Orejas de Izaje1

June 4, 2018 | Author: Luis Enrique Aguilar Montoya | Category: Fracture, Strength Of Materials, Mechanical Engineering, Physics & Mathematics, Physics
Report this link


Description

10/5/2013, 3:03 PMMemoria de Calculo de Oreja de Izaje: según ASME BTH-1 Equipo: 5,000 3.6 4 A36 55 50 20 77 6 E71T-1 Y 40 50 115 Cumple Cumple Cumple Cumple Atril de Armado de contraejes Fuller Carga (Kg) Nd (2-2.1 o 2-2.2) Numero de orejas Material (A36 o A572) Dh [mm] be [mm] t [mm] R [mm] Soldadura Filete [in] E7018/E71T-1 Y(si) o N(no) Dp [mm] a [mm] H [mm] Diametro de agujero Ancho de oreja Espesor de oreja Radio exterior Altura de pierna Material de aporte Terminacion redondeada Diametro de grillete Altura de oreja Material base a eje Esfuerzo de Traccion Resistencia al corte a través del agujero Esfuerzo cortante en Soldadura Garganta de Filete mínima 3-3.4.3 Nd factor de Diseño (para. 3-1.3) 2-2.1 Categoría de Diseño A: cuando la magnitud y la variación de las cargas aplicadas son predecibles, donde la carga y condiciones ambientales se definen con precisión o no grave. 2.00 para los estados límite de fluencia o pandeo, 2.40 para los estados límite de fractura y para el diseño de conexión. 2-2.2 Categoría de Diseño B: cuando la magnitud y la variación de las cargas aplicadas no son predecibles, las condiciones de carga y del medio ambiente son graves, o no se define con precisión. 3.00 para los estados límite de fluencia o pandeo, 3.60 para los estados límite de fractura y para el diseño de conexión. 1 de 69 Elaborado por: Luis Enrique Aguilar Montoya Inspector QA/QC FLSmidth 10/5/2013, 3:03 PM 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Oreja con conexión para grillete: ASME BTH-1 Descripcion: Atril de Armado de contraejes Fuller 11,023 W [lb] 3.6 Nd Peso de la carga Design factor Material Fy [psi] Fu [psi] E [psi] A36 36,000 58,000 29,000,000 Material: A36 36,000 58,000 29,000,000 Material Fy [psi] Fu [psi] E [psi] Dh [in] w [in] t [in] R [in] Leg [in] Fy/Nd t*(w-Dh) W/A St < Ft Limite elastico Resistencia a la traccion Modulo de Elesticidad Diametro de agujero Ancho de oreja Espesor de oreja Radio Exterior de oreja Altura de filete de soldadura Esfuerzo de traccion admisible (eq 3-1) Area en tension Esfuerzo de traccion psi in^2 psi 10,000 3.10 3,556 Cumple A572 50,000 65,000 29,000,000 A516 16,000 30,000 9,800,000 E7018/E71T-1 58,000 70,000 Dimensiones: 2.17 6.10 0.79 3.03 0.24 Ft [psi] = A [in^2] = St [psi] = CheckSt = Esfuerzo de Traccion: Resistencia al Corte a travez del agujero: Av [in^2] = 2*(R-(Dh/2)*cos(radians(45)))*t Area total de dos planos de corte (eq 3-50) Pv [lb] = 0.7*Fu/(1.2*Nd)*Av Doble plano de resistencia al corte (eq 3-49) CheckPv = W < Pv in^2 lb 3.568 33,536 Cumple 58,000 8,056 2.301 18,538 Cumple Esfuerzo Cortante en la Soldadura: Exx [psi] = Fv [psi] = Aw [in^2] = Fw [lb] = CheckFw = Fu si Fu<Exx 0.6*Exx/(1.2*Nd) (2*w+2*t) * (0.707*Leg) Fv*Aw W < Fw Resistencia a la tracción de la soldadura del metal de aporte Esfuerzo cortante de soldadura admisible(eq 3-53) Área de la soldadura Carga de soldadura admisible psi psi in^2 lb 33 Garganta de Soldadura minima: 3-3.4.3 34 garganta_3-3 [in] = IF(K14<=0.25,0.125,IF(K14<=0.5,0.188,(IF(K14<=0.75,0.25,(IF(K14<1.5,0.313)))))) 35 36 check_garganta = Pierna filete*0.707 >=garganta_3-3 in 0.125 Cumple 2 de 69 Lifting Lug Design Per ASME BTH-1-2005 References: 1. ASME. (2006). "Design of below-the-hook lifting devices, BTH-1-2005", New York. 2. Duerr, D. (2008). “ASME BTH-1 Pinned Connection Design Provisions.” Practice Periodical on Structural Design and Constru 3. Duerr, D. (2006). “Pinned connection strength and behavior.” J. Struct. Eng., 132(2), 182-194. Input: Nd = t= a= Dp = be = Dh = Curved Edge? Fy = Fu = 3.00 0.25 2 1.5 3 2 Y 36 58 For most lifting devices used in const inches inches inches inches inches Y or N ksi ksi Lug Plate Thickness Material Material Yield Stress Material Ultimate Stress For most lugs this is Y, but N is left as Fy = 36 ksi for ASTM A36. Fy = 50 ksi Fu = 58 ksi for ASTM A36. Fu = 65 ks Output: beff1 = beff2 = beff = r= R= Z' = Av = Pt = Pb = Pv = Pp = 1.00 2.37 1.00 3 3 0.08 1.10 8.06 13.55 12.45 5.63 inches inches inches inches inches inches sq. inches kips kips kips kips ASME Equation (3-46). ASME Equation (3-47). ASME Equation (C3-2). ASME Equation (3-50) modified per C ASME Equation (3-45). ASME Equation (3-48). ASME Equation (3-49). ASME Equation (3-51)*Dp*t. If the co Pin Diameter Effect: Dh/Dp = Check All? Cr = phi = Z= Z' = Av = Pt = 1.33 Y 0.818 41.250 2.186 0.041 1.07 Note: ASME BTH-1-2005 requires Dh It does not tell you how to take it int Y or N. Check even when Dh/Dp <= 1.1? Reduction Factor Degrees Inches Inches sq. inches Per ASME BTH-1-2005, this check can Ref. 2 Equation (6) Ref. 2 Equation (9). This is half the a Ref. 2 Equation (20) Ref. 2 Equation (21) 6.59 kips 63 kips If the connection is subject to rotating Dimensional Rules of Thumb: Edge Distance = a+Dh/2 Grip = Length of shackle pin available for bearing against lug. Best practice is to add sufficient cheek plates to insure bearing over 80% of the grip.75 * Dp Dh = Dp + 1/4" For all Dp. Deviation from them is allowed.10 kips 5. P = 11.08 kips 12. For Dp < 2": Edge Distance = 1.5 * Dp Dh = Dp + 1/8" For Dp >= 2": Edge Distance = 1. These are only rules of thumb. Add cheek plates as required to get desired Pp.63 kips 5. .Pb = Pv = Pp = Max. t = Grip/3. = Clear distance between shackle legs. 00. f.al on Structural Design and Construction. = 58 ksi for ASTM A36. ote: ASME BTH-1-2005 requires Dh/Dp <= 1. but the option to check it anyway is left available to the user. ME Equation (3-45). = 36 ksi for ASTM A36. This is half the angle of the portion of the pin in contact with the lug. ME Equation (3-48). Grade 50. ME Equation (3-50) modified per Commentary. 53-58. See Section 3-1. this check can be ignored when Dh/Dp < 1. When this is not the case it only states that "the effect of the clearance shall be taken into does not tell you how to take it into account. 2 Equation (21) . ME Equation (3-47). No. f. Fy = 50 ksi for ASTM A572. but N is left as an option. Fu = 65 ksi for ASTM A572. this value shall be divided by 2!. Reference 2 provides this information. r ASME BTH-1-2005. ME Equation (3-49). 2 Equation (20) f. If the connection is subject to rotating cyclic loading. ME Equation (3-51)*Dp*t. Grade 50. ME Equation (C3-2). Vol.1.3 of the ASME code for more information. r most lifting devices used in construction Nd = 3. 2. 13. 2 Equation (6) f. In certain circumstances r most lugs this is Y. 2 Equation (9).1. ME Equation (3-46). he connection is subject to rotating cyclic loading. . this value shall be divided by 2!. .nformation. In certain circumstances a value of 2.00 can be justified. is left available to the user. t of the clearance shall be taken into account". 2*Nd) Allowable weld shear stress (eq 3-53) Aw [in^2] = (2*w+2*t) * (0.IF(K14<0.707 >=throat_3-3 IF(K14<=0.0.0.25.(IF(K14<0.125.188.25.6*Exx/(1.3 throat_3-3 [in] = IF(K14<=0.0.707*Leg) Area of the weld Fw [lb] = Fv*Aw Allowable weld load CheckFw = W < Fw Minimum Weld Throat: 3-3.313)))) check_throat = Leg*0.625 Leg [in] Weld leg height Tensile Stress: Ft [psi] = Fy/Nd Allowable tensile stress (eq 3-1) A [in^2] = t*(w-Dh) Area in tension St [psi] = W/A Tensile stress CheckSt = St < Ft Shear Strength Through Pinhole: Av [in^2] = 2*(R-(Dh/2)*cos(radians(45)))*t Total area of two shear planes (eq 3-50) Pv [lb] = 0.000 Fu [psi] Tensile strength 29.000 Fy [psi] Yield strength 58.125.5.25.4.75.0.000.1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Lug with Pinned Connection: ASME BTH-1 Top Lug Description 65.0.2*Nd)*Av Double plane shear strength (eq 3-49) CheckPv = W < Pv Shear Stress in Weld: Exx [psi] = Fu Tensile strength of weld filler metal Fv [psi] = 0.000 E [psi] Modulus of elasticity Dimensions: 3 Dh [in] Hole diameter 10 w [in] Width of lug 1 t [in] Thickness of lug 5 R [in] Outer radius 0.000 W [lb] Weight of the load 3 Nd Design factor Material: SA-36 Material 36.IF(K14 .7*Fu/(1. 0.707*0.625) = 9667*9.36000/3 = 1*(10-3) = 65000/7 = 9286 < 12000 = 12.0.7*58000/(1.75.879 = 88.5.2*3) = (2*10+2*1) * (0.0.721 93.125.707 >=0 = Acceptable .313)))) = 0.IF(K14<0.667 9.286 Acceptable 2*(5-(3/2)*COS(RADIANS(45)))*1 = 7.854 65000 < 88854 = Acceptable 58000 = 0.000 9.879 0.25.313 0.2*3)*7.972 Acceptable IF(K14<=0.000 7 9.188.6*58000/(1.721 = 65000 < 93972 = 58.625*0.0.25.(IF(K14<0. "Error!")) Input: Nd = t= a= Dp = be = Dh = Curved Edge? Fy = Fu = 3.IF(B8 = "N".57 inches beff2 = 2.B17-SQRT(B17^2-B7^2/8). Fy = 50 ksi Fu = 58 ksi for ASTM A36.95 1.00 10 50 40 75 50 Y Factor de Diseño Espesor de la oreja de izaje mm mm mm mm mm Y or N Material Material Yield Stress Material Ultimate Stress 36 ksi 58 ksi 4218.97 1.57 inches r = 2. Fu = 65 ks Output: beff1 = 1.42 Kg IF(B8="Y". .00 0.95275591 inches R = 2.33 inches beff = 1.57 2. ASME Equation (3-47). but N is left as Fy = 36 ksi for ASTM A36.Diseño Oreja de Izaje segun ASME BTH-1-2005 Entrada: Nd = t= a= Dp = be = Dh = Curved Edge? Fy = Fu = Max.97 Y 36 58 For most lifting devices used in const inches inches inches inches inches Y or N ksi ksi Lug Plate Thickness Material Material Yield Stress Material Ultimate Stress For most lugs this is Y.39 1.95275591 inches ASME Equation (3-46). P = 3. 0. ASME Equation (3-49).30 Note: ASME BTH-1-2005 requires Dh It does not tell you how to take it int Y or N. 2 Equation (20) Ref. ASME Equation (3-50) modified per C ASME Equation (3-45). 2 Equation (6) Ref.1? Reduction Factor Degrees Inches Inches sq. This is half the a Ref.68 16. ASME Equation (3-51)*Dp*t.54 18. If the co Pin Diameter Effect: Dh/Dp = Check All? Cr = phi = Z= Z' = Av = Pt = Pb = Pv = Pp = Max.00 19.Z' = Av = Pt = Pb = Pv = Pp = 0. 2 Equation (9).000 2. this check can Ref.08 inches 1.051 1.30 kips .835 44.30 kips kips kips kips ASME Equation (C3-2). ASME Equation (3-48). Check even when Dh/Dp <= 1.71 sq.98 21.99 9.25 Y 0. 2 Equation (21) If the connection is subject to rotating 9. inches kips kips kips kips Per ASME BTH-1-2005.68 17.189 0. inches 19.30 9. P = 1. See Section 3-1. In certain circumstances r most lugs this is Y. ME Equation (3-47). but N is left as an option. = 36 ksi for ASTM A36. . ME Equation (3-46). Fy = 50 ksi for ASTM A572. Grade 50.00. Grade 50.3 of the ASME code for more information.r most lifting devices used in construction Nd = 3. Fu = 65 ksi for ASTM A572. = 58 ksi for ASTM A36. 1. ME Equation (3-45). f. ME Equation (3-50) modified per Commentary. This is half the angle of the portion of the pin in contact with the lug. f. 2 Equation (20) f.ME Equation (C3-2). ME Equation (3-48). this value shall be divided by 2!. 2 Equation (9). this value shall be divided by 2!. If the connection is subject to rotating cyclic loading. . Reference 2 provides this information. ME Equation (3-49). r ASME BTH-1-2005. ME Equation (3-51)*Dp*t.1. ote: ASME BTH-1-2005 requires Dh/Dp <= 1. this check can be ignored when Dh/Dp < 1. but the option to check it anyway is left available to the user. When this is not the case it only states that "the effect of the clearance shall be taken into does not tell you how to take it into account. 2 Equation (6) f. 2 Equation (21) he connection is subject to rotating cyclic loading. In certain circumstances a value of 2. .00 can be justified.nformation. .t of the clearance shall be taken into account". is left available to the user. 0.(IF(K14<1.2*Nd) (2*w+2*t) * (0.6*Exx/(1.0.5 5 0.000.0.IF(K14<=0.2*Nd)*Av Double plane shear strength (eq 3-49) CheckPv = W < Pv Shear Stress in Weld: Exx [psi] = Fv [psi] = Aw [in^2] = Fw [lb] = CheckFw = throat_3-3 [in] = Fu 0.125.000 Material Fy [psi] Fu [psi] E [psi] Dh [in] w [in] t [in] R [in] Leg [in] Fy/Nd t*(w-Dh) W/A St < Ft Yield strength Tensile strength Modulus of elasticity Hole diameter Width of lug Thickness of lug Outer radius Weld leg height Allowable tensile stress (eq 3-1) Area in tension Tensile stress Dimensions: 3 10 0.25.25.313)))))) check_throat = Leg*0.5 Tensile Stress: Ft [psi] = A [in^2] = St [psi] = CheckSt = Shear Strength Through Pinhole: Av [in^2] = 2*(R-(Dh/2)*cos(radians(45)))*t Total area of two shear planes (eq 3-50) Pv [lb] = 0.000 W [lb] 3 Nd Weight of the load Design factor Material: SA-36 36.4.0.(IF(K14<=0.5.75.000 58.1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Lug with Pinned Connection: ASME BTH-1 Top Lug Description 20.707 >=throat_3-3 .707*Leg) Fv*Aw W < Fw Tensile strength of weld filler metal Allowable weld shear stress (eq 3-53) Area of the weld Allowable weld load Minimum Weld Throat: 3-3.7*Fu/(1.5.188.000 29.3 IF(K14<=0. 427 Cumple 58.714 Cumple 3.939 44.188 Cumple .5 5.12.424 71.667 7.000 9.000 3.761 Cumple 0. 3 Nd factor de Diseño (para. 3:03 PM Memoria de Calculo de Oreja de Izaje: según ASME BTH-1 Equipo: 5. 2.2) Numero de orejas Material (A36 o A572) Dh [mm] be [mm] t [mm] R [mm] Soldadura Filete [in] E7018/E71T-1 Y(si) o N(no) Dp [mm] a [mm] H [mm] Diametro de agujero Ancho de oreja Espesor de oreja Radio exterior Altura de pierna Material de aporte Terminacion redondeada Diametro de grillete Altura de oreja Material base a eje Esfuerzo de Traccion Resistencia al corte a través del agujero Esfuerzo cortante en Soldadura Garganta de Filete mínima 3-3.3) 2-2. 2-2. 3.2 Categoría de Diseño B: cuando la magnitud y la variación de las cargas aplicadas no son predecibles.10/5/2013. o no se define con precisión. 2. donde la carga y condiciones ambientales se definen con precisión o no grave.1 Categoría de Diseño A: cuando la magnitud y la variación de las cargas aplicadas son predecibles.00 para los estados límite de fluencia o pandeo.60 para los estados límite de fractura y para el diseño de conexión. las condiciones de carga y del medio ambiente son graves.40 para los estados límite de fractura y para el diseño de conexión.6 4 A36 55 50 20 77 6 E71T-1 Y 40 50 115 Cumple Cumple Cumple Cumple Atril de Armado de contraejes Fuller Carga (Kg) Nd (2-2.4. 3-1.00 para los estados límite de fluencia o pandeo. 18 de 69 Elaborado por: Luis Enrique Aguilar Montoya Inspector QA/QC FLSmidth . 3.1 o 2-2.000 3. 568 33.125 Cumple 19 de 69 .4.2*Nd) (2*w+2*t) * (0.000.6 Nd Peso de la carga Design factor Material Fy [psi] Fu [psi] E [psi] A36 36.000 70.000 30.(IF(K14<1.536 Cumple 58.023 W [lb] 3.0.000 Dimensiones: 2.03 0.0.79 3.25. 3:03 PM 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Oreja con conexión para grillete: ASME BTH-1 Descripcion: Atril de Armado de contraejes Fuller 11.10 3.056 2.000 E7018/E71T-1 58.188.24 Ft [psi] = A [in^2] = St [psi] = CheckSt = Esfuerzo de Traccion: Resistencia al Corte a travez del agujero: Av [in^2] = 2*(R-(Dh/2)*cos(radians(45)))*t Area total de dos planos de corte (eq 3-50) Pv [lb] = 0.5.6*Exx/(1.7*Fu/(1.707*Leg) Fv*Aw W < Fw Resistencia a la tracción de la soldadura del metal de aporte Esfuerzo cortante de soldadura admisible(eq 3-53) Área de la soldadura Carga de soldadura admisible psi psi in^2 lb 33 Garganta de Soldadura minima: 3-3.800.000 Material Fy [psi] Fu [psi] E [psi] Dh [in] w [in] t [in] R [in] Leg [in] Fy/Nd t*(w-Dh) W/A St < Ft Limite elastico Resistencia a la traccion Modulo de Elesticidad Diametro de agujero Ancho de oreja Espesor de oreja Radio Exterior de oreja Altura de filete de soldadura Esfuerzo de traccion admisible (eq 3-1) Area en tension Esfuerzo de traccion psi in^2 psi 10.75.538 Cumple Esfuerzo Cortante en la Soldadura: Exx [psi] = Fv [psi] = Aw [in^2] = Fw [lb] = CheckFw = Fu si Fu<Exx 0.000 65.25.0.125.000 29.3 34 garganta_3-3 [in] = IF(K14<=0.17 6.000 29.IF(K14<=0.5.707 >=garganta_3-3 in 0.000 3.000 9.000 58.10/5/2013.313)))))) 35 36 check_garganta = Pierna filete*0.000 8.556 Cumple A572 50.000.000 29.301 18.000.10 0.0.(IF(K14<=0.2*Nd)*Av Doble plano de resistencia al corte (eq 3-49) CheckPv = W < Pv in^2 lb 3.000 A516 16.000 58.000 Material: A36 36. . . . . . . . . . . . . 2.2 Categoría de Diseño B: cuando la magnitud y la variación de las cargas aplicadas no son predecibles. 32 de 69 Elaborado por: Luis Enrique Aguilar Montoya Inspector QA/QC FLSmidth .60 para los estados límite de fractura y para el diseño de conexión.40 para los estados límite de fractura y para el diseño de conexión. 3.00 para los estados límite de fluencia o pandeo.3 Nd factor de Diseño (para. las condiciones de carga y del medio ambiente son graves.6 4 A36 55 50 20 77 6 E71T-1 Y 40 50 115 Cumple Cumple Cumple Cumple Atril de Armado de contraejes Fuller Carga (Kg) Nd (2-2.1 Categoría de Diseño A: cuando la magnitud y la variación de las cargas aplicadas son predecibles.4.3) 2-2. donde la carga y condiciones ambientales se definen con precisión o no grave. o no se define con precisión. 3-1. 3:03 PM Memoria de Calculo de Oreja de Izaje: según ASME BTH-1 Equipo: 5. 2.000 3. 3.00 para los estados límite de fluencia o pandeo.1 o 2-2. 2-2.10/5/2013.2) Numero de orejas Material (A36 o A572) Dh [mm] be [mm] t [mm] R [mm] Soldadura Filete [in] E7018/E71T-1 Y(si) o N(no) Dp [mm] a [mm] H [mm] Diametro de agujero Ancho de oreja Espesor de oreja Radio exterior Altura de pierna Material de aporte Terminacion redondeada Diametro de grillete Altura de oreja Material base a eje Esfuerzo de Traccion Resistencia al corte a través del agujero Esfuerzo cortante en Soldadura Garganta de Filete mínima 3-3. 707 >=garganta_3-3 in 0.538 Cumple Esfuerzo Cortante en la Soldadura: Exx [psi] = Fv [psi] = Aw [in^2] = Fw [lb] = CheckFw = Fu si Fu<Exx 0.301 18.000 58.03 0.75.188.0.0.000 Material: A36 36.5.2*Nd) (2*w+2*t) * (0.556 Cumple A572 50.000 3.000.313)))))) 35 36 check_garganta = Pierna filete*0.056 2.7*Fu/(1.000 E7018/E71T-1 58. 3:03 PM 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Oreja con conexión para grillete: ASME BTH-1 Descripcion: Atril de Armado de contraejes Fuller 11.707*Leg) Fv*Aw W < Fw Resistencia a la tracción de la soldadura del metal de aporte Esfuerzo cortante de soldadura admisible(eq 3-53) Área de la soldadura Carga de soldadura admisible psi psi in^2 lb 33 Garganta de Soldadura minima: 3-3.79 3.000.000 9.000 29.000 A516 16.(IF(K14<1.5.6 Nd Peso de la carga Design factor Material Fy [psi] Fu [psi] E [psi] A36 36.000 8.0.10 0.(IF(K14<=0.3 34 garganta_3-3 [in] = IF(K14<=0.000.000 58.17 6.10 3.0.800.000 Material Fy [psi] Fu [psi] E [psi] Dh [in] w [in] t [in] R [in] Leg [in] Fy/Nd t*(w-Dh) W/A St < Ft Limite elastico Resistencia a la traccion Modulo de Elesticidad Diametro de agujero Ancho de oreja Espesor de oreja Radio Exterior de oreja Altura de filete de soldadura Esfuerzo de traccion admisible (eq 3-1) Area en tension Esfuerzo de traccion psi in^2 psi 10.568 33.25.24 Ft [psi] = A [in^2] = St [psi] = CheckSt = Esfuerzo de Traccion: Resistencia al Corte a travez del agujero: Av [in^2] = 2*(R-(Dh/2)*cos(radians(45)))*t Area total de dos planos de corte (eq 3-50) Pv [lb] = 0.25.000 29.000 29.2*Nd)*Av Doble plano de resistencia al corte (eq 3-49) CheckPv = W < Pv in^2 lb 3.10/5/2013.023 W [lb] 3.125.000 70.000 65.000 Dimensiones: 2.6*Exx/(1.IF(K14<=0.000 30.4.536 Cumple 58.125 Cumple 33 de 69 . 243 x (1 -0.D h /2 = We =R.1416 x 0. Sqrt ( p .2 T) Mpa.60.2 x4.D h /2 We =R.60/ 2 = 100 .13 s = K 1c = 63 = Load ( P) = . s .61 x 0.5 x (3 -0. Sqrt ( p .5 x (3 .d) 3 ] a / (D h / 2 + a) 4.60/ 2 = 100 .00025P x sqrt(3.243 x (1 .5) 0.5 / (60/ 2 + 4.d) [ 1 + 1.0045) 812 kN = P / 4000 = 0. s .13)^3 ] 2. d= d= Fd = = = = = 345 MPa 200 .13) [ 1 + 1.1 Lifting Lug Load Capacity Vs Crack length Calculation Sample Calculation Thickness of Lug (t) Width of Lug (W) Radius of Circular Section (R) Diameter of Hole ( D h ) Diameter of Pin ( D p ) = = = = 20 200 100 60 mm mm mm mm = Distance from centre of hole to Welding (h)= 57 mm 100 mm Area of Cross Section = 20 x 200 = 4000 Length of Crack ( a ) = 4.0003 = 0.61 Load (P) Area F d . Sqrt(m) For -140 < T < 150 o 63 C o 100 .D h /2 = = 15 C (60 + 0.60/ 2 = 70 mm 70 mm 70 mm By Yeild Theory Yeild Strength of Plate Effective width of plate Tensile Load capacity By Fracture Theory K 1c = Fd = Where. a ) 0.9 x 345 x 131 x 20/1000 = 131 F d .5 = 0. a ) 2.5 mm Distance from centre of hole to edge of crack = (D h / 2 + a) = Temperature (T) Fracture Toughness ( k 1c ) = = K 1c = Check For Geometry We =R. 457 2.67 2.162 0.118 0.091 0.5 4 4.5 2 2.063 0.032 0.25 Fd 3.61 2.077 0.13 0.104 0.096 Fracture Theory Load (P) (kN) Fracture Theory 1424 1200 1070 984 923 876 842 812 754 727 708 692 678 Temp = Zero Degree Celcius Fracture Theory .048 0.032 0.157 3.143 0.5 34 35 35.059 2.5 3 3.231 0.059 2.063 0.97 2.5 33 33.97 2.231 0.077 0.091 0.096 Temp = 15 Degree Celcius Length of Crack ( a ) (mm) 1 1.5 32 32.157 3.048 0.246 2.5 36 37 38 39 40 Temperatu re (T) o C 15 15 15 15 15 15 15 15 15 15 15 15 15 d = a / (D h / 2 + a) 0.8 37 38 39 40 Temperatu re (T) o C 30 30 30 30 30 30 30 30 30 30 30 30 30 d = a / (D h / 2 + a) 0.743 2.89 2.167 2.5 2 2.104 0.5 33 33.546 2.5 32 32.5 34 34.89 2.5 3 3.337 2.167 0.189 0.5 6 7 8 9 10 Fracture Toughness ( k 1c ) 63 63 63 63 63 63 63 63 63 63 63 63 63 (D h / 2 + a) 31 31.211 0.434 2.67 2.743 2.246 2.8 7 8 9 10 Fracture Toughness ( k 1c ) 66 66 66 66 66 66 66 66 66 66 66 66 66 Fracture Theory Load (P) (kN) Fracture Theory 1492 1257 1121 1031 967 918 882 827 796 762 741 725 711 (D h / 2 + a) 31 31.118 0.189 0.Temp = 30 Degree Celcius Length of Crack ( a ) (mm) 1 1.337 2.167 2.812 2.5 4 5 5.211 0.25 Fd 3.812 2. 5 2 2.231 0.048 0.711 2.796 2.077 0.032 0.5 32 32.5 33 33.048 0.059 2.211 0.246 2.063 0.167 0.094 0.189 0.231 0.091 0.5 3 3.5 2 2.063 0.1 4 5 6 7 8 9 10 Fracture Toughness ( k 1c ) 57 57 57 57 57 57 57 57 57 57 57 57 57 (D h / 2 + a) 31 31.104 0.091 0.89 2.5 3.97 2.077 0.434 2.546 2.337 2.118 0.096 Fracture Theory Load (P) (kN) Fracture Theory 1289 1086 968 890 835 826 762 715 682 658 640 626 614 Temp = -30 Degree Celcius Length of Crack ( a ) (mm) Fracture Toughness ( k 1c ) (D h / 2 + a) Temperatu re (T) o C d = a / (D h / 2 + a) Fd Fracture Theory Load (P) (kN) Fracture Theory .059 2.143 0.157 3.25 Fd 3.337 2.11 0.89 2.67 2.5 33.167 2.5 32 32.812 2.Length of Crack ( a ) (mm) 1 1.434 2.25 Fd 3.5 3 3.5 33 33.143 0.246 2.812 2.1 34 35 36 37 38 39 40 Temperatu re (T) o C -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 d = a / (D h / 2 + a) 0.032 0.167 2.189 0.157 3.211 0.096 Load (P) (kN) Fracture Theory 1356 1143 1019 937 879 834 821 752 718 693 674 659 646 Temp = -15 Degree Celcius Length of Crack ( a ) (mm) 1 1.546 2.167 0.7 5 6 7 8 9 10 (D h / 2 + a) 31 31.743 2.7 35 36 37 38 39 40 Temperatu re (T) o C 0 0 0 0 0 0 0 0 0 0 0 0 0 Fracture Toughness ( k 1c ) 60 60 60 60 60 60 60 60 60 60 60 60 60 d = a / (D h / 2 + a) 0.97 2. 246 2.211 0.434 2.546 2.118 0.189 0.059 2.546 2.5 34 35 36 37 38 39 40 Temperatu re (T) o C -45 -45 -45 -45 -45 -45 -45 -45 -45 -45 -45 -45 -45 d = a / (D h / 2 + a) 0.104 0.063 0.6 33.157 3.1 1.97 2.337 2.743 2.231 0.091 0.5 4 5 6 7 8 9 10 31 31.211 0.5 32.5 4 5 6 7 8 9 10 Fracture Toughness ( k 1c ) 51 51 51 51 51 51 51 51 51 51 51 51 51 (D h / 2 + a) 31 31.032 0.08 0.063 0.059 2.337 2.167 0.5 34 35 36 37 38 39 40 -30 -30 -30 -30 -30 -30 -30 -30 -30 -30 -30 -30 -30 54 54 54 54 54 54 54 54 54 54 54 54 54 0.096 Fracture Theory Load (P) (kN) Fracture Theory 1153 971 867 842 747 709 682 639 610 589 573 560 549 .067 0.25 Fd 3.167 2.97 2.89 2.096 1221 1029 918 843 832 751 722 677 646 623 607 593 581 Temp = -45 Degree Celcius Length of Crack ( a ) (mm) 1 1.167 0.812 2.143 0.5 32 32.032 0.5 2 2.15 33 33.67 2.104 0.077 0.434 2.5 2 2.231 0.743 2.246 2.5 2.118 0.25 3.873 2.157 3.67 2.143 0.189 0.947 2.6 3.048 0.5 32 32.167 2.048 0.15 3 3. 5xDh . Hence OK mm 2 Both side of Hole 35 mm (60 for Steel WT Caterary 4) 100 mm 60 mm Dia. Hence OK > 2t . Hence OK LOAD (P) Crack Length (a) 100 mm > 1.Eng. UofC > Dh/4 .Kawish Shaikh P. Hence OK < 5t . hole 200 mm Mpa. Hence OK mm 814 kN P Crack Lenth (a) Vs Tensile Load (P) . Sqrt(m) > Dh/2 . Yeild Yeild Stress Theory (s) 857 851 845 838 832 826 820 814 795 782 770 758 745 345 345 345 345 345 345 345 345 345 345 345 345 345 Net Section will Yeild before Fracture Net Section will Yeild before Fracture Net Section will Yeild before Fracture Net Section will Yeild before Fracture Net Section will Yeild before Fracture Net Section will Yeild before Fracture Net Section will Yeild before Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Fracture Theory Yeild Theory .4 126 124 122 120 Yeild Theory Load (P) (kN) .Yeild Yeild Stress Theory (s) 857 851 845 838 832 826 820 807 797 782 770 758 745 345 345 345 345 345 345 345 345 345 345 345 345 345 Net Section will Yeild before Fracture Net Section will Yeild before Fracture Net Section will Yeild before Fracture Net Section will Yeild before Fracture Net Section will Yeild before Fracture Net Section will Yeild before Fracture Net Section will Yeild before Fracture Net Section will Yeild before Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Fracture Theory Stress in the Net Section 573 487 437 405 383 366 354 344 327 321 317 315 314 Effective width of Plate (mm) 138 137 136 135 134 133 132 131 128 126 124 122 120 Yeild Theory Load (P) (kN) .Fracture Theory Stress in the Net Section 601 510 458 424 401 383 371 354 344 336 332 330 329 Effective width of Plate (mm) 138 137 136 135 134 133 132 130 128. 6 130 128 126 124 122 120 Load (P) (kN) .Stress in the Net Section 546 463 416 386 364 349 344 321 312 305 302 300 299 Effective width of Plate (mm) 138 137 136 135 134 133 132.Yeild Yeild Stress Theory (s) 857 851 845 838 832 831 820 807 795 782 770 758 745 345 345 345 345 345 345 345 345 345 345 345 345 345 Net Section will Yeild before Fracture Net Section will Yeild before Fracture Net Section will Yeild before Fracture Net Section will Yeild before Fracture Net Section will Yeild before Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Fracture Theory Stress in the Net Section Effective width of Plate (mm) Yeild Theory Load (P) (kN) .Yeild Yeild Stress Theory (s) 857 851 845 838 832 826 823 807 795 782 770 758 745 345 345 345 345 345 345 345 345 345 345 345 345 345 Net Section will Yeild before Fracture Net Section will Yeild before Fracture Net Section will Yeild before Fracture Net Section will Yeild before Fracture Net Section will Yeild before Fracture Net Section will Yeild before Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Fracture Theory Stress in the Net Section 519 440 396 366 346 343 321 305 296 290 287 285 284 Effective width of Plate (mm) 138 137 136 135 134 133.8 132 130 128 126 124 122 120 Yeild Theory Load (P) (kN) .Yeild Yeild Stress Theory (s) . Yeild Yeild Stress Theory (s) 857 851 845 843 832 826 820 807 795 782 770 758 745 345 345 345 345 345 345 345 345 345 345 345 345 345 Net Section will Yeild before Fracture Net Section will Yeild before Fracture Net Section will Yeild before Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture .491 417 375 347 343 314 304 289 281 275 272 270 269 138 137 136 135 134.8 133 132 130 128 126 124 122 120 857 851 845 838 837 826 820 807 795 782 770 758 745 345 345 345 345 345 345 345 345 345 345 345 345 345 Net Section will Yeild before Fracture Net Section will Yeild before Fracture Net Section will Yeild before Fracture Net Section will Yeild before Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Fracture Theory Stress in the Net Section 464 394 354 345 310 296 287 273 265 260 257 255 254 Effective width of Plate (mm) 138 137 136 135.7 134 133 132 130 128 126 124 122 120 Yeild Theory Load (P) (kN) . . Fracture Theory .Crack Length (a) VS Lug Capacity (kN) for 30 oC 1600 1400 1200 Load (kN) 1000 800 600 400 200 0 0 5 a (mm) 10 15 Load (P) (kN) -Yeild Theory Load (P) (kN) .Fracture Theory Crack Length (a) VS Lug Capacity (kN) for 15 oC 1600 1400 1200 Load (kN) 1000 800 600 400 200 0 0 5 a (mm) 10 15 Load (P) (kN) -Yeild Theory Load (P) (kN) . Fracture Theory Crack Length (a) VS Lug Capacity (kN) for -15 oC 1400 1200 1000 Load (kN) 800 600 400 200 0 0 5 a (mm) 10 15 Load (P) (kN) .Crack Length (a) VS Lug Capacity (kN) for 0 oC 1600 1400 1200 Load (kN) 1000 800 600 400 200 0 0 5 a (mm) 10 15 Load (P) (kN) -Yeild Theory Load (P) (kN) .Fracture Theory Load (P) (kN) -Yeild Theory Crack Length (a) VS Lug Capacity (kN) for -30 oC 1400 1200 . 1200 1000 Load (kN) 800 600 400 200 0 0 5 a (mm) 10 15 Load (P) (kN) .Fracture Theory Load (P) (kN) -Yeild Theory Crack Length (a) VS Lug Capacity (kN) for -45 oC 1400 1200 1000 Load (kN) 800 600 400 200 0 0 5 a (mm) 10 15 Load (P) (kN) .Fracture Theory Load (P) (kN) -Yeild Theory . . Fracture Theory Load (P) (kN) -Yeild Theory 1600 1400 1200 Load (kN) 1000 800 600 400 200 0 0 2 4 6 a (mm) 8 10 .Fracture Theory Load (P) (kN) -Yeild Theory Crack Length (a) VS Lug Capacity (kN) Load (P) (kN) .Load (P) (kN) . Load (P) (kN) .Fracture Theory Load (P) (kN) -Yeild Theory Load (P) (kN) .Fracture Theory Load (P) (kN) -Yeild Theory . Fracture Theory Load (P) (kN) -Yeild Theory .Load (P) (kN) .Fracture Theory Load (P) (kN) -Yeild Theory Load (P) (kN) . . apacity (kN) Temp = 30 Degree Celcius Temp = 15 Degree Celcius Temp = Zero Degree Celcius Temp = -15 Degree Celcius Temp = -45 Degree Celcius 10 12 Load (P) (kN) -Yeild Theory . 60/ 2 = 100 .13 s = K 1c = 43 = Load ( P) = .5) 0.60/ 2 = 100 .2 T) Mpa.243 x (1 . Sqrt ( p .5 / (60/ 2 + 4.5 mm Distance from centre of hole to edge of crack = (D h / 2 + a) = Temperature (T) Fracture Toughness ( k 1c ) = = K 1c = Check For Geometry We =R.61 Load (P) Area F d . s . Sqrt ( p .1 Lifting Lug Load Capacity Vs Crack length Calculation Sample Calculation Thickness of Lug (t) Width of Lug (W) Radius of Circular Section (R) Diameter of Hole ( D h ) Diameter of Pin ( D p ) = = = = 20 200 100 60 mm mm mm mm = Distance from centre of hole to Welding (h)= 57 mm 100 mm Area of Cross Section = 20 x 200 = 4000 Length of Crack ( a ) = 4. s .1416 x 0.0045) 554 kN = P / 4000 = 0.0003 = 0.60/ 2 = 70 mm 70 mm 70 mm By Yeild Theory Yeild Strength of Plate Effective width of plate Tensile Load capacity By Fracture Theory K 1c = Fd = Where.13) [ 1 + 1.d) [ 1 + 1. d= d= Fd = = = = = 345 MPa 200 .5 x (3 .D h /2 = We =R.13)^3 ] 2.00025P x sqrt(3.61 x 0.60.5 = 0. a ) 0.d) 3 ] a / (D h / 2 + a) 4.9 x 345 x 131 x 20/1000 = 131 F d .5 x (3 -0.D h /2 = = 15 C (40 + 0. a ) 2.243 x (1 -0. Sqrt(m) For -140 < T < 150 o 43 C o 100 .D h /2 We =R.2 x4. 231 0.246 2.211 0.077 0.162 0.096 Temp = 15 Degree Celcius Length of Crack ( a ) (mm) 1 1.167 0.246 2.091 0.5 3 3.89 2.337 2.063 0.211 0.812 2.157 3.063 0.25 Fd 3.8 37 38 39 40 Temperatu re (T) o C 30 30 30 30 30 30 30 30 30 30 30 30 30 d = a / (D h / 2 + a) 0.157 3.8 7 8 9 10 Fracture Toughness ( k 1c ) 46 46 46 46 46 46 46 46 46 46 46 46 46 Fracture Theory Load (P) (kN) Fracture Theory 1040 876 782 718 674 640 615 577 555 531 517 505 495 (D h / 2 + a) 31 31.5 4 5 5.97 2.104 0.059 2.5 34 35 35.5 32 32.5 2 2.5 36 37 38 39 40 Temperatu re (T) o C 15 15 15 15 15 15 15 15 15 15 15 15 15 d = a / (D h / 2 + a) 0.5 32 32.67 2.118 0.5 3 3.189 0.97 2.5 2 2.67 2.143 0.048 0.5 34 34.5 33 33.231 0.118 0.89 2.546 2.337 2.032 0.077 0.032 0.13 0.096 Fracture Theory Load (P) (kN) Fracture Theory 972 819 731 672 630 598 575 554 515 496 483 472 463 Temp = Zero Degree Celcius Fracture Theory .434 2.059 2.25 Fd 3.743 2.5 4 4.167 2.104 0.048 0.812 2.743 2.189 0.091 0.167 2.61 2.5 33 33.Temp = 30 Degree Celcius Length of Crack ( a ) (mm) 1 1.457 2.5 6 7 8 9 10 Fracture Toughness ( k 1c ) 43 43 43 43 43 43 43 43 43 43 43 43 43 (D h / 2 + a) 31 31. 167 2.89 2.743 2.143 0.5 33 33.812 2.077 0.189 0.711 2.337 2.231 0.1 4 5 6 7 8 9 10 Fracture Toughness ( k 1c ) 37 37 37 37 37 37 37 37 37 37 37 37 37 (D h / 2 + a) 31 31.048 0.096 Fracture Theory Load (P) (kN) Fracture Theory 836 705 629 578 542 536 494 464 443 427 416 406 398 Temp = -30 Degree Celcius Length of Crack ( a ) (mm) Fracture Toughness ( k 1c ) (D h / 2 + a) Temperatu re (T) o C d = a / (D h / 2 + a) Fd Fracture Theory Load (P) (kN) Fracture Theory .7 5 6 7 8 9 10 (D h / 2 + a) 31 31.Length of Crack ( a ) (mm) 1 1.032 0.063 0.157 3.059 2.5 2 2.104 0.091 0.812 2.231 0.077 0.5 32 32.5 3 3.5 3.25 Fd 3.89 2.211 0.091 0.048 0.167 0.189 0.1 34 35 36 37 38 39 40 Temperatu re (T) o C -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 d = a / (D h / 2 + a) 0.434 2.032 0.546 2.5 32 32.25 Fd 3.167 0.167 2.5 2 2.246 2.546 2.143 0.118 0.063 0.5 33 33.434 2.157 3.5 33.11 0.97 2.096 Load (P) (kN) Fracture Theory 904 762 680 625 586 556 547 501 479 462 449 439 431 Temp = -15 Degree Celcius Length of Crack ( a ) (mm) 1 1.059 2.094 0.97 2.337 2.5 3 3.246 2.796 2.7 35 36 37 38 39 40 Temperatu re (T) o C 0 0 0 0 0 0 0 0 0 0 0 0 0 Fracture Toughness ( k 1c ) 40 40 40 40 40 40 40 40 40 40 40 40 40 d = a / (D h / 2 + a) 0.211 0.67 2. 167 0.104 0.5 2.5 32 32.67 2.873 2.157 3.067 0.157 3.189 0.97 2.434 2.167 2.67 2.059 2.6 33.231 0.25 Fd 3.143 0.032 0.091 0.5 4 5 6 7 8 9 10 31 31.947 2.211 0.812 2.08 0.337 2.096 Fracture Theory Load (P) (kN) Fracture Theory 701 591 527 512 454 431 414 389 371 358 348 340 334 .5 32 32.25 3.211 0.167 2.5 32.743 2.059 2.118 0.048 0.5 2 2.063 0.032 0.077 0.063 0.104 0.97 2.246 2.89 2.6 3.189 0.118 0.5 2 2.743 2.15 33 33.1 1.048 0.5 34 35 36 37 38 39 40 -30 -30 -30 -30 -30 -30 -30 -30 -30 -30 -30 -30 -30 34 34 34 34 34 34 34 34 34 34 34 34 34 0.167 0.096 769 648 578 531 524 473 454 426 407 392 382 373 366 Temp = -45 Degree Celcius Length of Crack ( a ) (mm) 1 1.546 2.5 34 35 36 37 38 39 40 Temperatu re (T) o C -45 -45 -45 -45 -45 -45 -45 -45 -45 -45 -45 -45 -45 d = a / (D h / 2 + a) 0.246 2.15 3 3.546 2.5 4 5 6 7 8 9 10 Fracture Toughness ( k 1c ) 31 31 31 31 31 31 31 31 31 31 31 31 31 (D h / 2 + a) 31 31.434 2.231 0.337 2.143 0. Sqrt(m) > Dh/2 . Hence OK mm 2 Both side of Hole 35 mm (40 for Steel W 350) 100 mm 60 mm Dia. Hence OK < 5t . hole 200 mm Mpa. Hence OK > 2t . Hence OK LOAD (P) Crack Length (a) 100 mm > 1. Hence OK mm 814 kN P Crack Lenth (a) Vs Tensile Load (P) .Kawish Shaikh P. UofC > Dh/4 .Eng.5xDh . Yeild Yeild Stress Theory (s) 857 851 845 838 832 826 820 807 797 782 770 758 745 345 345 345 345 345 345 345 345 345 345 345 345 345 Net Section will Yeild before Fracture Net Section will Yeild before Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Fracture Theory Stress in the Net Section 391 332 298 276 261 250 242 235 223 219 216 215 214 Effective width of Plate (mm) 138 137 136 135 134 133 132 131 128 126 124 122 120 Yeild Theory Load (P) (kN) .Yeild Yeild Stress Theory (s) 857 851 845 838 832 826 820 814 795 782 770 758 745 345 345 345 345 345 345 345 345 345 345 345 345 345 Net Section will Yeild before Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Fracture Theory Yeild Theory .Fracture Theory Stress in the Net Section 419 355 319 296 279 267 259 246 240 234 232 230 229 Effective width of Plate (mm) 138 137 136 135 134 133 132 130 128.4 126 124 122 120 Yeild Theory Load (P) (kN) . Stress in the Net Section 364 309 278 257 243 232 229 214 208 204 201 200 199 Effective width of Plate (mm) 138 137 136 135 134 133 132.6 130 128 126 124 122 120 Load (P) (kN) - Yeild Yeild Stress Theory (s) 857 851 845 838 832 826 823 807 795 782 770 758 745 345 345 345 345 345 345 345 345 345 345 345 345 345 Net Section will Yeild before Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Fracture Theory Stress in the Net Section 337 286 257 238 225 223 208 198 192 188 186 185 184 Effective width of Plate (mm) 138 137 136 135 134 133.8 132 130 128 126 124 122 120 Yeild Theory Load (P) (kN) - Yeild Yeild Stress Theory (s) 857 851 845 838 832 831 820 807 795 782 770 758 745 345 345 345 345 345 345 345 345 345 345 345 345 345 Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Fracture Theory Stress in the Net Section Effective width of Plate (mm) Yeild Theory Load (P) (kN) - Yeild Yeild Stress Theory (s) 309 263 236 219 216 198 191 182 177 173 171 170 169 138 137 136 135 134.8 133 132 130 128 126 124 122 120 857 851 845 838 837 826 820 807 795 782 770 758 745 345 345 345 345 345 345 345 345 345 345 345 345 345 Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Fracture Theory Stress in the Net Section 282 239 215 210 188 180 174 166 161 158 156 155 155 Effective width of Plate (mm) 138 137 136 135.7 134 133 132 130 128 126 124 122 120 Yeild Theory Load (P) (kN) - Yeild Yeild Stress Theory (s) 857 851 845 843 832 826 820 807 795 782 770 758 745 345 345 345 345 345 345 345 345 345 345 345 345 345 Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Net Section will Fracture Fracture Theory 600 Load (P) (kN) -Yeild Theory 400 200 0 0 5 a (mm) 10 15 .Crack Length (a) VS Lug Capacity (kN) for 30 oC 1200 1000 800 Load (kN) Load (P) (kN) .Fracture Theory 600 Load (P) (kN) -Yeild Theory 400 200 0 0 5 a (mm) 10 15 Crack Length (a) VS Lug Capacity (kN) for 15 oC 1200 1000 800 Load (kN) Load (P) (kN) . Fracture Theory Crack Length (a) VS Lug Capacity (kN) for -15 oC 900 800 700 600 Load (kN) 500 400 300 200 100 0 0 5 a (mm) 10 15 Load (P) (kN) .Fracture Theory Load (P) (kN) -Yeild Theory Crack Length (a) VS Lug Capacity (kN) for -30 oC 900 800 .Crack Length (a) VS Lug Capacity (kN) for 0 oC 1000 900 800 700 Load (kN) 600 500 400 300 200 100 0 0 5 a (mm) 10 15 Load (P) (kN) -Yeild Theory Load (P) (kN) . Fracture Theory Load (P) (kN) -Yeild Theory .Fracture Theory Load (P) (kN) -Yeild Theory Crack Length (a) VS Lug Capacity (kN) for -45 oC 900 800 700 600 Load (kN) 500 400 300 200 100 0 0 5 a (mm) 10 15 Load (P) (kN) .800 700 600 Load (kN) 500 400 300 200 100 0 0 5 a (mm) 10 15 Load (P) (kN) . . Fracture Theory Load (P) (kN) -Yeild Theory Crack Length (a) VS Lug Capacity (kN) Load (P) (kN) .Fracture Theory Load (P) (kN) -Yeild Theory 1200 1000 Load (kN) 800 600 400 200 0 0 2 4 6 a (mm) 8 10 .Load (P) (kN) . Fracture Theory Load (P) (kN) -Yeild Theory Load (P) (kN) .Fracture Theory Load (P) (kN) -Yeild Theory .Load (P) (kN) . Fracture Theory Load (P) (kN) -Yeild Theory Load (P) (kN) .Fracture Theory Load (P) (kN) -Yeild Theory .Load (P) (kN) . . apacity (kN) Temp = 30 Degree Celcius Temp = 15 Degree Celcius Temp = Zero Degree Celcius Temp = -15 Degree Celcius Temp = -45 Degree Celcius 10 12 Load (P) (kN) -Yeild Theory .


Comments

Copyright © 2025 UPDOCS Inc.