Manoeuvering Booklet

June 9, 2018 | Author: Farshid Bokdawalla | Category: Water Transport, Aerospace Engineering, Watercraft, Nature
Report this link


Description

SOLAS II - 1, REGULATION 28 !Maneuvering Booklet IMO RESOLUTION A "#1$1%& Contents 1 1.1 1.2 General decription Ship’s particulars Characteristics of Main Engine(s) 2 2.1 2.2 2.3 2.! 2.$ 2.( Manoeuvering characteristics in deep water Course change performance Turning circles in deep water ccelerating turn "aw chec#ing tests Man%o&er'oard and parallel course Manoeu&ering )ateral thruster capa'ilities 3 3.1 3.2 3.3 Stopping and speed control characteristics in deep water Stopping a'ilit* +eceleration performance cceleration performance 4 !.1 !.2 Manoeuvring characteristics in shallow water Turning circle in shallow water S,uat 5 $.1 $.2 $.3 Manoeuvring characteristics in wind -ind forces and moments Course%#eeping limitations +rifting under wind influence 6 Manoeuvring characteristics at low speed 7 Additional infor ation 'lea(e )on(i*er t+e environ,ent -e.ore /rinting out t+e(e )o/ie( 1 1 General !escription 1"1 Ships #articulars Ships name /fficial 0o +ate #eel laid 1T +-T +isplacement )/ )56 5readth (Mld) +epth (Mld) . . . .22$2( .!23(3 .$23$! .142.$ .12!.4 .32.18 .12.$ at Summer draft 0ormal 'allast draft. 31!33 7ull coefficient at summer load draft 7ull coefficient at normal 'allast draft E9treme height of ships structure (from #eel) .!(.($ m Main $ngine%s& T*pe. M 0 5:- (+;ESE)) 0o of units.1 #- power 4313 #ropeller%s& T*pe. <66 =otation direction. =ight handed +iameter. $433 mm 6itch. !.114 m 6rop immersion.128> (loaded) 0o of units.1 'udder%s& T*pe. SEM; 5 ) 0CE+ Total area. 3(.24 m2 rea ratio (loaded). rea ratio ('allast). 0o of units. 1 (ow and Stern )hrusters T*pe. 0o of units. 5ow thruster capacit*. Stern thruster capacit*. Stern thruster location. 5ow thruster location. 'lea(e )on(i*er t+e environ,ent -e.ore /rinting out t+e(e )o/ie( 2 (ow and Stern #rofiles %not to scale& Bow profile - Full load condition Full load draft 12.2M Blind zone 130 M Bow profile - ballast condition Normal ballast draft 7.12 M Blind zone 200 M Stern profile Full load condition Blind zone 7.0 M Full load draft 12.2 M Stern profile Ballast condition Blind zone 13.0 M 7.12 M Normal ballast draft 'lea(e )on(i*er t+e environ,ent -e.ore /rinting out t+e(e )o/ie( 3 protrudin% brid%e win%s or bulbous bows..2 M Normal ballast waterline 7. items /includin% dimensions0 of specific "ull details not specified abo1e rele1ant to t"e 1essel2 e% .full load (7.$ M Stern to brid%e win% *+treme "ei%"t '$.. .2 M !idt"-ballast !# 32.12 M #en%t" of full load waterline 17. .3t"er "ull particulars 27.'M #en%t" of normal ballast waterline 172.ent -e.$& M 1&'.. 'lea(e )on(i*er t+e environ.ore /rinting out t+e(e )o/ie( 4 .2 M #en%t" of parallel mid bod.( M .normal ballast condition .( M )istance from brid%e win% to bow Full load waterline 12.$M !idt"-loaded !# 32.$ M -lease note below an. #en%t" of parallel mid bod. 1 ..0 101 Ba ast !oaded Ma9imum 0o of consecuti&e starts (diesel engine) (?11 Time limit astern 0?) min.1.& 10. Minimum operating =e&olutions 33 rpm Critical re&olutions 122 rpm Speed at minimum operating re&olutions 3.( 10.0 $& '& '& $& .ent -e.$ #nots Time ta#en to effect changes in Engine Telegraph Settings Time Taken Change in Engine Te egraph Settings <ull astern from <ull Sea speed head <ull astern from <ull head speed <ull astern from 7alf head speed <ull astern from Slow head speed Stop Engine from <ull Sea speed head Stop Engine from <ull head speed Stop Engine from 7alf head speed Stop Engine from Slow head speed Routine 2m &0s 0m 3$s 0m 30s 0m 21s 7m 13s 'm 3&s 3m &&s 2m 30s E"ergenc # 2m 00s 0m 20s 0m 10s 0m 07s 7m 13s 'm 3&s 3m &&s 2m 30s 'lea(e )on(i*er t+e environ.. 1&.2 Characteristics of Main Engine Trial or Estimated Speed (Knots) Ba ast !oaded 1&.& 11.ore /rinting out t+e(e )o/ie( 5 .2 $..0 &.1 12.$ .7 Thrust Engine Order <ull head (Sea) <ull head (Man) 7alf head Slow head +ead Slow head +ead Slow stern Slow stern 7alf stern <ull stern RPM 123 102 . 8 3.6 3$0 (m 0$s 3$0 10m 20s 0(0 1m 3.0 'm 20s 1.2 0(0 2m 2(s 0(0 1m &(s 20 de%rees rudder 10 de%rees rudder 1.0 &m 12s 5nitial course 000 1.0 3& de%rees rudder 3m &.2 20 de%rees rudder 10 de%rees rudder 3& de%rees rudder 3.s 270 7m 12s 4ransfer /cables0 0.0 3.0 3m 17s 1.ind speed Calm Sea State Calm +epth of -ater @13+ 'lea(e )on(i*er t+e environ.ind +irection .0 'm '(s 3$0 10m '0s 270 &m 20s 270 $m 2.s 1.0 3m 11s 1.ore /rinting out t+e(e )o/ie( 6 .6 0(0 2m '3s 0(0 2m 0.2 1.8 2.nitial turning test results (trial or estimated) <ull load condition 6d1ance /cables0 5.7 5nitial course 000 0ormal 'allast condition 6d1ance /cables0 5.2 M$%OE&'R(%) C*$R$CTER(ST(CS (% +EEP .ent -e.4 1.s 4.2 4ransfer /cables0 Stern trac# shown in 'oth of the a'o&e diagrams En&ironmental conditions during test .s 3$0 (m '2s 0(0 1m 31s 3$0 7m 3.9 1.s 3$0 7m 10s 270 &m20s 270 $m'0s 270 7m'0s 1.$TER 2.1 Course change perfor"ance . 1 3.$ !.$ !.4 1!.4 4.2 !.2 2.( $.$ 13.! 13.3 !.8 $. es 1.4 !.( (.$ 1!.2 3.4 3.3 $.$ 3.$ 8.3 13.1 !.2 8.4 11.3 12.2 !.! (.1 1.3 12.$ $.3 2.3 3.! 28.! 1.4 2.! %%% 'lea(e )on(i*er t+e environ.8 !.2 3.1 11.$ 12.2 2.2 !.$ 3.3 !.3 4.2 11. es 3.ore /rinting out t+e(e )o/ie( 7 .8 1!.2 $.$ $.4 !.1 3.3 8.3 $.3 13.! 2.2 $.( 1(.! !.2 4.1 !.3 3. es 1.1 $.2 3.2 3.( 3.ent -e.2 !.$ 13.8 12.1 (.8 !.8 2.! 11.2 11.( 3.! 3.! 3.3 Transfer in ca.2 $.3 !.3 2.( $.( 12.3 3.3 $.$ !.1 3$.8 8.3 11.3 %%% <ull head sea speed 0ormal 'allast conditionA 1/ degrees of rudder Change of *eading Ti"e fro" .2 Transfer in ca.3 $.2 11.$ !.0O 3!s $!s 1m 32s 1m 22s 1m 3(s 1m $3s 2m 33s 2m 1(s 2m 28s 2m !2s 2m $2s 3m 13s 3m 28s 3m !$s !m 31s !m 12s !m 33s !m !8s Speed after turn 1$.4 $.3 3.$ 3.3 4.1 1!.2 Rate of turn 233?min 343?min !33?min !13?min !33?min !33?min !!3?min !(3?min !(3?min !33?min !33?min 343?min 323?min 323?min 323?min 323?min 323?min 323?min $d1ance in ca.8 13.Ta.! 18.2 13.3 !.( 3.3 $. es 3.3 13.3 11.2 3.3 2.1 1!.! $.1 3.1 !.! 2.2 $.! 1.3 2.( $.$ 13.$ 11.2 (.2 2.3 3.2 Rate of turn 223?min 3!3?min !33?min !33?min !33?min !33?min !33?min !33?min !33?min 383?min 323?min 323?min 323?min 323?min 323?min 323?min 323?min 323?min $d1ance in ca.$ 8.1 $.8 !. e of course change test resu ts <ull head Sea Speed <ull )oad conditionA 1/ degrees of rudder Change of *eading Ti"e fro" .8 3.( Point of initiation of counter rudder 13 23 33 !3 $3 (3 23 43 83 133 113 123 133 1!3 1$3 1(3 123 143 2 1$ 23 33 !3 $3 (3 23 43 83 13! 11! 12! 13! 1!! 1$! 1(! 12! +istance to %ecourse 1.! $.8 1.3 !.2 1.8 $.2 11.1 11.$ 2.2 3.0O 32s $4s 1m 13s 1m 24s 1m !3s 1m $4s 2m 13s 2m 24s 2m !3s 2m $4s 3m 1!s 3m 33s 3m !2s !m 3!s !m 21s !m 34s !m $$s $m 12s Speed after turn 1$.2 Point of initiation of counter rudder 13 23 33 !3 $3 (3 23 43 83 133 113 123 133 1!3 1$3 1(3 123 143 ( 1! 22 32 !3 $3 (3 23 43 83 133 113 123 133 1!3 1$3 1(3 123 +istance to %ecourse 1.$ 3.4 1.1 !. $ 2.$ 3.$ 1.3 11.$ 11.2 !.4 8.2 2.2 !.! 33.8 13.$ 3.2 1.1 13.1 3.1 2.1 !.4 $.3 13.( 2.1 1!.ore /rinting out t+e(e )o/ie( 8 .( 3.3 !.2 %%% <ull head sea speed 0ormal 'allast conditionA 2/ degrees of rudder Change of *eading Ti"e fro" .0O 2$s 38s $2s 1m 3$s 1m 1(s 1m 22s 1m 34s 1m !8s 1m $8s 2m 13s 2m 22s 2m 3$s 2m !4s 3m 32s 3m 1(s 3m 33s 3m !!s 3m $4s Speed after turn 1$.3 8.8 2.2 3.4 4.3 2.2 12.$ 3.4 2.3 12.3 3.3 13.2 2.( 3.3 3.1 1.4 2. es 1.1 3.3 13.! 1!.2 1.2 2.$ 2.! 3.( 3.! !.$ 8.4 Point of initiation of counter rudder 13 23 33 !3 $3 (3 23 43 83 133 113 123 133 1!3 1$3 1(3 123 143 2 1! 23 33 38 !8 $8 (4 28 28 133 113 123 133 1!3 1$3 1(3 123 +istance to %ecourse 1.4 !.( Transfer in ca.3 3.! 3.8 2.2 !.1 1.3 3.3 (.! 3.4 1.2 1!.1 11.1 3.$ !.2 3.3 8.8 3.3 3.8 12.3 2.! 12.( 4.! %%% 'lea(e )on(i*er t+e environ.2 1!.0O 22s !2s $(s 1m 13s 1m 22s 1m 3!s 1m !$s 1m $(s 2m 34s 2m 21s 2m 3$s 2m $3s 3m 3$s 3m 23s 3m 3$s 3m $3s !m 3$s !m 23s Speed after turn 1$.$ 3.4 13.1 !.3 3.4 1.2 2.3 $.4 2.! 3.1 2.8 Transfer in ca.8 3.2 8.( Point of initiation of counter rudder 13 23 33 !3 $3 (3 23 43 83 133 113 123 133 1!3 1$3 1(3 123 143 2 1$ 22 32 !1 $1 (3 23 41 81 132 112 122 132 1!2 1$2 1(2 122 +istance to %ecourse 1.( 13.2 1.1 12.2 3.4 11.3 2.1 3.3 2.1 1!.( 2.3 3.3 2.1 3.( 3.3 2.ent -e.8 $.4 23.1 3.2 3.4 !.! 1.4 3.2 !. es 3. es 1.3 8.$ !.3 4.$ 13.! 4.1 1$.$ 3.( 2.2 3.1 4.$ 1.4 !.3 !.3 2.3 4.4 !.4 4.4 3.1 Rate of turn 313?min !13?min !33?min !(3?min $33?min $23?min $!3?min $!3?min $23?min !83?min !(3?min !33?min !33?min !33?min !33?min !33?min !33?min !33?min $d1ance in ca.8 1!.2 !.1 1.3 3.3 !.3 Rate of turn 333?min !!3?min !(3?min $33?min $!3?min $!3?min $!3?min $23?min $!3?min $23?min !43?min !$3?min !$3?min !$3?min !$3?min !$3?min !$3?min !$3?min $d1ance in ca.4 3.! !.3 3.<ull head Sea Speed <ull )oad conditionA 2/ degrees of rudder Change of *eading Ti"e fro" . es 3.2 2. ! 2.8 !.2 12.2 3.1 3.3 2.3 3.$ Rate of turn !23?min ((3?min ((3?min ((3?min ((3?min 233?min 2$3?min 2$3?min (!3?min $$3?min $$3?min $$3?min $$3?min $$3?min $$3?min $$3?min $$3?min $$3?min $d1ance in ca.2 Transfer in ca.! 3.4 (.3 2.3 3.( (.2 13.2 1!.3 Point of initiation of counter rudder 13 23 33 !3 $3 (3 23 43 83 133 113 123 133 1!3 1$3 1(3 123 143 83 143 223 323 !(3 $(3 ($3 2$3 4$3 8$3 13$3 11$3 12$3 13$3 1!$3 1$$3 1($3 12$3 +istance to %ecourse 1.ent -e.( 2.$ % <ull head sea speed 0ormal 'allast conditionA 23 degrees of rudder.( 3.! 3.2 13.( % 'lea(e )on(i*er t+e environ.<ull head sea speed 0ormal 'allast conditionA 23 degrees of rudder.4 2.4 2.$ 11.8 3.4 3.3 3.( 3. es %3. Star'oard turn.1 1.4 3.2 (.3 !.1 3.2 13.1 8.4 2.3 3.3 2.2 1!.3 2.2 3.3 13.! $.3 3.4 2. Change of *eading Ti"e fro" .ore /rinting out t+e(e )o/ie( 9 .( 3.1 1!. Change of *eading Ti"e fro" .4 2.2 3.2 1.3 $.$ 2.$ 4.3 2.8 3.3 2.$ 4.( 2.2 13.2 2.2 2.! 3.! (.8 11.4 2.2 3.! 1.3 1.( 1.4 3. es %3.! 2.3 (.( Point of initiation of counter rudder 3$3 3!3 333 323 313 333 283 243 223 2(3 2$3 2!3 233 223 213 233 183 143 3$13 3!23 3333 3233 31!3 33!3 28$3 24$3 22$3 2($3 2$$3 2!$3 23$3 22$3 21$3 23$3 18$3 14$3 +istance to %ecourse 1.3 3.! 3.( (.1 8.1 !.2 3.8 !.! 3.( 2.8 11.( 13.! 3.2 13.$ Rate of turn !23?min ((3?min ((3?min 233?min 2$3?min 2$3?min 2$3?min 2$3?min 2$3?min 2$3?min 2$3?min (23?min (33?min (33?min (33?min (33?min (33?min (33?min $d1ance in ca.8 3.3 2.8 $. es 1.( 2.2 3.8 1.$ 14.3 3.( 1.1 3.$ 11.3 13.2 3.4 1.$ 3.1 12.0O 3m 31s 3m 38s 3m !2s 3m $(s 1m 3$s 1m 1!s 1m 22s 1m 33s 1m 34s 1m !8s 2m 33s 2m 11s 2m 22s 2m 33s 2m !!s 2m $$s 3m 3(s 3m 12s Speed after turn 1$.3 3.3 (.8 4.3 2.4 3.! 2. 6ort turn.1 3.( 2.8 4.2 13.8 !.( 3.3 3.4 2.2 2.$ 2.8 3.$ 3.! 2.3 3.4 2.8 3.2 Transfer in ca.2 2.1 3.( 2.0O 3m 21s 3m 32s 3m !3s 3m $1s 3m $8s 1m 32s 1m 1$s 1m 23s 1m 31s 1m !2s 1m $3s 2m 33s 2m 13s 2m 23s 2m 33s 2m !3s 2m $3s 3m 33s Speed after turn 1$.3 3. es 1.1 1!.4 (.2 !.( 3.4 2.2 3.3 1.$ 3.( 13.1 12. ore /rinting out t+e(e )o/ie( 10 . . the distance from the intersection of the initial and final heading to the wheel o&er position.n the a'o&e diagram the d&ance and the +istance to 0ew Course are 'oth of the same &alue.n other course alterations the* will ha&e different &alues. 'lea(e )on(i*er t+e environ.Course Point of initiation of Counter rudder The point at which the change of course is initiated. 7owe&erA this will 'e true onl* for an alteration of 83 degrees.0O) $d1ance Transfer +istance to %e.hee o1er position (. 5nitial "eadin% Final "eadin% S4*7N 47689 S:3!N 6d1ance )istance to new course !"eel o1er position 4ransfer . the pointA e9pressed in degreesA 'efore the final heading at which the appropriate counter rudder should 'e applied to pre&ent o&er%swing.Ter"s used . The distance which the ship has mo&ed perpendicular to the initial heading.ent -e. The distance which the ship has mo&ed in the direction of the initial heading. ent -e.3 n.3 *lapsed 4ime &m 10s 8ourse 270 Speed $.2& n.3$ *lapsed 4ime 1m 3.m Trac# shown is for stern trac# Ma9imum rudder angle used throughout turn En&ironmental conditions during Manoeu&ering Trial .m.m 6d1ance n.12 n.3 4actical )iameter 0.ind +irection %%%%% 'lea(e )on(i*er t+e environ.1 9nots 8ourse 000 *lapsed 4ime 7m 10s 8ourse 000 Speed $.1 9nots 8ourse 000 4actical )iameter 0.2.m 6d1ance 0. *lapsed 4ime 1m 31s 8ourse 0(0 Speed 10.s 8ourse 000 Speed &.0 Speed $.7 *lapsed 4ime 3m 17s 8ourse 1.2 Turning circ es in deep -ater Trial or estimated <ull load condition Transfer 3.ore /rinting out t+e(e )o/ie( 11 .s 8ourse 0(0 Speed 10.0 *lapsed 4ime 7m 3.38n.$ 4ime 0m 00sec.m 0.32 n.' *lapsed 4ime 3m 11s 8ourse 1.& 4ime 0m 00sec.m 0ormal 'allast condition Transfer 3.$ *lapsed 4ime &m 20s 8ourse 270 Speed &.ind speed Sea State +epth of -ater Calm Calm @13+ . 7udder :ard 31er Full sea speed 6"ead 1&. 7udder :ard 31er Full sea speed 6"ead 1&.0 Speed $. 8ourse 0(0 Speed 13.3 n.m 0ormal 'allast condition Transfer 3.2& 8ourse 270 Speed 10.nots 8ourse 000 *lapsed 4ime 7.& 4actical )iameter 0.2.0 4ime 0m 00sec.3$ n.32 n. 7udder :ard 31er Full 6"ead ordered 5nitial speed 00.2& n.m 6d1ance 0.ind +irection BBBB En&ironmental conditions during Manoeu&ring Trial .m.m. *lapsed 4ime 1.2 *lapsed 4ime 3.1n.&1 8ourse 270 Speed 11.nots 8ourse 000 *lapsed 4ime 7.11 8ourse 1.0 *lapsed 4ime &.& 4ime 0m 00sec.2 $cce erating turn Trial or estimated <ull load condition Transfer 3.12n.17 8ourse 1.0 .ore /rinting out t+e(e )o/ie( 12 .31 8ourse 0(0 Speed 12 *lapsed 4ime 3. *lapsed 4ime 1.0 .& 4actical )iameter 0.0 Speed 12.0 Speed 11. 7udder :ard 31er Full 6"ead ordered 5nitial speed 00.10 8ourse 000 Speed 11.3.3.m Trac# shown is for stern trac# Ma9imum rudder angle used throughout turn . 8ourse 000 Speed 10.0 *lapsed 4ime &.ent -e.m 6d1ance 0.ind speed Sea State +epth of -ater C )M C )M @13+ 'lea(e )on(i*er t+e environ. ualitati&e measure of the effecti&eness of the rudder to initiate and chec# changes of heading. -ith the ship steaming at a uniform speed and on a constant heading a nominal rudder angleA sa* 23 degreesA is applied as . +uring the manoeu&re the ship’s heading and rudder angle are recorded continuousl*. Ship’s 7eading and =udder ngle against Time 0ormal 'allast condition 31ers"oot time 31s -eriod 3m &(s S"ip<s "eadin% 31ers"oot 6n%le 1&. Cig%Dag (or Eempf) Manoeu&re. The main parameters used for comparison are the o&ershoot angleA o&ershoot time and the period.& 0 -ort 200 7udder an%le 6n%le 0 /de%rees0 Stbd 200 12.ore /rinting out t+e(e )o/ie( 13 . t this point 23 degrees of opposite rudder is applied and held until the ship’s heading has crossed the 'ase course and is 23 degrees in the opposite directionA the rudder is then re&ersed as 'efore.4 5a.0 0 Swin% time 1m 10s 4ime /seconds0 'lea(e )on(i*er t+e environ. This procedure is repeated until the ship’s head has passed through the 'ase course $ times. The manoeu&re is performed in the following manner.ent -e.chec6ing tests (tria or esti"ated) Cig%Dag (or Eempf) manoeu&re The manoeu&re pro&ides a .2.uic#l* and as smoothl* as possi'le and held constant until the ships heading has changed '* 23 degrees (chec# angle) from the 'ase course. The usual rudder angle?chec# angle used is 23 degrees?23 degrees 'ut other com'inations are $ degrees?23 degrees and 13 degrees?23 degrees. rudder angle of appro9imatel* 23 degrees is applied and the ship allowed to achie&e a stead* rate of turnF at this point the rudder is returned to midships.Pu out "anoeu1re The pull out manoeu&re was de&eloped as a simple test to gi&e a .f the ship has a steering 'iasA then port and star'oard turns will deca* to the same small rate of turn on whiche&er hand the 'ias e9ists.f the ship is unsta'le then the rate of turn will reduce to some residual rate of turn as shown in the diagram. .uic# indication of a ship’s course sta'ilit*. .ent -e. .f the ship is sta'le the rate of turn will deca* to Dero for turns to 'oth port and star'oard. =ate of turn against Time -ort 7ate of turn 4ime Stbd 'lea(e )on(i*er t+e environ. 7udder reurned to mids"ips -ort =nstable s"ip 7esidual rate of turn 7ate of turn Stable s"ip  =nstable s"ip Stbd Enter 'elow the rele&ant &alues for own &essel and note whether sta'le or unsta'le 6ull out Manoeu&re.ore /rinting out t+e(e )o/ie( 14 . The ship is held on a stead* course and at a stead* speed. The rate of turn is now allowed to deca* with the rudder held amidships. on reciprocal course >essel continues turn until stead. 'lea(e )on(i*er t+e environ.0 n miles #ateral transfer 0.'0 n miles 0ormal 5allast condition Forward reac" 0.$$ n miles >essel continues turn until stead. on reciprocal course Forward reac" 0.oard and para e course "anoeu1res -illiamson Turn shown <ull load condition Forward reac" 0.ent -e.7' n miles >essel continues turn until stead.m.01 n miles #ateral transfer 0.0 n miles #ateral transfer 0.03 n miles #ateral transfer 0.3 Man7o1er.&& n miles 6arallel course manoeu&re #ateral s"ift to a parallel course usin% ma+imum rudder an%le. on reciprocal course >essel continues turn until stead.$' n miles !"en 1essel reac"es $0o off ori%ianl course w"eel is put "ard o1er in opposite direction Man o1erboard2 >essel turns w"eel • "ard-o1er to appropriate side >essel now on reciprocal course >essel now on reciprocal course !"en 1essel reac"es $0o off ori%ianl course w"eel is put "ard o1er in opposite direction Man o1erboard2 • >essel turns w"eel "ard-o1er to appropriate side *+tent of lateral s"ift 0.73 n miles !"en 1essel reac"es $0o off ori%ianl course w"eel is put "ard o1er in opposite direction Man o1erboard2 >essel turns w"eel • "ard-o1er to appropriate side >essel now on reciprocal course >essel now on reciprocal course !"en 1essel reac"es $0o off ori%ianl course w"eel is put "ard o1er in opposite direction Man o1erboard2 • >essel turns w"eel "ard-o1er to appropriate side *+tent of lateral s"ift 0.ore /rinting out t+e(e )o/ie( 15 .&3 n miles *+tent of lateral s"ift 0. /assume loaded condition0 0. on reciprocal course Forward reac" 0.2.'2 n miles *+tent of lateral s"ift 0.2& n. 10 Time (minutes) The 'ow thruster 'ecomes ineffecti&e at forward speeds in e9cess of HHHH Enots .n wind speeds in e9cess of HHHH #nots the 'ow thruster 'ecomes ineffecti&e.  :d% 0(0 *lapsed 4ime *lapsed 4ime Effect of forward speed on turning performance Speed /.ent -e.nots0 8ur1es s"ould be drawn to s"ow t"e effect of forward speed on turnin% performance $ ' 2 2 ' $ .2.T.ore /rinting out t+e(e )o/ie( 16 .8 !atera thruster capa. 'lea(e )on(i*er t+e environ.i ities (tria or esti"ated) Cero forward speed <G)) )/ + C/0+./0 *lapsed 4ime :d% 000 *lapsed 4ime :d% 270 :d% 1.0 )irection of 4urn 4"ruster operatin% at 100? capacit. n.m.$TER 2.m .( n..nitial rpm 132 <inal rpm %131 9ro" fu ahead to fu astern .3 3. :ead 7eac" 0.ind +irection %%% En1iron"enta conditions during Manoeu1ring Tria .34 n.nitial <inal Trac# 7ead Speed Speed reach 3. 12m 02s Side 7eac" :ead 7eac" 1.48 n. reac" 1. 12. miles . 1..42 n. 1$.7 n.0.0.nitial rpm 123 <inal rpm %132 9ro" fu ahead sea to fu astern .0.. 3.(4 3.44 n.STOPP(%) $%+ SPEE+ CO%TRO! C*$R$CTER(ST(CS (% +EEP ..3 n.3 #nots reach miles miles Side reach %3.3 #nots reach miles miles Side reach %3.43 n.m.ore /rinting out t+e(e )o/ie( 17 .i it# Side 7eac" .ind speed Sea State +epth of -ater @13+ Calm Calm 'lea(e )on(i*er t+e environ. miles ..ent -e. reac" 0.nitial <inal Trac# 7ead Speed Speed reach 1.m .m 23s <G)) STE=0 <=/M <G)) SE 7E + <G)) STE=0 <=/M <G)) 7E + . n.3! n.0' n.m )istance 4rac.1 Stopping a.m 4rac. 32 n.miles?min 3.Stopping a.miles %3.miles?min 3.3( n.miles 3.miles %3.$8 n.miles 3.ore /rinting out t+e(e )o/ie( .miles Side =each Time re.2$ n.13 n.0& n. Slow a"ead :alf a"ead Full a"ead Full sea :ead a"ead 7eac" Full sea a"ead Full a"ead :alf a"ead Slow a"ead F=## 6S4*7N F=## 6S4*7N Full Load condition 9u astern fro": Trac# =each 1.43 n.33 n.miles 3. n.miles 7ead =each 1. n.miles 3.48 n.m.miles?min 3.13 n.miles 3.m.3$ n. 5allast Condition 0.m.miles Side =each Time re. 0. 0.miles 12m 32s 4m 23s 2m 11s $m 22s Trac# reach deceleration factor 3.34 n.$( n.uired %3.miles?min 3.42 n.37 n.miles %3.3! n.71 n.i it# (esti"ated) T= CE =E C7 )oaded Condition 0.miles %3.uired %3.21 n.m.44 n.miles 3.m.miles 7ead =each 1.miles (m $4s (m 13s Trac# reach deceleration factor 3.'.m. 0.miles?min 18 <ull ahead (sea) <ull ahead 'lea(e )on(i*er t+e environ.3 n.&3 n.&$ n.miles?min <ull ahead (sea) <ull ahead 7alf ahead Slow ahead Normal Ballast condition 9u astern fro": Trac# =each 1.1$ n.ent -e.$3 n. 0. miles 1.m.3$ n.miles 3.13 n..71 n.$( n.miles 3.32 n. 0.m.13 n.1( n. 32 n.13 n.ent -e.miles?min 'lea(e )on(i*er t+e environ.miles 3.3! n.miles 3.3$ n.miles $m 11s 3m 32s 3.miles %3.miles?min 3.miles %3.13 n.$1 n.38 n.!4 n.ore /rinting out t+e(e )o/ie( 19 .miles 3.7alf ahead Slow ahead 3. miles 3.m.!! n.$3 n.1! n.miles?min 20 <ull ahead (sea) <ull ahead 'lea(e )on(i*er t+e environ.ore /rinting out t+e(e )o/ie( .1! n.miles 7ead =each 1. 1.m.m.m.42 n.m.($ n. 0.miles 3.(3.23 n.miles Side =each 3.miles?min 3.7 n.$3 n.miles 3.8( n.13 n.23 n.miles?min 3. 5allast Condition 0. n.miles 3.i it# (esti"ated) T= CE =E C7 )oaded Condition 2.miles Time re.miles 3.(! n.miles 3.miles 1.8! n.1 n. 0.Stopping a.8( n.13 n. Slow a"ead :alf a"ead Full a"ead Full sea :ead a"ead 7eac" Full sea a"ead Full a"ead :alf a"ead Slow a"ead S43- S43- Full Load condition Stop Engine fro": Trac# =each 2.m.miles?min 3.miles 7ead =each 2.miles Time re.miles 1.uired 1!m 22s 12m 2$s Trac# reach deceleration factor 3.(1 n. n.2! n.'' n.miles?min <ull ahead (sea) <ull ahead 7alf ahead Slow ahead Normal Ballast condition Stop Engine fro" Trac# =each 1.m.13 n.83 n.23 n.81 n.miles?min 3.miles 1.miles Side =each 3..0 n.. 0.$1 n.miles 1.uired 21m 2(s 14m 22s 1$m !4s 11m 13s Trac# reach deceleration factor 3.11 n.!2 n.ent -e.41 n.miles 1.2( n.miles 1.m.3( n.. 1. miles 1. 7alf ahead Slow ahead 1.miles 3.ore /rinting out t+e(e )o/ie( 21 .3$ n.miles 3.miles 3.miles 3.miles 13m 1(s 2m $$s 3.miles?min 3.43 n.32 n.13 n.miles 3.(1 n.41 n.13 n.ent -e.miles?min 'lea(e )on(i*er t+e environ.!1 n. mile n.miles 1.miles 1. miles .0 9nots 1'm 22s 1.miles Time re.2 9nots $m 3&s 1.mile n.34 n..7& n. 9nots &m '2s 0.mile Time re..2$ n.31 n.32 #nots?min <ull sea speed to Istand '* enginesJ <ull ahead to half ahead 7alf ahead to slow ahead Slow ahead to dead slow ahead 'lea(e )on(i*er t+e environ.01 n. miles 2.3.($ n.!2 #nots?min 3. miles 11..ent -e.2 +ece eration perfor"ance (esti"ated) T= CE =E C7 )oaded Condition 1.uired 1!m 22s (m 3$s $m !2s $m 2!s +eceleration factor 3.8( n.miles 3.!3 #nots?min 3. n. en%inesA Full a"ead to "alf a"ead :alf a"ead to slow a"ead Full Load condition Engine orders Trac# =each n.ore /rinting out t+e(e )o/ie( 22 . 9nots &m 2's Slow a"ead to dead slow a"ead 5allast Condition Slow a"ead to dead slow a"ead :alf a"ead to slow a"ead Full a"ead to "alf a"ead Full sea a"ead to @stand b.8( #nots?min 3. miles $. en%inesA Full sea a"ead to @stand b.2.mile n.uired +eceleration factor <ull sea speed to Istand '* enginesJ <ull ahead to half ahead 7alf ahead to slow ahead Slow ahead to dead slow ahead Normal Ballast condition Engine orders Trac# =each 1. ent -e.'lea(e )on(i*er t+e environ.ore /rinting out t+e(e )o/ie( 23 . miles n. 5nitial speed 00.2 $cce eration perfor"ance Full 6"ead Sea ac"ie1ed Final speed .miles n.ore /rinting out t+e(e )o/ie( 24 .0 .nots Full 6"ead Sea ordered Time taken for ship to reach full sea speed ahead from zero speed Speed 2 #nots ! #nots ( #nots 4 #nots 13 #nots 12 #nots 1! #nots 1( #nots 14 #nots +istance co1ered n.miles n.miles n.ent -e.2.nots mins.miles n.miles n.m. 4rac. reac" )istance co1ered n.miles n.miles E apsed ti"e 'lea(e )on(i*er t+e environ.miles n.nots . 1 Turning circ e in sha o.$TER 4.2 'lea(e )on(i*er t+e environ.nots 8ourse 000 *lapsed 4ime 8ourse 000 Speed *lapsed 4ime 8ourse 1.ent -e.0 Speed *lapsed 4ime 8ourse 270 Speed 4actical )iameter n.m. 4ime 0m 00sec.m .m *lapsed 4ime 8ourse 0(0 Speed 6d1ance n.ore /rinting out t+e(e )o/ie( 25 . 7udder :ard 31er Speed :alf 6"ead .4 M$%OE&'R(%) C*$R$CTER(ST(CS (% S*$!!O.-ater (esti"ated) <ull load condition Trac# shown is for stern trac# Transfer HHHHHm.nitial speed 7alf head =udder angle applied should 'e the ma9imum throughout the turn -ater depth to draft ratio should 'e 1. . nots0 .ore /rinting out t+e(e )o/ie( 26 . 10 12 'lea(e )on(i*er t+e environ. 10 12 Shallow and confined water SBuat /m0 8ur1es s"ould be drawn indicatin% ma+imum sBuat 1ersus speed for different bloc.4.a%e factors ' 3 2 1 2 ' $ Speed /.2 S.nots0 .ent -e.uat (esti"ated) Shallow water % infinite width of channel SBuat /m0 8ur1es s"ould be drawn indicatin% ma+imum sBuat 1ersus speed for 1arious water dept"Cdraft ratios ' 3 2 1 2 ' $ Speed /. nots Force (T) Moment (tm) Wind speed 10 .nots Force (T) Moment (tm) Wind speed 10 .nots 20 .nots 30 .nots Force (T) Moment (tm) Wind speed 10 .nots Force (T) Moment (tm) Wind speed 10 .nots 30 .1 .3 M$%OE&'R(%) C*$R$CTER(ST(CS (% .nots 20 .nots 20 .nots Force (T) Moment (tm) Wind speed 10 .ind forces and "o"ents (esti"ated) <ull load condition Wind speed 10 .nots 30 .nots Force (T) Moment (tm) Wind speed 10 .nots 20 .nots 30 .ore /rinting out t+e(e )o/ie( 27 .nots 20 .ent -e.nots 20 .nots Force (T) Moment (tm) 'lea(e )on(i*er t+e environ.(%+ 3.nots 30 .nots 30 .nots Force (T) Moment (tm) Wind speed 10 .nots 20 .nots 30 .nots 20 .nots 30 . nots 30 .nots 20 .nots 20 .nots Force (T) Moment (tm) 'lea(e )on(i*er t+e environ.nots Force (T) Moment (tm) Wind speed 10 .nots Force (T) Moment (tm) Wind speed 10 .nots 30 .nots 30 .nots 20 .nots 30 .nots 20 .nots 20 .nots 20 .ent -e.nots Force (T) Moment (tm) Wind speed 10 .nots Force (T) Moment (tm) Wind speed 10 .ore /rinting out t+e(e )o/ie( 28 .nots 20 .nots 30 .nots 30 .nots 30 .nots 30 .nots 20 .nots Force (T) Moment (tm) Wind speed 10 .0ormal 'allast condition Wind speed 10 .nots Force (T) Moment (tm) Wind speed 10 .nots Force (T) Moment (tm) Wind speed 10 . nots '0 .nots $0 .nots 20 .3.nots $0 .2 Course 6eeping i"itation (esti"ated) <ull load condition Relative Wind direction 1& .ent -e.nots $0 .nots 0ormal 5allast condition Relative Wind direction 1& .nots 000 0'& 0(0 13& 1.nots 3.nots &0 .ore /rinting out t+e(e )o/ie( irection of drift Rate of drift 29 .nots '0 .nots 30 . Engine on Full Ahead 30 .nots '& .nots 20 .2 +rifting under -ind inf uence (esti"ated) <ull load condition )riftin% be"a1iour under wind influence /no en%ine power0 Wind speed 10 .0 22& 270 31& 3$0 Rudder amount required to maintain course at following wind speeds. Engine on Full Ahead 30 .nots irection of drift Rate of drift 0ormal 'allast condition )riftin% be"a1iour under wind influence /no en%ine power0 Wind speed 10 .0 22& 270 31& 3$0 Rudder amount required to maintain course at following wind speeds.nots 000 0'& 0(0 13& 1.nots $0 .nots 'lea(e )on(i*er t+e environ.nots &0 .nots 30 .nots '& . nclude here an* rele&ant additional informationA particularl* information concerned with the operation of the 'ridge manoeu&ring controls.$ HHHHH Minimum speed at which course can 'e #ept after stopping engines H2. SPEE+ (TR($! OR EST(M$TE+) Minimum operating re&olutions of the Main Engine H33HHHHHHH Corresponding speed H3.uipped with multiple propellers then detail here the results of trial manoeu&res with one or more propellers inoperati&e.ore /rinting out t+e(e )o/ie( 30 . HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH 'lea(e )on(i*er t+e environ.ent -e.f the &essel is e.8 M$%OE&'R(%) C*$R$CTER(ST(CS $T !O.3HHHHHH 7 ADDITIONAL INFORMATION . .


Comments

Copyright © 2024 UPDOCS Inc.