "T278452"."ROW_WID"=0) AND "T278452"."W_SUBSTATUS_CODE"'CANCELLED') 18 - filter("CUST_W_PURCH_SCHED_LINE_F_MV1"."PER_NAME_YEAR"='2010' AND "CUST_W_PURCH_SCHED_LINE_F_MV1"."DELETE_FLG"='N') 19 - access("T257401"."ROW_WID"="CUST_W_PURCH_SCHED_LINE_F_MV1"."INVENTORY_PROD_WID") Line #18 confirms that optimizer chose the newly created MV in the latest execution plan for the original SQL. 5. Troubleshoot Query Rewrite You can use the DBMS_MVIEW.EXPLAIN_REWRITE procedure to find out why your query failed to rewrite. 1. Create the REWRITE_TABLE table by running the following SQL: SQL> @\rdbms\admin\utlxrw.sql REWRITE_TABLE table columns for your reference: STATEMENT_ID MV_OWNER MV_NAME SEQUENCE QUERY QUERY_BLOCK_NO REWRITTEN_TXT MESSAGE PASS MV_IN_MSG MEASURE_IN_MSG JOIN_BACK_TBL JOIN_BACK_COL ORIGINAL_COST REWRITTEN_COST FLAGS ID for the query MV's schema Name of the MV Seq # of error message User query Block # of the current sub query Rewritten query message EXPLAIN_REWRITE error message Query Rewrite pass # MV in current message Measure in current message Join back table in current message Join back column in current message Cost of original query Cost of rewritten query. It shows a zero if there was no rewrite of a query or if a different materialized view was used Associated flags 2. Execute DBMS_MVIEW.EXPLAIN_REWRITE EXPLAIN_REWRITE procedure provides the details for query rewrite failure, or if it rewrites, which materialized view(s) 109 will be used: BEGIN DBMS_MVIEW.EXPLAIN_REWRITE(QUERY => 'Your query statement', MV => 'Your MV name’, STATEMENT_ID => ‘Your statement label’); END; / You can use the following query to show EXPLAIN_REWRITE log SELECT FROM WHERE AND sequence, message, original_cost, rewritten_cost REWRITE_TABLE mv_name = 'Your MV name’ statement_id = ‘Your statement label’; In our example, you can run the following SQL to to check whether optimizer picks CUST_W_PURCH_SCHED_LINE_F_MV1 Materialized View: SQL> DECLARE 2 QUERY VARCHAR2(4000); 3 MV_NAME VARCHAR2(30) := 'CUST_W_PURCH_SCHED_LINE_F_MV1'; 4 STATEMENT_ID VARCHAR2(30) := 'Test#1 '||User; 5 BEGIN 6 QUERY := 'SELECT SUM(CASE 7 WHEN T263758.W_STATUS_CODE = ''APPROVED'' THEN 8 (T631953.LINE_AMT - T631953.CANCELLED_AMT) * 9 T631953.GLOBAL1_EXCHANGE_RATE 10 ELSE 11 0 12 END) AS c1, 13 T31328.PER_NAME_YEAR AS c2, 14 T31328.CAL_MONTH AS c3, 15 SUBSTR(T31328.MONTH_NAME, 1, 3) AS c5, 16 NVL(T257401.XV_LOB, ''Unknown'') AS c6 17 FROM W_INVENTORY_PRODUCT_D T257401, 18 W_DAY_D T31328, 19 W_STATUS_D T263758, 20 W_STATUS_D T278452, 21 W_XACT_TYPE_D T473562, 22 W_XACT_TYPE_D T476739, 23 W_PURCH_SCHEDULE_LINE_F T631953 24 WHERE (T31328.ROW_WID = T631953.ORDERED_ON_DT_WID AND 25 T257401.ROW_WID = T631953.INVENTORY_PROD_WID AND 26 T263758.ROW_WID = T631953.APPROVAL_STATUS_WID AND 27 T278452.ROW_WID = T631953.CYCLE_STATUS_WID AND 28 T473562.ROW_WID = T631953.SHIPMENT_TYPE_WID AND 29 T31328.PER_NAME_YEAR = ''2010'' AND 30 T476739.ROW_WID = T631953.CONSIGNED_TYPE_WID AND 31 T631953.DELETE_FLG = ''N'' AND 32 T278452.W_SUBSTATUS_CODE ''CANCELLED'' AND 33 T473562.W_XACT_TYPE_CODE ''PREPAYMENT'' AND 34 (T278452.ROW_WID IN (0) OR 35 T278452.W_STATUS_CLASS IN (''PURCH_CYCLE'')) AND 36 T476739.W_XACT_TYPE_CODE ''CONSIGNED-CONSUMED'') 37 GROUP BY T31328.CAL_MONTH, 38 T31328.PER_NAME_YEAR, 39 SUBSTR(T31328.MONTH_NAME, 1, 3), 40 NVL(T257401.XV_LOB, ''Unknown'')'; 110 41 42 43 44 DBMS_MVIEW.EXPLAIN_REWRITE(QUERY => QUERY, MV => MV_NAME, STATEMENT_ID => STATEMENT_ID); END; / PL/SQL procedure successfully completed SQL> SQL> SELECT sequence, message, original_cost, rewritten_cost 2 FROM REWRITE_TABLE 3 WHERE mv_name = 'CUST_W_PURCH_SCHED_LINE_F_MV1' 4 AND statement_id = 'Test#1 ' || User 5 / SEQUENCE --------1 2 MESSAGE ORIGINAL_COST REWRITTEN_COST -------------------------------------------------------------------------------- ------------- -------------QSM-01151: query was rewritten 13 9 QSM-01033: query rewritten with materialized view, CUST_W_PURCH_SCHED_LINE_F_MV1 13 9 The log states that the query was successfully rewritten with Materialized View CUST_W_PURCH_SCHED_LINE_F_MV1. Starting with Oracle 10g, you can use a hint, /*+ REWRITE_OR_ERROR */, which will stop the execution of a SQL statement if query rewrite cannot be done: SQL> select /*+ REWRITE_OR_ERROR */ * from dual; select /*+ REWRITE_OR_ERROR */ * from dual ORA-30393: a query block in the statement did not rewrite The most common cause for unsuccessful query rewrite is mismatch of columns and / or aggregate functions used in MVs. Refer to more Oracle Database manuals for additional Query Rewrite restrictions. Integrate MV Refresh in DAC Execution Plan The best option to maintain up-to-date custom MVs is to merge their refresh into your DAC ETL Execution Plan. Ensure proper dependencies in your execution plan when you add your MV refresh custom task. The careful analysis of the execution sequence will help you to identify the best place in the execution tree to run your custom MV refresh calls in parallel with other tasks without extending the total plan runtime. The following PLSQL call ensures COMPLETE refresh for MV W_PURCH_SCHED_LINE_F_MV1: BEGIN DBMS_MVIEW.REFRESH('CUST_W_PURCH_SCHED_LINE_F_MV1', 'C'); END; Important! You should add the call to DBMS_STATS to compute statistics FOR ALL COLUMNS SIZE AUTO on each MV as part of DAC Execution plan customization. If you created any indexes on MV, they will not be dropped / created during MV refresh, so you need to use CASDADE = TRUE to update index statistics as well. The following sections describe step-by-step instructions for integrating MV refresh into DAC Execution Plan. Create Materialized View Refresh Task Action Open DAC Client and navigate to Tools -> Seed Data -> Actions -> Task Actions Click ‘New’ Button to create a new Task “Refresh Materialized View” and Click ‘Save’ to save the record. Click on ‘Check Box’ icon in Value field to open Value screen Click Add button and enter the following values in the right upper pane: 111 o o o o o Name: Refresh MV Type: SQL Database Connection: target Table Type: All Target Valid Database Platforms: Oracle Enter the following text in ‘SQL Statement’ tab in the right lower pane: BEGIN DBMS_MVIEW.REFRESH('getTableName()', 'C'); DBMS_STATS.GATHER_TABLE_STATS(ownname => 'getTableOwner()', tabname=> 'getTableName()', cascade => TRUE, estimate_percent => DBMS_STATS.AUTO_SAMPLE_SIZE, method_opt => 'FOR ALL COLUMNS SIZE AUTO', degree => DBMS_STATS.DEFAULT_DEGREE); END; Note: If no indexes are defined on an MV, then you do not need DBMS_STATS call in the SQL Statement, as DAC will compute its statistics but use CASCADE => FALSE. Click OK to save the changes. Register Materialized Views Click Design Button -> Table tab in the right pan Click New -> Define your custom MV as a table in DAC Save changes. Define Related Tables Search for your Fact or Aggregate table, you used in your MV query definition (W_PURCH_SCHEDULE_LINE_F in our example, in the Tables View. Click Related Tables Tab in the lower right pane and add your MV as the related table to the original Fact. Rebuild Execution Plan Reassemble your Subject Areas and rebuild your Execution plan to pick the new dependencies. Refer to BI Apps Administration Guide, chapter "Customizing DAC Objects and Designing Subject Areas" for more details. OBIEE Queries Optimization Using Database Views Materialized Views and Query Rewrite may not always work for all logical reports. A simple change in report logic, such as adding another filtering condition, could prevent Oracle from doing query rewrite and aggregate data on much larger fact tables. You could create more MVs to cover all aggregation permutations. However, the more MVs you implement in BI Applications the longer time it would take to refresh them as part of incremental ETLs. Besides, OBIEE may generate such complex aggregation logic, that it would be impossible to implement it in Oracle Materialized Views. Consider implementing custom database views with more sophisticated logic and expose them in RPD for querying directly through reports and dashboards. The example below shows the use of MODEL SQL syntax in a database view, which ensures equivalent logic for W_AP_XACT fact aggregation over prior / current periods, compared to originally used Year AGO (YAGO) OBIEE Function in a logical report: CREATE OR REPLACE FORCE VIEW V_MODEL_SQL_CUSTOM AS WITH sawith0 AS (SELECT /*+ CACHE(W_MCAL_DAY_D) CACHE(W_MCAL_DAY_D) CACHE(W_MCAL_DAY_D) CACHE(W_MCAL_DAY_D) */ COUNT(DISTINCT 112 CASE WHEN T38596.W_XACT_SUBTYPE_CODE IN ('DR MEMO', 'INVOICE') THEN concat(concat(T33861.PURCH_INVOICE_NUM, '~'), CAST(T33861.PURCH_INVOICE_ITEM AS CHARACTER ( 30 ) )) END ) AS v_no , SUM( CASE WHEN T38596.W_XACT_SUBTYPE_CODE IN ('DR MEMO', 'INVOICE') THEN T33861.AP_DOC_AMT * T33861.GLOBAL1_EXCHANGE_RATE * -1 ELSE 0 END ) AS v_amt , T79787.SUB_DEPARTMENT , T79787.DEPARTMENT , sawith3.MCAL_PERIOD_NAME , sawith3.MCAL_YEAR , sawith3.mcal_period FROM W_AP_EMPLOYEE_D T79787 /* Dim_W_AP_EMPLOYEE_D */ , W_AP_XACT_F T33861 /* Fact_W_AP_XACT_F */ , W_XACT_TYPE_D T38596 /* Dim_W_XACT_TYPE_D_Financials */ , W_MCAL_DAY_D T68387 /* Dim_W_MCAL_DAY_D_Fiscal_Day */ , W_MCAL_DAY_D T77729 /* Dim_W_MCAL_DAY_D_Invoice_Cleared_Date_Fiscal_Calendar */ , W_MCAL_DAY_D T79826 /* Dim_W_MCAL_DAY_D_Invoice_Receipt_Date_Fiscal_Calendar */ , W_MCAL_DAY_D T81915 /* Dim_W_MCAL_DAY_D_Supplier_Payment_Due_Date */ , W_MCAL_DAY_D SAWITH3 WHERE ( T33861.X_LOL_EMPLOYEE_WID = T79787.ROW_WID AND T33861.DELETE_FLG = 'N' AND T68387.ADJUSTMENT_PERIOD_FLG = 'N' AND T33861.POSTED_ON_DT_WID = T68387.MCAL_DAY_DT_WID AND T33861.MCAL_CAL_WID = T68387.MCAL_CAL_WID AND T77729.ADJUSTMENT_PERIOD_FLG = 'N' AND T33861.CLEARED_ON_DT_WID = T77729.MCAL_DAY_DT_WID AND T33861.MCAL_CAL_WID = T77729.MCAL_CAL_WID AND T79826.ADJUSTMENT_PERIOD_FLG = 'N' AND T33861.INVOICE_RECEIPT_DT_WID = T79826.MCAL_DAY_DT_WID AND T33861.MCAL_CAL_WID = T79826.MCAL_CAL_WID AND T33861.DOC_TYPE_WID = T38596.ROW_WID AND T81915.ADJUSTMENT_PERIOD_FLG = 'N' AND T33861.MCAL_CAL_WID = T81915.MCAL_CAL_WID AND T33861.X_CALC_DUE_DT_WID = T81915.MCAL_DAY_DT_WID AND SAWITH3.ADJUSTMENT_PERIOD_FLG = 'N' AND T33861.POSTED_ON_DT_WID = SAWITH3.MCAL_DAY_DT_WID AND T33861.MCAL_CAL_WID = SAWITH3.MCAL_CAL_WID AND sawith3.MCAL_CAL_ID = 'R' ) GROUP BY T79787.DEPARTMENT , T79787.SUB_DEPARTMENT , sawith3.MCAL_PERIOD_NAME , sawith3.MCAL_YEAR , sawith3.mcal_period ) , sawith_model AS (SELECT department , SUB_DEPARTMENT , mcal_period_name , MCAL_YEAR , mcal_period , purch_no , purch_no_prior , purch_amt , purch_amt_prior FROM sawith0 model RETURN updated rows partition BY (department, SUB_DEPARTMENT) dimension BY (MCAL_YEAR, mcal_period) measures (v_no purch_no, v_amt purch_amt,0 purch_no_prior, 0 purch_amt_prior, mcal_period_name mcal_period_name) ignore nav rules upsert ALL ( purch_no[ANY, 1] = purch_no[CV(MCAL_YEAR), 1] , purch_no[ANY, 2] = purch_no[CV(MCAL_YEAR), 2] , purch_no[ANY, 3] = purch_no[CV(MCAL_YEAR), 3] , purch_no[ANY, 4] = purch_no[CV(MCAL_YEAR), 4] , purch_no[ANY, 5] = purch_no[CV(MCAL_YEAR), 5] , 113 purch_no[ANY, 6] = purch_no[CV(MCAL_YEAR), 6] , purch_no[ANY, 7] = purch_no[CV(MCAL_YEAR), 7] , purch_no[ANY, 8] = purch_no[CV(MCAL_YEAR), 8] , purch_no[ANY, 9] = purch_no[CV(MCAL_YEAR), 9] , purch_no[ANY, 10] = purch_no[CV(MCAL_YEAR), 10] , purch_no[ANY, 11] = purch_no[CV(MCAL_YEAR), 11] , purch_no[ANY, 12] = purch_no[CV(MCAL_YEAR), 12] , purch_amt[ANY, 1] = purch_amt[CV(MCAL_YEAR), 1] , purch_amt[ANY, 2] = purch_amt[CV(MCAL_YEAR), 2] , purch_amt[ANY, 3] = purch_amt[CV(MCAL_YEAR), 3] , purch_amt[ANY, 4] = purch_amt[CV(MCAL_YEAR), 4] , purch_amt[ANY, 5] = purch_amt[CV(MCAL_YEAR), 5] , purch_amt[ANY, 6] = purch_amt[CV(MCAL_YEAR), 6] , purch_amt[ANY, 7] = purch_amt[CV(MCAL_YEAR), 7] , purch_amt[ANY, 8] = purch_amt[CV(MCAL_YEAR), 8] , purch_amt[ANY, 9] = purch_amt[CV(MCAL_YEAR), 9] , purch_amt[ANY, 10] = purch_amt[CV(MCAL_YEAR), 10] , purch_amt[ANY, 11] = purch_amt[CV(MCAL_YEAR), 11] , purch_amt[ANY, 12] = purch_amt[CV(MCAL_YEAR), 12] , purch_no_prior[ANY,ANY] = purch_no[CV(MCAL_YEAR)-1, cv(mcal_period)] , purch_amt_prior[ANY,ANY] = purch_amt[CV(MCAL_YEAR)-1, cv(mcal_period)] , mcal_period_name[ANY,1] = cv(MCAL_YEAR) ||'R '||'1' , mcal_period_name[ANY,2] = cv(MCAL_YEAR) ||'R '||'2' , mcal_period_name[ANY,3] = cv(MCAL_YEAR) ||'R '||'3' , mcal_period_name[ANY,4] = cv(MCAL_YEAR) ||'R '||'4' , mcal_period_name[ANY,5] = cv(MCAL_YEAR) ||'R '||'5' , mcal_period_name[ANY,6] = cv(MCAL_YEAR) ||'R '||'6' , mcal_period_name[ANY,7] = cv(MCAL_YEAR) ||'R '||'7' , mcal_period_name[ANY,8] = cv(MCAL_YEAR) ||'R '||'8' , mcal_period_name[ANY,9] = cv(MCAL_YEAR) ||'R '||'9' , mcal_period_name[ANY,10] = cv(MCAL_YEAR)||'R '||'10' , mcal_period_name[ANY,11] = cv(MCAL_YEAR)||'R '||'11' , mcal_period_name[ANY,12] = cv(MCAL_YEAR)||'R '||'12' ) ) SELECT "DEPARTMENT" ,"SUB_DEPARTMENT" ,"MCAL_PERIOD_NAME" ,"MCAL_YEAR" ,"MCAL_PERIOD" ,"PURCH_NO" ,"PURCH_NO_PRIOR" ,"PURCH_AMT" ,"PURCH_AMT_PRIOR" FROM sawith_model WHERE 1=1 ; The view has been exposed in OBIEE RPD business model, so that it could be queried directly in OBIEE reports. Refer to Oracle documentation on MODEL SQL syntax and examples. OBIEE Reports with SYSDATE Some reports rely on SYSDATE, pulled into a physical SQL by OBIEE, for computing various TO DATE aggregations. For example, the following logical SQL: SELECT Time."Enterprise Period Number" saw_0, Time."Enterprise Period" saw_1, Time."Enterprise Year" saw_2, "Fact - Sales Cycle Lines"."Order To Ship Days Lag" saw_3, "Fact - Sales Cycle Lines"."Ship to Invoice Days Lag" saw_4 FROM "Sales - Order Process" ORDER BY saw_2, saw_0 results in the physical SQL: SELECT T66755.ENT_PERIOD AS c1, T66755.PER_NAME_ENT_PERIOD AS c2, T66755.PER_NAME_ENT_YEAR AS c3, AVG( CASE 114 WHEN T93511.SHIPPABLE_FLG = 'Y' AND T96574.W_XACT_TYPE_CODE = 'Regular' THEN CASE WHEN T93511.SHIPPING_INTERFACED_FLG = 'Y' AND T104798.W_STATUS_CODE = 'ORDER FULLY SHIPPED' THEN ( TRUNC( T93511.ACT_LAST_SHIPPED_ON_DT ) - TRUNC( ELSE ( TRUNC( TO_DATE('2011-12-19' , 'YYYY-MM-DD') ) - TRUNC( END ELSE NULL END ) AS c4, AVG( CASE WHEN T93511.BILLING_FLG = 'Y' AND T93511.SHIPPABLE_FLG = 'Y' AND T96574.W_XACT_TYPE_CODE = 'Regular' THEN CASE WHEN T93511.INVOICE_INTERFACED_FLG = 'Y' AND T104764.W_STATUS_CODE = 'ORDER FULLY INVOICED' THEN ( TRUNC( T93511.LAST_INVOICE_ON_DT ) - TRUNC( ELSE ( TRUNC( TO_DATE('2011-12-19' , 'YYYY-MM-DD') ) - TRUNC( END ELSE NULL END ) AS c5 FROM W_DAY_D T66755 /* Dim_W_DAY_D_Common */ , W_SALES_CYCLE_LINE_F T93511 /* Fact_W_SALES_CYCLE_LINE_F */ , W_XACT_TYPE_D T96574 /* Dim_W_XACT_TYPE_D_Sales_Ordlns */ , W_STATUS_D T104764 /* Dim_W_STATUS_D_SalesCycle_Invoice */ , W_STATUS_D T104798 /* Dim_W_STATUS_D_SalesCycle_Fulfill */ WHERE ( T66755.ROW_WID = T93511.ORDERED_ON_DT_WID AND T93511.DELETE_FLG = 'N' AND T93511.XACT_TYPE_WID = T96574.ROW_WID AND T93511.FULFILL_STATUS_WID = T104798.ROW_WID AND T93511.INVOICE_STATUS_WID = T104764.ROW_WID ) GROUP BY T66755.ENT_PERIOD, T66755.PER_NAME_ENT_PERIOD, T66755.PER_NAME_ENT_YEAR ORDER BY c3, c1 T93511.ORDERED_ON_DT ) ) T93511.ORDERED_ON_DT ) ) T93511.ACT_FIRST_SHIPPED_ON_DT ) ) T93511.ACT_FIRST_SHIPPED_ON_DT ) ) where TO_DATE('2011-12-19' , 'YYYY-MM-DD') is the value, obtained from SYSDATE, i.e. the report execution date. Custom aggregation in MVs or regular tables cannot use include SYSDATE dependent columns, since the results would vary depend on report execution dates. The following sections cover the known cases of SYSDATE aggregation in aggregate tables. AVG with SYSDATE in OBIEE Reports The example below uses SYSDATE when computing average value using Oracle AVG function: SELECT T66755.ENT_PERIOD AS c1, T66755.PER_NAME_QTR AS c2, T66755.PER_NAME_YEAR AS c3, AVG(TRUNC( T93511.ACT_LAST_SHIPPED_ON_DT ) - TRUNC( T93511.ORDERED_ON_DT ) ) AS c4, AVG(TRUNC( TO_DATE('2012-03-12' , 'YYYY-MM-DD')) - TRUNC( T93511.ACT_FIRST_SHIPPED_ON_DT ) ) AS c5 FROM W_DAY_D T66755 /* Dim_W_DAY_D_Common */ , W_SALES_CYCLE_LINE_F T93511 /* Fact_W_SALES_CYCLE_LINE_F */ , W_XACT_TYPE_D T96574 /* Dim_W_XACT_TYPE_D_Sales_Ordlns */ , W_STATUS_D T104764 /* Dim_W_STATUS_D_SalesCycle_Invoice */ , W_STATUS_D T104798 /* Dim_W_STATUS_D_SalesCycle_Fulfill */ WHERE ( T66755.ROW_WID = T93511.ORDERED_ON_DT_WID AND T93511.DELETE_FLG = 'N' AND T66755.PER_NAME_QTR = '2011 Q 1' AND T66755.PER_NAME_YEAR = '2011' AND T93511.XACT_TYPE_WID = T96574.ROW_WID 115 AND T93511.FULFILL_STATUS_WID = T104798.ROW_WID AND T93511.INVOICE_STATUS_WID = T104764.ROW_WID) GROUP BY T66755.ENT_PERIOD, T66755.PER_NAME_QTR, T66755.PER_NAME_YEAR; To work around this case with use of a custom aggregate table to improve its performance: Create a custom aggregate table: CREATE TABLE W_SALES_CYCLE_LINE_F_CUST_A AS SELECT SUM(TRUNC( T93511.ACT_LAST_SHIPPED_ON_DT ) COUNT(TRUNC( T93511.ACT_LAST_SHIPPED_ON_DT SUM(TO_DATE('1970-01-01' , 'YYYY-MM-DD') COUNT(TO_DATE('1970-01-01' , 'YYYY-MM-DD') ,T93511.ORDERED_ON_DT_WID ,T93511.SHIPPABLE_FLG ,T93511.SHIPPING_INTERFACED_FLG ,T93511.XACT_TYPE_WID ,T93511.FULFILL_STATUS_WID ,T93511.INVOICE_STATUS_WID ,T93511.BILLING_FLG ,T93511.INVOICE_INTERFACED_FLG FROM W_SALES_CYCLE_LINE_F T93511 WHERE T93511.DELETE_FLG = 'N' GROUP BY T93511.ORDERED_ON_DT_WID ,T93511.SHIPPABLE_FLG ,T93511.SHIPPING_INTERFACED_FLG ,T93511.XACT_TYPE_WID ,T93511.FULFILL_STATUS_WID ,T93511.INVOICE_STATUS_WID ,T93511.BILLING_FLG ,T93511.INVOICE_INTERFACED_FLG; - TRUNC( T93511.ORDERED_ON_DT ) ) AS c1, ) - TRUNC( T93511.ORDERED_ON_DT ) ) AS c2, TRUNC( T93511.ACT_FIRST_SHIPPED_ON_DT ) ) AS c3, - TRUNC( T93511.ACT_FIRST_SHIPPED_ON_DT ) ) AS c4 And rewrite the SQL as follows: SELECT T66755.ENT_PERIOD AS c1, T66755.PER_NAME_QTR AS c2, T66755.PER_NAME_YEAR AS c3, --AVG(TRUNC( T93511.ACT_LAST_SHIPPED_ON_DT ) - TRUNC( T93511.ORDERED_ON_DT ) ) AS c4 SUM(c1)/SUM(c2) as c4, --AVG(TRUNC( TO_DATE('2012-03-12' , 'YYYY-MM-DD')) - TRUNC( T93511.ACT_FIRST_SHIPPED_ON_DT ) ) as c5 (TO_DATE('2012-03-12' , 'YYYY-MM-DD')-TO_DATE('1970-01-01' , 'YYYY-MM-DD'))+ SUM(c3)/SUM(c4) as c5 FROM W_DAY_D T66755 /* Dim_W_DAY_D_Common */ , W_SALES_CYCLE_LINE_F_CUST_A T93511 /* Fact_W_SALES_CYCLE_LINE_F */ , W_XACT_TYPE_D T96574 /* Dim_W_XACT_TYPE_D_Sales_Ordlns */ , W_STATUS_D T104764 /* Dim_W_STATUS_D_SalesCycle_Invoice */ , W_STATUS_D T104798 /* Dim_W_STATUS_D_SalesCycle_Fulfill */ WHERE ( T66755.ROW_WID = T93511.ORDERED_ON_DT_WID AND T66755.PER_NAME_QTR = '2011 Q 1' AND T66755.PER_NAME_YEAR = '2011' AND T93511.XACT_TYPE_WID = T96574.ROW_WID AND T93511.FULFILL_STATUS_WID = T104798.ROW_WID AND T93511.INVOICE_STATUS_WID = T104764.ROW_WID) GROUP BY T66755.ENT_PERIOD, T66755.PER_NAME_QTR, T66755.PER_NAME_YEAR; where TO_DATE('2012-03-12' , 'YYYY-MM-DD') is SYSDATE, and TO_DATE('1970-01-01' , 'YYYY-MM-DD') is a static date from the aggregate table W_SALES_CYCLE_LINE_F_CUST_A. AVG CASE with SYSDATE in OBIEE Reports The more complex AVG…CASE with SYSDATE in a physical SQL can be worked around using the logic in the following example. The original physical SQL uses SYSDATE value, highlighted in red: 116 SELECT T66755.ENT_PERIOD AS c1, T66755.PER_NAME_QTR AS c2, T66755.PER_NAME_YEAR AS c3, AVG( CASE WHEN T93511.SHIPPABLE_FLG = 'Y' AND T96574.W_XACT_TYPE_CODE = 'Regular' THEN CASE WHEN T93511.SHIPPING_INTERFACED_FLG = 'Y' AND T104798.W_STATUS_CODE = 'ORDER FULLY SHIPPED' THEN ( TRUNC( T93511.ACT_LAST_SHIPPED_ON_DT ) - TRUNC( T93511.ORDERED_ON_DT ) ) ELSE ( TRUNC( TO_DATE('2012-03-12' , 'YYYY-MM-DD')) - TRUNC( T93511.ACT_FIRST_SHIPPED_ON_DT )) END ELSE NULL END ) AS c4 FROM W_DAY_D T66755 /* Dim_W_DAY_D_Common */ , W_SALES_CYCLE_LINE_F T93511 /* Fact_W_SALES_CYCLE_LINE_F */ , W_XACT_TYPE_D T96574 /* Dim_W_XACT_TYPE_D_Sales_Ordlns */ , W_STATUS_D T104764 /* Dim_W_STATUS_D_SalesCycle_Invoice */ , W_STATUS_D T104798 /* Dim_W_STATUS_D_SalesCycle_Fulfill */ WHERE ( T66755.ROW_WID = T93511.ORDERED_ON_DT_WID AND T66755.PER_NAME_QTR = '2011 Q 1' AND T66755.PER_NAME_YEAR = '2011' AND T93511.XACT_TYPE_WID = T96574.ROW_WID AND T93511.FULFILL_STATUS_WID = T104798.ROW_WID AND T93511.INVOICE_STATUS_WID = T104764.ROW_WID) GROUP BY T66755.ENT_PERIOD, T66755.PER_NAME_QTR, T66755.PER_NAME_YEAR; The proposed modified SQL below uses the same aggregate table from the first example: SELECT T66755.ENT_PERIOD AS c1, T66755.PER_NAME_QTR AS c2, T66755.PER_NAME_YEAR AS c3, SUM(CASE WHEN T93511.SHIPPABLE_FLG = 'Y' AND T96574.W_XACT_TYPE_CODE = 'Regular' THEN CASE WHEN T93511.SHIPPING_INTERFACED_FLG = 'Y' AND T104798.W_STATUS_CODE = 'ORDER FULLY SHIPPED' THEN c1 ELSE (TO_DATE('2012-03-12' , 'YYYY-MM-DD')-TO_DATE('1970-01-01' , 'YYYY-MM-DD')) + c3 END ELSE NULL END)/ SUM(CASE WHEN T93511.SHIPPABLE_FLG = 'Y' AND T96574.W_XACT_TYPE_CODE = 'Regular' THEN CASE WHEN T93511.SHIPPING_INTERFACED_FLG = 'Y' AND T104798.W_STATUS_CODE = 'ORDER FULLY SHIPPED' THEN c2 ELSE c4 END ELSE NULL END) as c4 FROM W_DAY_D T66755 /* Dim_W_DAY_D_Common */ , W_SALES_CYCLE_LINE_F_CUST_A T93511 /* Fact_W_SALES_CYCLE_LINE_F */ , W_XACT_TYPE_D T96574 /* Dim_W_XACT_TYPE_D_Sales_Ordlns */ , W_STATUS_D T104764 /* Dim_W_STATUS_D_SalesCycle_Invoice */ , W_STATUS_D T104798 /* Dim_W_STATUS_D_SalesCycle_Fulfill */ WHERE ( T66755.ROW_WID = T93511.ORDERED_ON_DT_WID 117 AND T66755.PER_NAME_QTR = '2011 Q 1' AND T66755.PER_NAME_YEAR = '2011' AND T93511.XACT_TYPE_WID = T96574.ROW_WID AND T93511.FULFILL_STATUS_WID = T104798.ROW_WID AND T93511.INVOICE_STATUS_WID = T104764.ROW_WID) GROUP BY T66755.ENT_PERIOD, T66755.PER_NAME_QTR, T66755.PER_NAME_YEAR; The careful analysis of the logical SQL scenarios and the aggregation gaps in physical SQL can help to build custom aggregates, modify logical design and deliver better queries performance. OBIEE Reports With ‘SELECT CASE COUNT DISTINCT’ Materialized Views and Query Rewrite can be used effectively to pre-aggregate data and speed up end user queries. There are some cases, where MVs cannot be used in building aggregates. If you try to code ‘SELECT … COUNT DISTINCT’ into an MV, Oracle will give the following error message: ORA-12015: cannot create a fast refresh materialized view from a complex query You can work around ORA-12015 by creating one MView on top of another MView and then implement MViews refresh in the right sequence to ensure up-to-date contents. The case for “SELECT …CASE… COUNT DISTINCT” cannot be resolved by means of Materialized Views. You can try to tackle such complex SQL pattern using an aggregate table and modify the logical model in RPD to query the new table instead. Refer to the following working scenario as an example how to work around such SQL: The original physical SQL: SELECT SUM( CASE WHEN T96574.W_XACT_TYPE_CODE = 'Regular' AND T94920.W_STATUS_CODE 'Cancelled' THEN T93768.NET_AMT * T93768.GLOBAL1_EXCHANGE_RATE ELSE 0 END ) AS c1, COUNT(DISTINCT CASE WHEN T94920.W_STATUS_CODE 'Cancelled' AND T93768.BOOKING_FLG = 'Y' AND T96574.W_XACT_TYPE_CODE = 'Regular' THEN concat(concat(concat(T93768.SALES_ORDER_NUM, CAST(T93768.XACT_TYPE_WID AS CHARACTER ( )), CAST(T93768.SALES_ORG_WID AS CHARACTER ( 30 ) )), CAST(T93768.DATASOURCE_NUM_ID AS CHARACTER )) END ) AS c3, COUNT(DISTINCT CASE WHEN T96574.W_XACT_TYPE_CODE = 'Regular' AND T94920.W_STATUS_CODE 'Cancelled' THEN concat(concat(concat(T93768.SALES_ORDER_NUM, CAST(T93768.XACT_TYPE_WID AS CHARACTER ( )), CAST(T93768.SALES_ORG_WID AS CHARACTER ( 30 ) )), CAST(T93768.DATASOURCE_NUM_ID AS CHARACTER )) END ) AS c4, SUM( CASE WHEN T96574.W_XACT_TYPE_CODE = 'Returns' THEN T93768.NET_AMT * T93768.GLOBAL1_EXCHANGE_RATE ELSE 0 END ) AS c5, COUNT(DISTINCT CASE WHEN T96574.W_XACT_TYPE_CODE = 'Regular' AND T94920.W_STATUS_CODE 'Cancelled' 30 ) ( 30 ) 30 ) ( 30 ) 118 THEN concat(concat(T67704.INTEGRATION_ID, T93768.SALES_ORDER_HD_ID), CAST(T93768.DATASOURCE_NUM_ID AS CHARACTER ( 30 ) )) END ) AS c6, SUM( CASE WHEN T96574.W_XACT_TYPE_CODE = 'Regular' AND T94920.W_STATUS_CODE 'Cancelled' THEN 1 ELSE NULL END ) AS c7 FROM W_DAY_D T66755 /* Dim_W_DAY_D_Common */ , W_PRODUCT_D T67704 /* Dim_W_PRODUCT_D */ , W_SALES_ORDER_LINE_F T93768 /* Fact_W_SALES_ORDER_LINE_F */ , W_STATUS_D T94920 /* Dim_W_STATUS_D_Order_Status */ , W_XACT_TYPE_D T96574 /* Dim_W_XACT_TYPE_D_Sales_Ordlns */ WHERE ( T66755.ROW_WID = T93768.ORDERED_ON_DT_WID AND T66755.PER_NAME_YEAR = '2011' AND T67704.ROW_WID = T93768.PRODUCT_WID AND T93768.DELETE_FLG = 'N' AND T93768.XACT_TYPE_WID = T96574.ROW_WID AND T93768.ORDER_STATUS_WID = T94920.ROW_WID ) Create an aggregate table for COUNT DISTINCT. Include all columns from both COUNT DISTINCT and from CASE as well as WHERE into GROUP BY: CREATE TABLE W_SALES_ORDER_LINE_A_CUST AS SELECT W_SALES_ORDER_LINE_F.SALES_ORDER_NUM, -- from COUNT W_SALES_ORDER_LINE_F.XACT_TYPE_WID, -- from COUNT W_SALES_ORDER_LINE_F.SALES_ORG_WID, -- from COUNT W_SALES_ORDER_LINE_F.DATASOURCE_NUM_ID, -- from COUNT W_SALES_ORDER_LINE_F.SALES_ORDER_HD_ID, -- from COUNT W_SALES_ORDER_LINE_F.PRODUCT_WID, -- from WHERE W_SALES_ORDER_LINE_F.ORDER_STATUS_WID, -- from WHERE W_SALES_ORDER_LINE_F.BOOKING_FLG, -- from CASE ( CASE WHEN 'MONTH' = 'DAY' THEN W_DAY_D.ROW_WID WHEN 'MONTH' = 'WEEK' THEN W_DAY_D.CAL_WEEK_START_DT_WID WHEN 'MONTH' = 'MONTH' THEN W_DAY_D.M_STRT_CAL_DT_WID WHEN 'MONTH' = 'QUARTER' THEN W_DAY_D.CAL_QTR_START_DT_WID WHEN 'MONTH' = 'YEAR' THEN W_DAY_D.CAL_YEAR_START_DT_WID END ) AS PERIOD_START_DT_WID , ( CASE WHEN 'MONTH' = 'DAY' THEN W_DAY_D.ROW_WID WHEN 'MONTH' = 'WEEK' THEN W_DAY_D.CAL_WEEK_END_DT_WID WHEN 'MONTH' = 'MONTH' THEN W_DAY_D.M_END_CAL_DT_WID WHEN 'MONTH' = 'QUARTER' THEN W_DAY_D.CAL_QTR_END_DT_WID WHEN 'MONTH' = 'YEAR' THEN W_DAY_D.CAL_YEAR_END_DT_WID END ) AS PERIOD_END_DT_WID , COUNT( 1 ) as SALES_ORDER_LINE_CNT FROM W_SALES_ORDER_LINE_F, W_DAY_D WHERE W_SALES_ORDER_LINE_F.ORDERED_ON_DT_WID = W_DAY_D.ROW_WID(+) AND W_SALES_ORDER_LINE_F.DELETE_FLG = 'N' 119 GROUP BY W_SALES_ORDER_LINE_F.SALES_ORDER_NUM, W_SALES_ORDER_LINE_F.XACT_TYPE_WID, W_SALES_ORDER_LINE_F.SALES_ORG_WID, W_SALES_ORDER_LINE_F.DATASOURCE_NUM_ID, W_SALES_ORDER_LINE_F.SALES_ORDER_HD_ID, W_SALES_ORDER_LINE_F.PRODUCT_WID, W_SALES_ORDER_LINE_F.ORDER_STATUS_WID, W_SALES_ORDER_LINE_F.BOOKING_FLG, ( CASE WHEN 'MONTH' = 'DAY' THEN W_DAY_D.ROW_WID WHEN 'MONTH' = 'WEEK' THEN W_DAY_D.CAL_WEEK_START_DT_WID WHEN 'MONTH' = 'MONTH' THEN W_DAY_D.M_STRT_CAL_DT_WID WHEN 'MONTH' = 'QUARTER' THEN W_DAY_D.CAL_QTR_START_DT_WID WHEN 'MONTH' = 'YEAR' THEN W_DAY_D.CAL_YEAR_START_DT_WID END ) , ( CASE WHEN 'MONTH' = 'DAY' THEN W_DAY_D.ROW_WID WHEN 'MONTH' = 'WEEK' THEN W_DAY_D.CAL_WEEK_END_DT_WID WHEN 'MONTH' = 'MONTH' THEN W_DAY_D.M_END_CAL_DT_WID WHEN 'MONTH' = 'QUARTER' THEN W_DAY_D.CAL_QTR_END_DT_WID WHEN 'MONTH' = 'YEAR' THEN W_DAY_D.CAL_YEAR_END_DT_WID END ); CREATE INDEX "DWH_7963"."W_SLS_ORD_LN_A_I1" ON "DWH_7963"."W_SALES_ORDER_LINE_A_CUST"("XACT_TYPE_WID") TABLESPACE "DWIDX_TS" ; CREATE INDEX "DWH_7963"."W_SLS_ORD_LN_A_I2" ON "DWH_7963"."W_SALES_ORDER_LINE_A_CUST"("SALES_ORG_WID") TABLESPACE "DWIDX_TS" ; CREATE INDEX "DWH_7963"."W_SLS_ORD_LN_A_I3" ON "DWH_7963"."W_SALES_ORDER_LINE_A_CUST"("SALES_ORDER_HD_ID") TABLESPACE "DWIDX_TS" ; CREATE INDEX "DWH_7963"."W_SLS_ORD_LN_A_I4" ON "DWH_7963"."W_SALES_ORDER_LINE_A_CUST"("PRODUCT_WID") TABLESPACE "DWIDX_TS" ; CREATE INDEX "DWH_7963"."W_SLS_ORD_LN_A_I5" ON "DWH_7963"."W_SALES_ORDER_LINE_A_CUST"("ORDER_STATUS_WID") TABLESPACE "DWIDX_TS" ; CREATE INDEX "DWH_7963"."W_SLS_ORD_LN_A_I6" ON "DWH_7963"."W_SALES_ORDER_LINE_A_CUST"("PERIOD_START_DT_WID") TABLESPACE "DWIDX_TS" ; CREATE INDEX "DWH_7963"."W_SLS_ORD_LN_A_I7" ON "DWH_7963"."W_SALES_ORDER_LINE_A_CUST"("PERIOD_END_DT_WID") TABLESPACE "DWIDX_TS" ; CREATE INDEX "DWH_7963"."W_SLS_ORD_LN_A_I8" ON "DWH_7963"."W_SALES_ORDER_LINE_A_CUST"("BOOKING_FLG") TABLESPACE "DWIDX_TS" ; dbms_stats.gather_table_stats(ownname => 'DWH_7963', tabname => 'W_SALES_ORDER_LINE_A_CUST', estimate_percent => DBMS_STATS.AUTO_SAMPLE_SIZE, method_opt => 'FOR ALL COLUMNS SIZE AUTO', cascade => TRUE); Rewrite the original SQL as following: WITH c1 as( SELECT COUNT (DISTINCT CASE WHEN T94920.W_STATUS_CODE 'Cancelled' AND T93768.BOOKING_FLG = 'Y' AND T96574.W_XACT_TYPE_CODE = 'Regular' 120 THEN concat(concat(concat(T93768.SALES_ORDER_NUM, CAST(T93768.XACT_TYPE_WID AS CHARACTER ( 30 ) )), CAST(T93768.SALES_ORG_WID AS CHARACTER ( 30 ) )), CAST(T93768.DATASOURCE_NUM_ID AS CHARACTER ( 30 ) )) END ) AS c3, COUNT(DISTINCT CASE WHEN T96574.W_XACT_TYPE_CODE = 'Regular' AND T94920.W_STATUS_CODE 'Cancelled' THEN concat(concat(concat(T93768.SALES_ORDER_NUM, CAST(T93768.XACT_TYPE_WID AS CHARACTER ( 30 ) )), CAST(T93768.SALES_ORG_WID AS CHARACTER ( 30 ) )), CAST(T93768.DATASOURCE_NUM_ID AS CHARACTER ( 30 ) )) END ) AS c4, COUNT(DISTINCT CASE WHEN T96574.W_XACT_TYPE_CODE = 'Regular' AND T94920.W_STATUS_CODE 'Cancelled' THEN concat(concat(T67704.INTEGRATION_ID, T93768.SALES_ORDER_HD_ID), CAST(T93768.DATASOURCE_NUM_ID AS CHARACTER ( 30 ) )) END ) AS c6 FROM W_MONTH_D T66755 /* Dim_W_DAY_D_Common */ , W_PRODUCT_D T67704 /* Dim_W_PRODUCT_D */ , W_SALES_ORDER_LINE_A_CUST T93768 /* Fact_W_SALES_ORDER_LINE_F */ , W_STATUS_D T94920 /* Dim_W_STATUS_D_Order_Status */ , W_XACT_TYPE_D T96574 /* Dim_W_XACT_TYPE_D_Sales_Ordlns */ WHERE ( T66755.M_END_CAL_DT_WID = T93768.PERIOD_END_DT_WID AND T66755.M_STRT_CAL_DT_WID = T93768.PERIOD_START_DT_WID AND T66755.PER_NAME_MONTH BETWEEN '2011 / 01' AND '2011 / 12' AND T67704.ROW_WID = T93768.PRODUCT_WID AND T93768.XACT_TYPE_WID = T96574.ROW_WID AND T93768.ORDER_STATUS_WID = T94920.ROW_WID)) , c2 as ( SELECT SUM( CASE WHEN T96574.W_XACT_TYPE_CODE = 'Regular' AND T94920.W_STATUS_CODE 'Cancelled' THEN T104714.GLOBAL1_NET_AMT ELSE 0 END ) AS c1, SUM( CASE WHEN T96574.W_XACT_TYPE_CODE = 'Returns' THEN T104714.GLOBAL1_NET_AMT ELSE 0 END ) AS c5, SUM( CASE WHEN T96574.W_XACT_TYPE_CODE = 'Regular' AND T94920.W_STATUS_CODE 'Cancelled' THEN T104714.SALES_ORDER_LINE_CNT ELSE NULL END ) AS c7 FROM W_MONTH_D T100027 /* Dim_W_MONTH_D */ , W_STATUS_D T94920 /* Dim_W_STATUS_D_Order_Status */ , W_XACT_TYPE_D T96574 /* Dim_W_XACT_TYPE_D_Sales_Ordlns */ , W_SALES_ORDER_LINE_A T104714 /* Fact_Agg_W_SALES_ORDER_LINE_A */ WHERE ( T94920.ROW_WID = T104714.ORDER_STATUS_WID AND T96574.ROW_WID = T104714.XACT_TYPE_WID AND T94920.DELETE_FLG = 'N' AND T100027.M_END_CAL_DT_WID = T104714.PERIOD_END_DT_WID AND T100027.M_STRT_CAL_DT_WID = T104714.PERIOD_START_DT_WID AND T100027.PER_NAME_MONTH BETWEEN '2011 / 01' AND '2011 / 12') ) SELECT * FROM c1,c2 Since OBIEE does control physical SQL generation, you need to update your logical model, expose the custom aggregate table in RPD, and validate the performance and the final results. 121 Oracle BI Applications High Availability Introduction Both initial and incremental data loads into Oracle BI Applications Data Warehouse must be executed during scheduled maintenance or blackout windows for the following reasons: End user data could be inconsistent during ETL runs, causing invalid or incomplete results on dashboards ETL runs may result in significant hardware resource consumption, slowing down end user queries The time to execute periodic incremental loads depends on a number of factors, such as number of source databases, each source database incremental volume, hardware specifications, environment configuration, etc. As the result, incremental loads may not always complete within a predefined blackout window and cause extended downtime. Global businesses, operating 24 hours around o’clock not always could afford few hours downtime. Such customers can consider implementing high availability solution using Oracle Data Guard with a physical Standby database. High Availability with Oracle Data Guard and Physical Standby Database Oracle Data Guard configuration contains a primary database and supports up to nine standby databases. A standby database is a copy of a production database, created from its backup. There are two types of standby databases, physical and logical. A physical standby database must be physically identical to its primary database on a block-for-block basis. Data Guard synchronizes a physical standby database with its primary one by applying the primary database redo logs. The standby database must be kept in recovery mode for Redo Apply. The standby database can be opened in read-only mode in-between redo synchronizations. The advantage of a physical standby database is that Data Guard applies the changes very fast using low-level mechanisms and bypassing SQL layers. A logical standby database is created as a copy of a primary database, but it later can be altered to a different structure. Data Guard synchronizes a logical standby database by transforming the data from the primary database redo logs into SQLs and executing them in the standby database. A logical standby database has to be open all the times to allow Data Guard to perform SQL updates. Important! A primary database must run in ARCHIVELOG mode all the times. Data Guard with Physical Standby Database option provides both efficient and comprehensive disaster recovery as well as reliable high availability solution to Oracle BI Applications customers. Redo Apply for Physical Standby option synchronizes a Standby Database much faster compared to SQL Apply for Logical Standby. OBIEE does not require write access to BI Applications Data Warehouse for either executing end user logical SQL queries or developing additional contents in RPD or Web Catalog. The internal benchmarks on a low-range outdated hardware have showed four times faster Redo Apply on a physical standby database compared to ETL execution on a primary database: Step Name SDE_ORA_SalesProductDimension_Full SDE_ORA_CustomerLocationDimension_Full SDE_ORA_SalesOrderLinesFact_Full Create Index W_SALES_ORDER_LINE_F_U1 Index Row Count 2621803 4221350 22611530 n/a Redo Size 621 Mb 911 Mb 12791 Mb 610 Mb Primary DB Run Time 01:59:31 04:11:07 09:17:19 00:24:31 Redo Apply time 00:10:20 00:16:35 03:16:04 00:08:23 122 Total 29454683 14933 Mb 15:52:28 03:51:22 The target hardware was configured intentionally on a low-range Sun server, with both Primary and Standby databases deployed on the same server, to imitate heavy incremental load. The modern production systems with primary and standby database, deployed on separate servers, are expected to deliver up to 8-10 times better Redo Apply time on a physical standby database, compared to the ETL execution time on the primary database. The diagram below describes Data Guard configuration with Physical Standby database: - The primary instance runs in “FORCE LOGGING” mode and serves as a target database for routine incremental ETL or any maintenance activities such as patching or upgrade. The Physical Standby instance runs in read-only mode during ETL execution on the Primary database. When the incremental ETL load into the Primary database is over, DBA schedules the downtime or blackout window on the Standby database for applying redo logs. DBA shuts down OBIEE tier and switches the Physical Standby database into ‘RECOVERY’ mode. DBA starts Redo Apply in Data Guard to apply the generated redo logs to the Physical Standby Database. DBA opens Physical Standby Database in read-only mode and starts OBIEE tier: SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL; SQL> ALTER DATABASE OPEN; 123 Easy-to-manage switchover and failover capabilities in Oracle Data Guard allow quick role reversals between primary and standby, so customers can consider switching OBIEE from the Standby to Primary, and then start applying redo logs to the Standby instance. In such configuration the downtime can be minimized to two short switchovers: Switch OBIEE from Standby to Primary after ETL completion into Primary database, and before starting Redo Apply into Standby database. Switch OBIEE from Primary to Standby before starting another ETL. Additional considerations for deploying Oracle Data Guard with Physical Standby for Oracle BI Applications: 1. ‘FORCE LOGGING’ mode would increase the incremental load time into a Primary database, since Oracle would logging index rebuild DDL queries. 2. Primary database has to be running in ARCHIVELOG mode to capture all REDO changes. 3. Such deployment results in more complex configuration; it also requires additional hardware to keep two large volume databases and store daily archived logs. However it offers these benefits: 1. High Availability Solution to Oracle BI Applications Data Warehouse 2. Disaster recovery and complete data protection 3. Reliable backup solution Conclusion This document consolidates the best practices and recommendations for improving performance for Oracle Business Intelligence Applications Version 7.9.6.This list of areas for performance improvements is not complete. If you observe any performance issues with your Oracle BI Applications implementation, you should trace various components, and carefully benchmark any recommendations or solutions discussed in this article or other sources, before implementing the changes in the production environment. 124 Oracle Business Intelligence Applications Version 7.9.6.x Performance Recommendations May 2012 Primary Author: Pavel Buynitsky Contributors: Eugene Perkov, Amar Batham, Nitin Aggarwal, Oksana Stepaneeva, Wasimraja Abdulmajeeth, Kirill Denisenko, Andrei Dzianisau, Aliaksander Kokhno, Scott Lowe, Siarhei Kulikouski, Valery Enyukov Oracle Corporation World Headquarters 500 Oracle Parkway Redwood Shores, CA 94065 U.S.A. Worldwide Inquiries: Phone: +1.650.506.7000 Fax: +1.650.506.7200 oracle.com Copyright © 2011, Oracle. All rights reserved. This document is provided for information purposes only and the contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. We specifically disclaim any liability with respect to this document and no contractual obligations are formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission. Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners. 125
Comments
Copyright © 2025 UPDOCS Inc.