Bibliografi Jawa

June 16, 2018 | Author: Dita Yuika Marga | Category: Earthquakes, Geology, Java, Rocks, Petrology
Report this link


Description

BIBLIOGRAPHY OF THE GEOLOGY OF INDONESIAAND SURROUNDING AREAS Edition 6.0, September 2016 J.T. VAN GORSEL III. JAVA, MADURA, JAVA SEA www.vangorselslist.com III. JAVA, MADURA, JAVA SEA This chapter of the bibliography contains 226 pages with 2059 titles on the geology of Java, Madura and the Java Sea. It is subdivided into four areas/ topics: III.1. Java - General, onshore geology III.2. Java Sea (incl. Sunda Basin, offshore NW Java basin) III.3. Java - Quaternary Volcanism III.4. Madura- Madura Straits. The island of Java has a long history of geological studies, dating back to the mid-1800's. Junghuhn (1854) in his famous book on the natural history of Java dispelled the then current notion that all of Java was composed of volcanic rocks. The first monograph dedicated to the geology of Java by Verbeek and Fennema (1896; with the first geologic map) is still the only one. A modern synthesis is badly needed. A new book by Peter Lunt (in press) on the sedimentary geology of Java will fill much of this need. Focus areas of Java geology research have been on structure, volcanism, Eocene- Recent stratigraphy, paleontology, and hydrocarbons, Pleistocene hominids and mammal fossils, etc. S-N cross-section across Central Java (Verbeek and Fennema 1896; part) S-N cross-section across West Java (Gerth 1931). The western part of the Java Sea is a continuation of the Paleozoic- Early Mesozoic continental basement complexes of Sumatra and Borneo. Most of Java island appears to be underlain by Late Cretaceous- Eocene age accretionary complexes and Paleogene arc volcanics. Outcrops of the oldest 'basement' are found in only three relatively small areas in Central (Luk Ulo, Bayah) and SW Java (Ciletuh). It has been suggested from the composition of Quaternary volcanic rocks that parts of East Java may be underlain by oceanic crust. Other evidence, like the presence of Archean-age zircons in E Miocene volcanics of SE Java would suggest the subsurface presence of Australian continental material there (or sediments derived from it). The backbone of Java is a series of relatively young active volcanoes, most of them about 3000m high, and spaced about 80 km apart. A long belt of outcrops of latest Oligocene- earliest Miocene 'Old Andesite' volcanic arc deposits follows today's South Coast (Southern Mountains). These probably formed the only land areas through most of Late Eocene- Pliocene time, when most of the northern half of Java was a marine basin. The present-day land area formed mainly since the Pleistocene by a combination of renewed arc volcanism, an Bibliography of Indonesia Geology, Ed. 6.0 1 www.vangorselslist.com Sept 2016 episode of N-vergent compressional tectonics N of the modern arc and rapid shoreline progradation driven by erosional products of this activity. Oil and gas seeps had been known for a long time in East and Central Java. Descriptions of these started to appear in the literature by the 1850's (Junghuhn 1854, Von Baumhauer 1869). The first shallow oil exploration well was drilled in 1871, at an oil seep near Cirebon in C Java. The first discovery was the Kuti Field in in 1888, near Surabaya, NE Java. This was followed by many other discoveries in the Cepu area at Kawengan (1892) and Ledok (1893). Exploration activity and oil production already started to decline in the 1920's. The traditional plays in NE Java were in M Miocene- Pliocene sands and Globigerina calcarenites in young surface anticlines. Only since the late 1980's has the oil industry become aware of the successful deeper play in Oligocene- E Miocene reefal builups, extending from the Cepu area into Madura Straits. NW Java has been area of oil and gas discoveries since the late 1960's, mainly in the offshore. Like on Sumatra, all oil and gas fields appear to be above, or within migration distance of, two Oligocene rift basins with lacustrine and coaly source rocks, the Arjuna and Sunda basins. Main reservoirs are Late Oligocene- E Miocene Talang Akar/ Cibulakan fluvial- deltaic sandstones and Early Miocene Baturaja limestones. The southern part of the Arjuna basin continues into the onshore, but rapidly deepens towards a young thrust belt and contains mainly small gas discoveries. The Java Sea off East Java- Madura has some some small oil and gas discoveries, but, despite the widespread distribution of Oligo-Miocene carbonate and clastic reservoir rocks, exploration in this area has been rather disappointing. The Java forearc zone has not been successful for hydrocarbons. Surface seeps are not known (except in the Banyumas area of Central Java) and the limited number of wells drilled there were dry. Traditional wisdom blames this on the absence of Eo-Oligocene rift systems and unusually low geothermal gradients. The volcanic belt of West Java has yielded a number of moderate-size gold-silver deposits. Java lacks the commercial Tertiary coal deposits known from S Sumatra and SE Kalimantan. Only a few small-scale coal exploitations are known from the Eocene of Bayat, SW Java and the Middle Miocene Ngrayong Fm at the W end of the Rembang zone, NE Java (figure below) WSW-NE cross-section across M Miocene coal-bearing clastics of W Rembang zone NE Java ('T Hoen 1918). Java has also been a focus area of numerous studies on volcanoes and on Pleistocene mammals and hominids. See more on this under the chapters on these topics. A major milestone publication on the the geology and stratigraphy of Java is the recent book by P. Lunt (2013)- The sedimentary geology of Java (IPA Special Publication, 340 p.) Bibliography of Indonesia Geology, Ed. 6.0 2 www.vangorselslist.com Sept 2016 Suggested reading General, Historic: Junghuhn (1854), Martin (1891), Verbeek and Fennema (1896), Van Bemmelen (1949) Tectonics: Van Bemmelen (1949), Sujanto and Sumantri (1977), Chotin et al. (1980, 1984), Dardji et al. (1994), Soenandar (1997), Sribudiyani et al. (2003), Satyana et al. (2004), Satyana (2005, 2006, 2007), Clements and Hall (2007, 2008), Hall et al. (2007), Clements et al. (2009), Seubert and Sulistianingsih (2008), Granath et al. (2010, 2011) Cenozoic Stratigraphy: Paltrinieri et al. (1976), Suyanto and Sumantri (1977), Baumann (1982), Lunt (2013) Pre-Tertiary: Bothe (1929), Harloff (1929), Tjia (1966), Ketner et al. (1976), Suparka and Soeria-Atmadja (1991), Wakita et al. (1991, 1994), Harsolumakso and Noeradi (1996), Miyazaki et al. (1998), Parkinson et al. (1998), Prasetyadi et al. (2002-2006), Kadarusman et al. (2007, 2010) Volcanism: Bellon et al. (1989), Leterrier et al. (1990), Soeria-Atmadja et al. (1988, 2004), Soeria-Atmadja and Noeradi (2005), Smyth et al. (2006, 2007, 2008) Hydrocarbons NW Java: Arpandi and Sujitno (1975), Burbury (1977), Soulisa and Sujanto (1979), Molina (1985), Wight et al (1986, 1997), Ponto et al. (1989), Yaman et al. (1991), Aldrich et al. (1995), Gresko et al. (1995), Wight (1995), Noble et al. (1997), Nugrahanto. and Noble (1997) Hydrocarbons NE Java: Weeda (1958), Soetantri et al (1973), Soeparyono and. Lennox (1989), Ardhana et al. (1993), Schiller et al. (1994), Willumsen and Schiller (1994), Cole and Crittenden (1997), Kusumastuti et al. (2000, 2002), Satyana and Darwis (2001), Purwaningsih et al. (2002), Satyana (2002), Satyana and Purwaningsih (2002, 2003), Triyana et al. (2007), White et al. (2007), Van Simaeys et al. (2011) Hydrocarbons Java Sea: Kenyon (1977), Phillips et al. (1991), Matthews and Bransden (1995), Reynolds (1995), Kaldi et al. (1999), Mudjiono and Pireno (2002), Johansen (2003, 2005), Carter et al. (2005), Takano et al. (2008) S Java forearc: Bolliger and De Ruiter (1975), Lehner et al. (1983), Masson et al. (1990), Kopp et al. (2002), Schluter et al. (2002), Yulianto et al. (2007), Shulgin et al. (2011), Deighton et al. (2011) W Java Gold: Marcoux et al. (1993, 1996), Marcoux and Milesi (1994), Milesi et al. (1994, 1999) Bibliography of Indonesia Geology, Ed. 6.0 3 www.vangorselslist.com Sept 2016 Neogen di daerah Pacitan dan sekitarnya. Purwanto (2003). Indon. (online at: http://jurnal. M.pdf) ('Identification of the Karangtengah ancient volcano in the Southern Mountains.clastics series. hidrocarbon hunting in East Java Basin..6 m thick.id/dmdocuments/jurnal20090403. Four trends: NW-SE (~N320°E.unpad. R. 2012-GD-31. JAVA. Ito (2013). Wonogiri. (UNPAD) 13. Y. Java . Lower part is siliciclastic succession. M. Normal seismicity near trench low. Sapiie (2012). Bull. Suparka. 140-480 m wide and 0.S. greywacke. dip of 12°. Jawa Tengah. and part of volcanic island arc) Abdul. NE-SW (~N045°E.. (Structural analysis of faults in Pacitan area.ac. Harijoko & A. (UNPAD) 12.Identifikasi gunung api purba Karangtengah di Pegunungan Selatan. MADURA. Bull. E Miocene). A.The role of slump scars in slope channel initiation: a case study from the Miocene Jatiluhur Formation in the Bogor Trough. basaltic in composition. and dominated by normal faulting earthquakes in subducting plate. N-S. and probably source of carbonate detritus in upper part of Jatiluhur Fm (with Cycloclypeus annulatus)) Abdullah. Assoc. Scientific Contr. Wonogiri. with low 87Sr/86Sr and high 143Nd/144Nd ratios.. Joint Conv.III.id/bsc/article/view/8395/3905) (Jatiluhur Fm along Cipamingkis River. limestone. M. (Jatiluhur Fm. which formed on seafloor. JAVA SEA III. W Java. Hendratno (2009). Geophysical Research 106. M Miocene). Geol. K. W Java Middle. 68-86. M. onshore geology Abdissalam. 35A. part of M-L Miocene (N12-N16) clastic succession in Bogor Trough.A. S coast of East Java. Abdurrokhim & Hendarmawan (2014).Temporal variation in petrographic features of the Miocene Jatiluhur Formation in the Bogor Trough. Late Miocene Klapanunggal Fm = Parigi Lst in north is reefal limestone buildup. 2. Yuwono & B. and E-W (N080°E)) Abdurrachman. 48-56.General.com Sept 2016 . Scientific Contr. 41st Ann. Asian Earth Sci.S. Conv. Slump-scars-fill deposits have lenticular geometry. West Java. Proc. B4. p. Ed. Proc. Papandayan volcano comprises medium-K series with high 87Sr/ 86Sr and low 143Nd/ 144Nd. 107-117. 4. Geologi Indonesia 4.Between reality and illusion. up to 1000m thick in study area.esdm. Increase in volcanic fragments in Late Miocene suggests also sediment from contemporaneous volcanic provenances to S) Abdurrokhim & M. Sopandi (2005).vangorselslist. and interpreted as prograding slope-shelf system. located at Cretaceous suture zone. p. Cikuray volcanics low-K series. p.Analisis dinamik tegasan purba pada satuan batuan Paleogen.Limestone beds development of the Middle-Late Miocene Jatiluhur Formation in the Bogor Trough. Provinsi Jawa Timur ditinjau dari studi sesar minor dan kekar tektonik. epicenter depth 16km. West Java. (M-L Miocene Jatiluhur Fm in N Bogor Trough NE of Bogor feldspathic arenite. and mixed siliciclastic-carbonate. West Java.I. 253-267. Derived mainly from continental source in N (Sundaland).30th HAGI. Surabaya 2005.. ITB Journal Science and Technology.The 1994 Java tsunami earthquake: slip over a subducting seamount. West Java: a window into the past magmatism and tectonic event. M. 13p. which is locked patch in otherwise decoupled subduction zone) Bibliography of Indonesia Geology. Antolik.go.. Identification of E Miocene Karangtengah paleovolcano eruptive center. Yogyakarta. perhaps of missing 'Argoland') Abercrombie. E.4-1.Late Miocene (~N12-N16?) mixed limestone.1. (online at: www. Irfan & T. Felzer & G. N. Some slump scars formed incipient seabed irregularities that may have played important role in development of slope channels) Abdurrokhim & Hendarmawan (2015). J. S.Sr-Nd isotopic study of Papandayan area. p.0 4 www. 111-127. 7p. Magetsari & H. J. (IAGI). 2. C Java'. p. Ekstrom (2001). Interpreted as slip over subducting seamount. (First recorded large shallow thrust earthquake in South Java subduction zone. 73. 6. 107-118. (Sr-Nd isotopic ratios of young volcanics of Papandayan and nearby Cikuray (to E) volcanoes. Yamamoto. 2. p. with slump deposits and formed in slope and shelf-margin environments. Contrasting isotopic ratios explained by mixing of mantle wedge with Australian granites at Papandayan. J. Bronto. 34th IAGI. C. R.bgl. H. Lembang and Baribis fault zones have horizontal displacements of ~1-2 cm/yr.Z. F. A. Poor seismic imaging due to volcanic cover and rugged topography. corals (11 species) and calcareous algae (incl.M Zainal & Y. Novianti (2002). 15-20. 1. Geol. foram zones SBZ3/ SBZ4). 1707-1. with folded Late Oligocene-Miocene volcanics. Bibliography of Indonesia Geology. 28th Ann.Abidin. J.000. One target is Batu Raja Limestone. p. NE Java basin) Adhidjaja. p. Natawidjaya & H. 1-11..vangorselslist. 31-43 (Jatiluhur Block covers Bogor Trough and volcanic centers in S. 275-284. Isotopes suggest gold deposit formed due to mixing of magmatic ore fluid with meteoric water) Abidin.. J. T. IPA10-G-207. Bonn. West Java. Overlain by E Miocene sediments of Jaten Fm. 6. Post-seismic horizontal deformation of July 2006 S Java tsunami earthquake in first year after earthquake <5 cm. & S. Jakarta. 2nd Ann..000. 1. Andreas. (SE tip of East Java. Abdullah (2009). p. Jawa. M. decreasing after that) Abidin. One prospect is probable Batu Raja reefal buildup on basement high) Adinegoro. J. Di Carlo. Conv. Jakarta. I. (Low sulfidation epithermal gold deposit in Pengalengan District.M. Ed. 4. T. Russo (2010). including huge Jatibungkus limestone olistolith.Kemandung Ridges play concept to increase exploration prospectivity in East Tuban Block: preliminary study. West Java. (IPA). Miscellanea. Earthquake and Tsunami 3. J.PSDM Enhances reef interpretation in Jatiluhur Block. Pre-stack depth migration (PSDM) improved imaging. H. West Java. Distichoplax biserialis) suggest Late Paleocene age (Thanetian.J. rotaliids and discocyclinids). (IPA). Indon.H.. Davidoff & I. with potential overlying Ngimbang or Kujung Fm carbonate build-ups. A. associated with complicated structures. with best reservoir quality in buildup facies and typically developed on basement highs. tuffaceous sandstones and limestone of Batuampar Fm. Res. 34th Ann. Jakarta. Gamal. Achdan. (IPA). 2.com/abstracts/Accordi_etal_Jatibunkus_2010. Jawa. A. scale 1:100. R. Ilmu Kebumian Tekn. Majalah Geologi Indonesia 19.Z.Z.I. Symposium on Foraminifera. Bambang (2004). 77-88. & Baharuddin (2005). Dev. Meilano. Proc. (Pongkor low sulfidation epithermal gold deposit 80km SW of Jakarta. p. Hirosiadi (2010).Geological map of the Blambangan Quadrangle. F.girmm. (Poster Abstract) (online at: www. Centre (GRDC). Geol. Conv. Bachri (1993). Larger forams (Ranikothalia. in Tuban Block. Bandung. H.0 5 www.Reef limestone in the Sukabumi area. I.Z. intruded by Miocene andesites and granodiorites (= 'Old Andesites'. Quadrangle 1209-6. Indonesia.. Forams 2010. Gold in quartz veins hosted in altered ‘Old Andesite Volcanics’) Abidin. Proc. Ito. Gumilar & C.pdf) (Eocene Karangsambung melange of C Java with exotic blocks. 7 p. Res. D. I. Conv.Geology of the Pamanukan Quadrangle. (Seismic reprocessing improves imaging of NE-SW trending basement high named Kemandung Ridge. Dev. 6p. p. Indon. Proc. Int. Three main depositional environments) Adiwiarta.R. Pignatti & A. Centre (GRDC).I. R. carbon and oxygen isotope study of the Pongkor gold deposit. J. Harjono (2009)Crustal deformation studies in Java (Indonesia) using GPS. Geologi Indonesia 4.Sulphur. Pengalengan area. & Soetrisno (1992). (GPS surveys in W Java show areas around Cimandiri. (On deformation caused by 2006 Yogyakarta earthquake from GPS data) Abidin. Indon. Kato. Bandung. HvG). Petroleum Assoc. H. Kimata.. C Java May 2006 Yogyakarta earthquakes caused by sinistral movement of Opak fault with horizontal co-seismic deformation generally <10 cm.Deformasi koseismik dan pascaseismik gempa Yogyakarta 2006 dari hasil Survei GPS. H. Permanadewi & W. Petroleum Assoc. S of Regency (near Malabar Tea plantation?).Z.com Sept 2016 . Matteucci. U.Biostratigraphy of the Jatibungkus olistolith (Central Java).Low sulfidation epithermal gold deposit at Cibaliung Creek. H. M. and M Miocene Wuni and Punung Fms and Quaternary volcanics) Accordi. (1973). p. Carbone. Mineral 18. Petroleum Assoc. 109-120. 1:100. G. Andreas. H. Meilano. in Miocene host rocks. S. 1. J. Programs E and SE Asia (CCOP). Sukabumi. 279-298.Foraminifera of the Miocene Jatiluhur Formation: implications for the Indonesian Letter Classification and the planktic zonation scheme.Analysis and interpretation of seismic data from thin reservoirs. Coleman (1983). Prasetyo (1998). Talang Akar. September 1976. (Seismic amplitude analysis of M Miocene Parigi Fm carbonate reefs in onshore NW Java basin) Adriansyah. Open marine Cimandiri Fm S and SW of Sukabumi. Bandung. 20th Ann.Jatibarang sub basin. then terminating with carbonate sedimentation.J. U Cibulakan and Parigi Fms). Geophysics 66. SW Java. p. 1. Centre (GRDC). Sukabumi. 37-55. each initially filling with clastics. Northwest Java basin. 744-754. Not much detail on sample positions) Adisaputra-Sudinta. Jakarta. peripheroronda. (Jatibarang sub-basin in E part of NW Java Basin with oil-gas in E Oligocene. Miogypsina cushmani appears at base N9.AVA analysis and interpretation of a carbonate reservoir. W. Res. larger foram zone Lower Te with Heterostegina borneensis. 45. With seismic lines. 1.A. Bull. 3.Late-Miocene reservoirs (Jatibarang. 14-26. Dev. members. Adisaputra. with Glorotalia fohsi and Gr.(Study of Late Oligocene Rajamandala Limestone around Sukabumi. May be reworked into Pliocene. ~130m thick and divided into Bojonglopang. (incl. p. p.K. Spriroclypeus. Jakarta.Pleistocene deep water sediments from nearby uplifted fault blocks. Planktonics of zone N11-N12.N14). (M Miocene Jatiluhur Fm with larger foraminifera Katacycloclypeus annulatus (Tf1-2) in lower part and Lepidocyclina spp. Carbonate Seminar.K. Smit & E. van Vessem (1978). Centre (GRDC).earliest Miocene) Adisaputra-Sudinta. p. Central West Java. Java. & Arpandi (1976).in upper part. Indon. J. Top Miogypsina and Base Alveolinella quoyi near base N12. Miogypsina present in N8. at top Te5. 2-11.Biostratigrafi Formasi Cimandiri. (IPA).. etc. & H. Petroleum Assoc.K. with both planktonics (zones N2-N4) and larger forams (mainly Te1-4. McMechan (2002). Sub-basin formed in E Tertiary with formation of half-graben.Guide book fieldtrip to Sukabumi and Padalarang area. A. Lepidocyclina rutteni in N14) Adisaputra. (IPA). p.0 6 www. Indonesia. Miogypsinoides spp. 21-26.s. (Early Miocene shallow water limestone samples with Miogypsina-Miogypsinoides dredged from sites D1 and D2 (1500 and 2100 m) in Bali-Flores Basin. A. Sukowitono & Supriyanto (1991). U. 29-47. x-sections) Adriansyah. (1989).) Adinegoro. Nyalinding and Cimandiri s. p. L. Riset Geologi Pertambangan (LIPI) 9. Hydrocarbons controlled by presence of normal faults which provided vertical migration for hydrocarbon sourced from Talang Akar Fm. p. Sess. N of Sumbawa. Techn. Co-ord. Planktonic foraminifera suggest age mainly M Miocene (N8 (with Preorbulina glomerosa). & Budiman (1995). M. & G. Repts. Indon. Ed. & P. 22-34. NE Java: (1) Miogypsina cushmani in Middle Rembang Beds below Ngrayong-equivalent quartz sands.L. Conv. 34th Sess. Taejon. Bandung. Boundary between Tf1-2 and Tf3 lies within N11-N12) Adisaputra. Proc. Seri Paleontologi 4. radiata).Foraminifera from dredged samples in Bali and Flores basins: implications for tectonic environment. & G. McMechan (2001). p. ('Biostratigraphy of the Cimandiri Formation in the Central Jampang area. Bibliography of Indonesia Geology. p. Geol. Two graben generation stages. Petroleum Assoc. R.A.K. M.vangorselslist. Geol. J. Comm. Publ.a half graben model in the onshore of Northwest Java.Correlation between larger benthonic and smaller planktonic foraminifera from the mid-Tertiary Rajamandala Formation. Coastal Offshore Geosc. Indonesia. berdasarkan foraminifera plangton dan foraminifera besar.com Sept 2016 .) Proc. M. Geologi Sumberdaya Mineral 5.Miogypsina cushmani and Miogypsina antillea from Jatirogo (East Java). Geophysics 67. based on planktonic and larger foraminifera'. Korea 1997. Dev. A. Age close to foram zone N4. Northwest Java basin. (Localities on Jatirogo Quadrangle. M. M. 2. Late Oligocene. 6. Rau (ed.K. probably equivalent of M Miocene ‘Platen Limestone’) Adnan. In: J. (Samples from Tagogapu/ Cikamuning part of Rajamandala Limestone in W Java.. and (2) Miogypsina antillea in 200m thick ‘U Rembang Fm/ Tlatah Limestone Beds'. di daerah Jampang Tengah. Res. Gradual δ18O increase (cooling) in Late Miocene (~12 Ma) in all taxa can be correlated to global cooling and/or closing of Indonesian seaway. p. D. p. In: Proc. Bandung. Ed. Ardhito (2014). (IAGI).New interpretation on magmatic belts evolution during the Neogene. ('Biostratigraphy of nannofosils in the Oyo Formation along the road of Gunung Lanang.A. Indon. K. Indon. due to closure of Indonesian seaway.Geological and tectonic implications obtained from first seismic activity investigation around Lembang fault. (Incl. Bayat. 97-102.pdf) (Microseismic events around Lembang fault at N side of Bandung suggest this fault is left-lateral fault) Agnes M. (IAGI). Old Ijen.(Attribute analysis. Central Java. 1708-1. Jakarta. Rahardjo (2000). 6th Int. 43rd Ann. Akmaluddin. suggesting Oyo Fm is of Middle -Late Miocene age. A. Watanabe (2009). Watanabe (2012). p. S Mountains SE of Yogya. S Mountains. 4. K. Watanabe (2009). Seminar on Geology of the Southern Mountains of Java. Indonesia. Yogyakarta.The characteristics of foraminifera distribution patterns within turbidite sequence of Banyak Formation. Akmaluddin & Y. Geol. daerah BayatKlaten. 247-252. which moved to presentday location in W Pacific after ~10Ma. Klaten area'.vangorselslist. 2. Buletin Geologi (ITB) 32. 235-238. Itaya (2005). 41st Ann. 6. (online at: www. In: Proc. Assoc. PIT IAGI 2014-247. 1-9. Kamei & K.. Int. Low δ18O values (warming of bottom water) of benthic foraminifera at ~18 Ma and ~12 Ma.) Akmaluddin (2008). Dev.1186/s40562-015-0020-5.Biostratigrafi nanofosil Formasi Oyo jalur Gunung Lanang. 1. impedance inversion and full-wavefield modeling of 2-D seismic line over thin gas reservoirs in E-M Miocene U Cibulakan Fm clastics in NW Java Basin suggest reservoirs detectable even when less than tuning thickness) Afnimar. NN8 (Catinaster coalitus). C Java. Assoc. Kano & K. 34th Ann.Geological map of the Situbondo Quadrangle. Yogyakarta. Central Java-Indonesia. Akmaluddin. Geol. overlain by Quaternary volcanics of Ringgit. Workshop on Earth Science and Technology. D. Indonesia. In: Proc. 103-108. Setijadji.L. & S. A. Geol. Yulianto & Rasmid (2015). etc. Calcareous nannofossils Gn Lanang four zones: NN 7 (Zone Discoaster exilis).0 7 www.000. 1992 geological map)) Akmaluddin. Agustiyanto. 5p. Conv. Surabaya. Raung. with folded (Late) Miocene. p. Yogyakarta 2009. Baluran. 2012-SS-10. p. Watanabe & T. Maryunani & A. Central Java. Int. Geol. 1. Proc. and hornblenderich tuff of ~12 Ma) Bibliography of Indonesia Geology.Pliocene sediments. Low planktonic δ18O values indicate sea surface T in this area higher than other tropical areas during E-M Miocene. (NE-most tip of Java. comparable to N13-N16 zone of planktonic foraminifera (younger than N8-N11 age suggested by use of foraminifera in Surono et al. Indonesia.com Sept 2016 . Decreasing of carbon δ13C in Late Miocene likely correlates to 'carbonate crash'. probably related to development of W Pacific Warm Pool. DOI 10.Quaternary periods as revealed from newly-collected K-Ar ages from Central-East Java. Yogyakarta 2009. A. Centre (GRDC). Proc.Preliminary study of high-resolution correlation and calibration of biodatum marine microfossils (foraminifera and nannofossils) using strontium isotope stratigraphy: case study in Southern Mountains.com/content/pdf/s40562-015-0020-5. Late Miocene-Pliocene K-Ar age of diorite in Selogiri area. Proc. Kano & K. scale 1:100. E. 1. Indonesia.Paleoclimate reconstruction based on oxygen isotope composition of foraminifera in Southern Mountains area. (IAGI). NN9 (Discoaster hamatus) and NN10 (Discoaster calcaris). Assoc.Age correlation of Oyo Formation based on nannofossils and foraminifera biostratigraphy at Southern Mountains area. Seminar on Geology of the Southern Mountains of Java.A. (Oxygen isotopes study of planktonic and benthic foraminifera from Ngalang River section.geoscienceletters. Conv. Jawa.Paleoceanography of Central Java and closing of Indonesian Seaway reconstruction based on oxygen isotope composition of foraminifera. Santosa (1993). p. Indon. Res. 1-11. p. Geoscience Lett. Conv. at ~11-10Ma) Akmaluddin.T. 71. Rahardjo (2012). Universitas Gadjah Mada.Oligocene-Early Miocene foraminifera. C Java.Miocene calcareous nannofossils and foraminifera biostratigraphy. Kano & W. Epidoteglaucophane schist. Technology. Results indicate gap between Sambipitu and Oyo Fms. In: E. Proc. West Java: a fluid inclusion and geochemical study. Sloane & T. 6. Conv. 40Ar/39Ar date of 10. Sudharto (1994). Assoc. Sambipitu Fm 5 zones (NN2-NN6. Results suggest gap between Sambipitu and Oyo Fms. Proc. Pros. R. Conv.vangorselslist. tied to Late Miocene global cooling or due to closing of Indonesian Gateway) Akmaluddin. Brennan (ed. with absence of NN7.0 8 www. (IAGI). Warming of sea surface T related to development of W Pacific Warm Pool and flow of warm water through Indonesian seaway. p. 1p.Calcareous nannofossils biostratigraphy of Ngalang River section. J.org/journals/waset/v71/v71-11. Conv.F. Metamorphic rocks in Jiwo Hills mica-albite phyllite.I. Foraminifera biostratigraphy of Sambipitu Fm 4 zones (N6N8a). 25-38. good agreement with nannofossil biozones. Indon Geol. D. Java'. Suggesting younger ages than dated previously) Akmaluddin. hosted by Miocene monzodiorite stock) Alderton.M. hamatus (9.Mineralization at Gunung Limbung. T.3 Ma of Oyo Fm tuff layers in agreement with biostratigraphic ages (tuff layers 10m above FO Discoaster hamatus (10. Oyo Fm 3 zones (NN8-NN10. (On base metal mineralization at Gunung Limbung in several steeply-dipping quartz veins. E. Klaten regency. M. & R.Sambipitu Fms. p. Geol. 19. 1 p. Assoc. Sambipitu Fm shows 5 zones (NN2-NN6. Central Java. near Top Globigerina binaiensis) Akmaluddin. D. 41st Ann.) Proc. Yogyakarta. Yogyakarta. gabbro and serpentinite may indicate Cretaceous subduction process and presence of ocean plate stratigraphy in Jiwo hills) Bibliography of Indonesia Geology. 5-8. Ohira (2012). R. Metamorphic protoliths mainly pelitic sediments. Cooling at ~12 Ma. demonstrate warm sea surface T during Miocene..2 Ma. Bayat. inconsistent with nannofossils. Proc. (Abstract only) (Fission track dating of 3 samples from lower.M Miocene). 20m below LO D. K. quartzite. E-M Miocene). Harmon. Watanabe.L Miocene). Yogyakarta.waset. (IAGI). 35th Ann. Decrease of O isotope values at ~14 Ma. glaucophane marble with lawsonite. K.8±1. 1 p.Miocene warm tropical climate: evidence based on oxygen isotope in Central Java. Watanabe & W. but also basaltic-andesitic rocks. serpentinite. calc-silicate schist. M-L Miocene). near FO Globoquadrina dehiscens. S Mountains. Ed. C Java. Parkville. 2012-SS-09. Susilo & W. A. Asian Earth Sci. graphite schist. Southern Mountain area.com Sept 2016 . p. middle and upper Semilir Fm at Buyutan section yielded ages of 23.7 Ma) and FO Globigerina nepenthes (11. Assoc. of Mining and Metallurgy (AusIMM). tied to M Miocene Optimum. Seminar Nasional KebumianKE-7. Setiawan (2014).H. 40Ar/39Ar dating & fission track dating in Southern Mountains. p. Indon.pdf) (O and C isotopes records of foraminifera and bulk carbonates from Oyo. marble. West Java. Pacific Rim Congress 1987. (Abstract only) (Calcareous nannofossil analysis on Miocene Sambipitu and Oyo Fms at Kali Ngalang section.0±1.4 Ma. S Mountains. Jurusan Teknik Geologi. Engin. Kabupaten Klaten. Oyo Fm 3 zones (NN8-NN10. 66-70. Provinsi Jawa Tengah.Fluid inclusion and stable isotope studies at Gunung Limbung Cu/Pb/ Zn deposit. Australasian Inst. World Academy of Science. (online at: www.7 Ma). Watanabe & H.Akmaluddin.4 Ma)) Alderton. Gold Coast. K. 10. Central Java. & N. garnet-wollastonite skarn and metasiltstone. 40km W of Bogor) Alfyan. Geol. but M Miocene (Oyo Fm) suggest hiatus of N10-N12. epidote-glaucophane schist.T. Pekanbaru 2006. Indonesia. albite-mica schist. (IAGI).Petrogenesis batuan metamorf di daerah perbukitan Jiwo. Indon. Yogyakarta. with calibrating the age using 40Ar/39Ar dating in Southern Mountains. (Cu-Pb-Zn sulphide mineralization associated with M-U Miocene quartz monzonite stock. (Abstract only) (Samples from Miocene Sambipitu and Oyo Fms of Ngalang River section. Gunung Kidul.5 Ma and 19. Sudharto (1987). 2012-SS-08. Kecamatan Bayat. Rahardjo (2010). gabbro. Rahardjo (2006). 41st Ann. (Abstract only?) ('Petrogenesis of metamorphic rocks in the Jiwo hills. M. Indon. p. IPA11-SG-015. Anonymous (1922). 41st Ann. (IAGI). 1-40. IPA11-SG-020. Conv. East Java. Nglipar Area. S part of NE Java Basin.. Proc.G. Indon. Dienst Mijnbouw Nederl. At least four types of play: facies change. Indon. based on gravity data.M.Geology study Malingping area. T. & Exhib.A. Indonesia. p.. 4. Yogyakarta: an explanation for the dynamic process of volcaniclastic turbidite Sambipitu Formation in Java Oligo-Miocene volcanic arc.D. (Cibaliung gold project in SW Java. Fahlevi. W of Bajah Dome.Geology and alteration-mineralization characteristics of the Cibaliung epithermal gold deposit.Play identification for Paleogene rift sediment in Ngimbang Sub Basin.Ichnofacies study of volcaniclastic turbidite Sambipitu Formation based on outcrop data in Ngalang River. 14. Petroleum Assoc. Oost-Indie. Joint 36th HAGI and 40th IAGI Ann. p. 10th Ann.. Bachri (1992).P. P054. Bibliography of Indonesia Geology. Res.. Nahrowi. Conv. Geol.Hydrocarbon traps modelling in Mojokerto area East Java region. Bandung. 1-28. Assoc. Tobo). Resource Geology 52. Petroleum Assoc.M.. (2012).Potensial hydrocarbon reservoir at the Pliocene carbonate sediment. Rohmana & C.H.Jodium. Southern West Java. (On Pliocene Pacalan Mb globigerinid limestone exposed on flank of anticline in Situbondo area. oil-bearing near Surabaya) Amri. Geol. p. Indra (2011).A. F.. E Java) Amijaya.Y. Thickness 100-300m in N. M. in Neogene Sunda-Banda arc.com Sept 2016 . Bandung. Geol. Overview of occurrences and production of iodine in Indonesia. Dienst Mijnwezen in Nederl. Copenhagen 2012. P.C.Geological map of the Garut and Pameungpeuk Quadrangle. Alzwar.V. 35th Ann. Proc. Novian & E. Yohannes & M.Indie. 1208-6 and 1208-3. C. S of Madura Straits. Assoc. D. Gas-bearing in Cepu area (Balun. 7p. B. East Java Basin. Harsolumakso & S. 5p. ('Iodine'. Kabupaten Gunung Kidul. Age of mineralization Late Miocene.S. Centre (GRDC). Hydrothermal system responsible for mineralization may be related to rhyolitic magmatism near volcanic intrusive center during back arc rifting that formed graben or pull-apart basin (see also Harijoko et al.Contribution of organic petrography study on organic-rich sediment to the depositional environment determination of Upper Semilir Formation of Southern Mountain in Yogyakarta. Proc. 6.. JCM2011-215. Cekungan Jawa Timur bagian Utara. T. Dev.. (IPA). 21st Ann. Ed. scale 1:100. Indon. Indon. 463-476. Noeradi. Iswandi (2011). 8p. Assoc. Hardito. 35th Ann. Tambunan (1992). intruded by andesite-diorite plugs and dykes. In: 74th EAGE Conf. Octaviani & B. interpreted as lagoonal-estuarine facies) Aminuddin. basin floor fan and channel fill plays) Anom. Jakarta. S. ('Study of the Selorejo Formation. Kartika & M. 2. 0-50m in S. Geol. L. A. (IAGI). R. R. B.. Akbar & S. Situbondo Area. Conv. Conv. Ubaidillah (2011). Proc. Angeles. NE Java'. (IPA). Purnamasi. alluvial fan. Makassar.Uitkomsten van de mijnbouwkundig-geologische onderzoekingen in the Djampangs (Residentie Preanger Landschappen). Proc. D.. 144-155. Mtg. 329-339. A.K.Alloy. Rukmiati (1981). 16.Oligocene rift sediments in Ngimbang Sub Basin.vangorselslist. Yogyakarta. Proc.Studi anggota Selorejo.I. Verslagen Mededelingen Indische delfstoffen en hare toepassingen. I.U. Epithermal gold-silver quartz vein mineralization in sub-aqueous basaltic andesite Honje Fm volcanics with intercalated sediments.0 9 www. 2004)) Anggun. (Extended Abstract) (Study is to identify type of play for Eocene.000. N of volcanic arc) Anonymous (1924). ‘Coquina sand’ of Late Pliocene (N21) age. (IAGI). Prihatmoko & J. Verslagen Mededelingen Indische delfstoffen en hare toepassingen.. Banten. N. Prasetyadi (2012). Indonesia. Jakarta. p. H. Amiarsa. M. S. Walker (2002). p. 8p. Conv. (Organic-rich coaly silt-sandstone and thin coal in upper Semilir Fm.. Jawa. mainly from wells in Tertiary basins of East Java. (Pre-Eocene meta-conglomerates from Jiwo Hills with clasts of poorly sorted sandstones and volcanics and common chromian spinel grains derived from mantle peridotites. Ngrayong Sst Fm generally age N9-N10) Apotria. Millman (2009). Age. (Online at: http://journal. Noda & K. (online at: www. Central Java. p. (2007). (online at: http://jrisetgeotam.com/index. Petroleum Assoc.Metamorphic and related rocks from Jiwo hills near Yogyakarta. peridotite or chert. (On detrital carbonate aprons around Oligo-Miocene buildups in Cepu Block. Yamagata University.Detrital chromian spinels of fore-arc mantle origin in meta-conglomerate from a preTertiary metamorphic complex of Jiwo Hills. Several basaltic volcanic rocks at Karangsambung melange complex. is opal-CT.0 10 www. 151-170. sulfur. etc. Unlike conclusions of earlier workers on Java there are potentially commercial gold-siver-copper mineralizations in Jampang area SW of Sukabumi. 6. Karangsambung.('Results of mining-geological surveys in the Jampangs. Conglomerate possibly fill of Marianas-type trench. as penetrated by Jambaran 2) Aoki. Dienst Mijnbouw Nederlandsch-Indie. Walley. Indon. & N. (IPA).php?li=article_detail&id=645) ('Foraminifera distribution patterns within sequence stratigraphy. p. 278-279. S. SW Java. Jakarta. 1-9.) Micropaleontology. A. Marked subsidence observed to W of. Geochemistry analysis suggest silica-saturated basalt of tholeiitic normal mid oceanic ridge basalt (NMORB)) Ansori. Derewetzky & D. berdasarkan analisis geokimia. quartz sand. 3.Model mineralisasi pembentukan opal Banten. where peridotites were exposed and sediments and volcanics were supplied from arc) Arai. 1-87.Pleistocene folding. kolen en ertsen. Riset Geologi Pertambangan (LIPI) 17. 7-14. in quartz veins associated with igneous intrusives) Anonymous (1939). Review of occurrences of gas. east Java. Weidmer. Proc. barite. met uitzondering van aardolie.php/jrisgeotam/article/viewFile/143/pdf_9) ('Petrogenesis of Medana River basalt. Sujatna.Petrogenesa basalt Sungai Medana Karangsambung. based on geochemical analysis'. (Ground deformation associated with eruption of Lumpur Sidoarjo mud volcano between 2006 and 2011 studied from Synthetic Aperture Radar images. Cepu Block.vangorselslist.esdm. IPA09-G-143. 1. Conv.. Inst.Delfstoffen op Java.Mass wasting and detrital carbonate deposition.and around vent) Arai. C.D. 33rd Ann. Sashida (eds.) Professor H.ac. with exception of oil. paleobathymetry and sequences identification at Braholo. coal and metals'. phosphate. Ed. Khoiril (1998). weathering. iodine. Volcanology Geothermal Res. D. marble. Sidiq (2014). Java. (2010).. D. Host rock is dark grey claystone below polymict conglomerate. C. & T. Priangan Residency'. Indonesia. p.go. 37-50.A. Verslagen Mededelingen Indische delfstoffen en hare toepassingen. Bibliography of Indonesia Geology. 22. M. J. on Java and Madura) Anshori. In: H. However Medana River basalt not associated with gabbro. W Java. Indonesia. Geologi Indonesia 5. Tokyo. ('Minerals on Java. Igo Commemorative volume..id/index. p. >8 m deep) Anwar Maruyani. Hardjadinata & N.Pola sebaran foraminifera dalam hubungannya dengan stratigrafi sikuen (studi kasus: daerah Blora dan sekitarnyaldaerah lintang rendah).Ground deformation associated with the eruption of Lumpur Sidoarjo mud volcano.bgl. Teknologi Bandung 30. Saito (ed. 1-16. Publ. p. Central Java. Abe (1996). P. p. petrology and lithostratigraphy of Cenozoic rocks of the Yogyakarta region. Niitsuma (1981). Precious opal at Lebak Regency.A.id/publication/index.php/dir/article_detail/272) ('Model of mineralization of Banten opal'.com Sept 2016 . 3. J. p. 217-224. Ledok and Ngliron River sections of NE Java. Proc. S. Guwo. generally associated with ophiolite and identified as oceanic rocks. In: T. J. Bandung. Associated with Late Pliocene . 96-102. East Java. p. T. Y.itb. a case study in Blora and surrounding areas'. K. and silica leaching from volcanic glass. 4th Ann. is normal movement in Oligocene. Petroleum Assoc. Indon. Bull. Basement architecture controlled Oligocene-Miocene paleogeography and Ngrayong deposition. Proc. widely distributed in shelf. sandy turbidites. Petroleum Assoc. (IPA) Sandstone Core Workshop. Suardiputra (2008). 33rd Ann. right-lateral Pamanukan. Cross-bedded sandstones. Petroleum Assoc. Yokokura & Y. D. Hariyadi et al. cross-bedded sandstones. CCOP Techn. W. p. Satyana (2009). 22nd Ann. A. Burgon (1993). 32nd Ann. B. T. Jakarta.I. Jakarta 1993.Trace of the translated subduction in Central Java and its role on the Paleogene basins and petroleum systems development.A depositional model for the Early Miocene Ngrayong Formation and implications for exploration in the East Java Basin. C. 396443. W. but no hydrocarbons elsewhere Main reason is destruction of traps by exposure and erosion. Petroleum Assoc. Grigis Barat 1) are silt to fine sand. A. Proc. Normal movement created S-dipping slope with abrupt change from shelf sedimentation in NW Java Basin to turbidite system of Bogor Trough. IPA09-G-173. Reworked organic material from Talang Akar Fm in NW may be source rock for oil. (Ngrayong Fm regressive-transgressive cycle with coarse sands in lower part.The deep marine sand facies of the Ngrayong Formation in the Tuban Block. Conv. Satyana. Proc. Grigis Barat-1 with features indicative of distal turbidite) Arifin.Intra-arc trans-tension duplex of Majalengka to Banyumas area: prolific petroleum seeps and opportunities in West-Central Java border. Indon. (1993). Conv. C. 19. 1-19. 117175. Proc. Indon. Hakim. with some m-grained quartz. 10p. Joint 36th HAGI and 40th IAGI Ann. Proc. m-grained.upper slope area in N of study area. followed by Parigi and Cisubuh Fms as second transgressive-regressive sequence.. (IPA). Conv.com Sept 2016 .The application of balancing cross-section and sandbox modeling for imbricate thrust system characterization in the Sumedang Area of West Java. (IPA).gas in Sumedang region and surrounding Bogor Trough) Armandita. 181-207. Mukti & A. inverted to thrust fault after Pleistocene. 1. 13-23. Contemporaneous turbidites. contourites and hemipelagic slopebasinal mudstones to S. (Early M Miocene Ngrayong Fm quartz sands most productive reservoir onshore E Java.Ardhana.H.M. Cross-bedded sandstones produced gas in NW. Sandy turbidite facies most productive and primary exploration target.Seismic reflection of the Sunda Trench in Western Java. Jakarta. Five facies: tidally-influenced cross-bedded sandstones. & Sujitno Patmosukismo (1975). p. Deposition mainly from deep sea currents (contourites).vangorselslist. Ed. p. Satyana. (NW-SE trending.E. East Java Sea. L. hemipelagic mudstones and carbonates. S. p. contourites.. IPA08-SG-043. Lower Bibliography of Indonesia Geology. Indon.0 11 www. P. Conv.Cilacap Fault interpreted to have translated SW-NE trending PreTertiary subduction zone and Paleogene shelf edge by ~200 km to S and separates two Neogene deep water basins: Bogor in W and North Serayu in E) Arpandi. Yuliandri (2011). K. p. Three wells drilled further S (Tuban JOB.. p. Kisimoto. 6. M. JCM2011-462. 205-220.Pleistocene. Conv. Gondang-1 tested 538 BOPD from 25’ sandy pelagic carbonate.Perkiraan inversi sesar Baribis serta perannya terhadap proses sedimentasi dan kemungkinan adanya "reworked source" pada endapan turbidit lowstand setara Talang Akar. M.. Armandita. M. P. Indon. 3.. (IPA). A. Fields near Cepu and outcrops to N and W show thickly bedded. Late Oligocene. p. 573-588. (2002).The Cibulakan Formation as one of the most prospective stratigraphic units in the North-West Java basinal area.H. Deep marine carbonate contourites tested hydrocarbons in Tuban Block and form secondary target) Ardhana. Makassar. Mukti & I. Maulana & A. I. Tamaki.M Miocene Cibulakan Fm is first transgressiveregressive sequence.. Buletin Geologi (ITB) 34. Syafri. Okuda (1987). (Description of stratigraphy of NE Java Basin.M. capped by thin bioclastic carbonates. Lunt & G. fine clastics and limestones towards top. Ariyanto. (W Central Java poorly explored area with oil seeps) Armandita. W Java.. Ngasin 1. (Baribis Fault at N side of Bogor Trough. Gondang 1. (IPA). Paleontology suggests bathyal facies. Jakarta.H. C. K. 1. Sediments thinly bedded and locally good flow rates. Jakarta. Raharjo. Petroleum Assoc. a parasite of G.vangorselslist. Inst. p. p. (Onshore NW Java basin traditional plays Miocene carbonate buildups on structural highs and E Oligocene Jatibarang volcanics. Rajamandala High. Dev. Gafoer (1992).Micro and macro molluscan fossils from the Middle Miocene Nyalindung Formation.000. A.Geologi Gunung Sadahurip. Nurdrajat & F. S.A. Sukendar (1974). Cipunegara Low studied for Talang Akar Fm rift-fill history and potential plays) Asikin. Centre (GRDC). Suparta & S. Assoc. Dev. Nyalindung Formation.Geologic map of Kebumen Quadrangle.M. E. Ascaria. Northwest Java. Geol. Sukabumi.0 12 www. Indonesia. Geol. S. Geol. (IPA). M Cibulakan Fm limestone of zones Late Te. Oct. Yogyakarta.D. 27th Ann. J. (Unpublished) (‘Geological evolution of Central Java and vicinity in the light of the new global tectonics’. (IAGI). 131-144. Conv. Geol. Bandung. suggest climate change at ~12 Ma (M Miocene). Eocene-Oligocene Karangsambung Fm scaly clay.. but remnant of old volcano. T. Proc. In: Proc. Garit District’. Dept. (In Indonesian) Aswan (2006).Geologic map of the Banyumas Quadrangle. West Java. . 20th Ann. (‘Geology of Mount Sadahurip. Bandung. D.Paleocene Luk Ulo meange complex. with up to 640 m thick buildups. p. Indonesia.. Bandung. Jurnal Teknologi Mineral (ITB) 13. A. N. N. Prastistho & S. scale 1:100.000. p. Ph. Geologi Sumberdaya Mineral 14. Muksin. 3949. West Jawa.shallow marine Nyalindung Fm molluscs from Cijarian River section. 1175-1180. W Java. Geol. Conv. Indon. 1-103.Play concept of syn-rift and post-rift sediments in the half graben system. 24p. Gafoer (1992). Java. Sukabumi. 3.. p. Technology. Indon. Aswan (2006). Petroleum Assoc. Centre (GRDC). Res. scale 1:100. 235-239. Conv.Middle Miocene climate change indicated by molluscan fossil associations and glacio-eustatic fluctuations in lithofacies. 47-72. p. Busono & S. p. One of first to recognize U Cretaceous. P. gravimetric and geomagnetic surveys.Evolusi geologi Jawa Tengah dan sekitarnya ditinjau dari segi tektonik dunia yang baru. Bandung Inst. (Citarum Fm overlying Rajamandala Limestones ~3000m thick and composed of two parasequence sets of submarine fan deposits) Aswan (2004). 22nd Ann. Merapi Volcano Decade International Workshop. 2. H. 22p. etc. S. Assoc.S. Increase in water depth corresponds to a marine Bibliography of Indonesia Geology. 1995. (Sedimentary facies and tidal. Jawa.Pendekatan struktural untuk penentuan "play type" dalam eksplorasi hidrokarbon di Cekungan Jawa Barat Utara. 1401-1. Indon.S. Asikin. 1. + map. Paltinieri et al. Handoyo. 2. Handoyo.607. Teknologi Bandung (ITB) 38. Kabupaten Garut. Sukabumi. P. Nishimura (1995). Res. (IAGI). Bull.. A. 1976: ) Asikin. Busono & D. (S coastal area of C Java. 1. ‘Sadahurip Pyramid’ not man-made structure. Eocene reefal limestone olistolith. K.) Asikin. p. Thesis. Jkarta. Buletin Geologi (ITB). Volcanic Jatibarang Fm and Cibulakan Fms are main hydrocarbon targets in basin) Arsadi. Proc. In NW corner of map part of Karangsambung Anticline and Luk Ulo CretaceousPaleogene basement/ melange complex outcrops. p.A. Ed.Cibulakan Fm clastics. (2013). Puspita (2000). 36. Java.com Sept 2016 .Early Tf. (On NW Java basin play types) Asmoro.Subsurface structure of Merapi inferred from magnetotelluric.. Proc. B. Muhamadsyah (1993). Talagabodas) Astadiredja. A. Ibrahim & Sukowitono (1991).Taphonomic significance and sequence stratigraphy of the lower part of Nyalindung Formation (Middle Miocene). Samodra.T.Turbidite parasequence set of the Citarum Formation. 605. Hernadi. 6. 1308-3. Palaeoclim. Jakarta.Milankovitch 41000-year cycles in lithofacies and molluscan content in the tropical Middle Miocene Nyalindung Formation. Bandung. Indonesia. Res. 6. p.. Buletin Geologi (ITB) 36. At least nine cyclic facies changes from gravelly shellbed or sandstone to muddy sandstone. 1. 25-30. (Latest Oligocene Rajamandala limestone of W Java with 22 ichnospecies in three associations: (1) LockeiaCylindrichnus (near shoreline with tidal wave influence). Y. Geol. Rizal (2013). Rijani & Y. W. S. West Jawa. 147-166. Inst. West Jawa.Shell bed identification of Kaliwangu Formation and its sedimentary Cycle significance. no detailed age control. S.Pliocene) Aswan. Sukabumi.Shallow marine and deep marine comparative ichnofossil study. Awari & J. S. E part of basin. Aswan. Audithia..Sedimentary cycle of Cijulang Formation. Centre (GRDC). Buletin Geologi (ITB) 41. Conv.bgl. 319-325. 2. (online at: http://ijog. Bull. E. 1.id/index. Cipluk Sst and Parigi carbonate) Bibliography of Indonesia Geology. etc. with Helminthopsis.esdm.75 Ma related to sea-level changes) Aswan (2009). Proc. Survey Japan 59.A new species of Ampullonatica from the Eocene Nanggulan Formation. S. case studies of Tapak Formation in the Purbalingga City and Penosogan Formation in the Karangsambung Area. each ~2m thick. Ozawa (2004). & H. Geol. in terms of sequence Stratigraphy. Joint Conv. Sundari & E. Geol. Sumedang. Y. Balikpapan. Wiyono (2016).climatic warming. Central Jawa. 39.php/IJOG/article/view/151/151) (19 '6th order' sedimentary cycles identified in Pliocene Kaliwangu Fm E of Bandung. Indonesia and its implication for Paleogene Tethyan biogeography. Dev. Ozawa (2006).Asymmetrical condition of the Bogor Basin (West Jawa.System tracts determination based on molluskan shell associations of the Nyalindung Formation. Sukabumi. Patriani (2008). Assoc.vangorselslist. Teichichnus. Palaeoecology 235.Asterosoma (open marine.go. Jakarta. 5p. JCB2015-387.. p. Indonesia) during the Middle Miocene to Pliocene based on taphonomic study of shellbed and its sequence architecture. 8p.gsj.000. Zaim & T. Ed. reflecting changes in water depth of ~30m. scale 1: 100. Petroleum Assoc.)) Aswan (2015). Sopandi (2007).0 13 www. 15-20. (online at: https://www. Sukabumi.jp/data/bulletin/59_07_04. Central Java. (2) Rosselia. Aswan (2014). Suparka. West Java (1109-1). Rizal & I. (Middle Miocene. p. Atmawinata. p. p.Ichnofossil study for the Rajamandala Formation of Gunung Guruh Area. Tambaksari area.Z. Technology Bandung (ITB). J. Central Jawa. HAGI-IAGI-IAFMI-IATMI. 382-405. Indon. Conv. Proc.com Sept 2016 . Jawa. M Miocene.New considerations for petroleum system implications of the Late Miocene reservoir in the North Serayu Basin. 40th Ann. Bull. Y.middle neritic clastics) Aswan & T. Indonesia. Indon. West Jawa). Dept.Y. so 41k cyclicity perhaps more model-driven?) Aswan. 1-11. IPA16-150-G. Palaeogeogr. 1. (Mollusc associations suggest 9 cycles. Rijani. p. (Trace fossils in M Miocene Penosogan Fm deep marine and Pliocene Tapak Fm beach. Buletin Geologi (ITB) 39. (IAGI). 7/8. Proc. Ciamis. Abidin (1991). West Java.pdf) (Study of Nyalindung Fm in Sukabumi area in W part of Bogor basin and Kaliwangu Fm in Sumedang area. Cool period at ~12 Ma and warm period at ~11. 4p. Geologi Indonesia 8. 43rd Ann.Paleoenvironmental interpretation based on ichnofossil study for the Rajamandala Formation of Gunung Guruh Area. based on mollusc taphonomy) Aswan. West Jawa.Geological map of the Ujung Kulon quadrangle. 138-159. Aswan (2014). p. Geology. D. PIT IAGI 2014-033. (IPA). lower shoreface) and (3) Zoophycos-Chondrites (offshore shelf. Zaim. (Brief discussion of Late Miocene potential reservoirs in N Serayu Basin. In Neogene volcanic belt moved N to N of Bogor Through.go. suggesting fore-arc basin. 15-23. Thesis UNPAD University.Karakteristik fasies sedimen Paleogen.Neogene sedimentary facies of C Serayu Basin. 1.Oligocene was part of Bogor Trough/ Bobotsari Low. Volcanic detritus and abundant feldspars in most samples from M-L Eocene-Oligocene Worowari Fm suggest main source is from volcanic rock. Kalibiuk Fms) in N19-N20 (E-M Pliocene). S. 4.Batuan asal dan alas formasi Paleogen Cekungan Seraya. C Java.Seismic identification and characterization of gas hydrates in Central Sunda margin. Gradual shallowing to coastal environment (Tapak. (2014). (2012). which was subsequently eroded. Hakiki. p.Pengaruh tektonik regional terhadap pola struktur dan tektonik Pulau Jawa. Purbalingga Regency. but supposed to be deposited. Low bounded by S Serayu Range high in S. Late Miocene turn to deep marine environment. E-M Miocene trangression. Paleocurrents indicates S-SE ward transport direction. End Oligocene inversion formed mountainous area. Early Neogene sediments suggest increasing tectonic activity followed by increasing volcanic activity from older unit to younger rock units) Bachri. sandstones and include Nummulites limestones) Bahar. p. J. Turbidites at base with abundant radiolaria and deep water benthic forams (Bathysiphon. Bachri.Bachri. ('Provenance and basement of the Paleogene formation in the Serayu Basin'. A. with peak volcanic activity as suggested by Kumbang Volcanics. Bordered in S by high of S Serayu Range. (2011).com Sept 2016 . develop into olistostrome of claystone matrix with blocks up to 10s of m. in back-arc basin. Sumber Daya Geologi 20.S Sumatra)) Baharuddin & S.D. 6. Surachman (2006). Peak volcanism in Late Miocene. 199-208. p. (online at: http://kiosk.geology. 215-221. S. Based on residual gravity map Bobotsari Low represents ENE-WSW trending graben. Widiyantoro & Y. Permanadewi (2012). 8th SEGJ Int. p. New name Worawari Fm for M Eocene. p. ('The effect of regional tectonics on the structural pattern and tectonics of Java island'. which during M Eocene. J. Geologi Sumberdaya Mineral 15. and polymict conglomerates.Indikasi batuan adakitik di Pacitan. but also metamorphic slate fragments and quartz-rich rocks.0 14 www. Santoso.vangorselslist. 6. 4 (203). p. 25-32. probably part of Sunda Platform) Bachri. S. 4. (2011). p. J.Neogen Cekungan Serayu sebagai respon atas kegiatan tektonik dan vulkanisme. Jawa Timur. (Significant hydrate accumulation interpreted from Bottom Simulating Reflector on BGR seismic lines in central Sunda margin (forearc region off SW Java. (2010). Sumber Daya Geologi 22. Central Java. Kyoto 2006.. Ph.Pengaruh kegiatan tektonik dan gunung api terhadap karakteristik sedimentologi sedimen Neogen awal daerah bagian tengah Cekungan Serayu. D. Paleogene change in structural trend from NE-SW to E-W) Bachri. C Java.earliest Pliocene (Kumbang volcanics)) Bachri. Sumber Daya Geologi 21.esdm. Bibliography of Indonesia Geology. C Java. Sumber Daya Geologi 20. J. J. J. S. In: Proc. p.id/artikel/pdf/sedimentologi-formasi-worawari-paleogen-dipegunungan-serayu-utara) ('Sedimentology of the Paleogene Worawari Fm in the North Serayu Mountains'. Detrital zircons suggest Late Cretaceous basement age (~68 ± 9 Ma). (Unpublished) (On Paleogene.Basin development and Neogene deposition history in Bobotsari Low. (Bobotsari Low is part of Bogor Through in Purbalingga area. S. Sumber Daya Geologi 22. 209-215. & H. F. S. 1-5. Paleogene not exposed. Symposium. (The influence of tectonic and volcanic activity on the sedimentological characteristics of Early Neogene sediment area of the central part of the Serayu Basin'. During Late Paleogene C and W parts of Java and Java Sea magmatically inactive or stable. In distal environment turbidites of Penyatan Fm formed. Cyclammina).Oligocene deep marine turbidites and olistostrome deposits ENE and NW of Banjarnegara.Indonesia. Panggabean (2010). 1.Sedimentologi Formasi Worawari Paleogen di Pegunungan Serayu Utara. S. 285-292. Ed. ) Basuki. Bull. Indonesia: In: 11th Reg. 10 km NW of Pelabuhan Ratu.('Indications of adakitic rocks in Pacitan. p.ac. In: N.. Malaysia 43. Harijoko & K. followed by extension since Pleistocene. East Java'. (online at: http://jgi.com/2014/09/bgsm1999025. J.Diagenetic pattern in the Citarate carbonate rocks.ugm. Kuala Lumpur. 69. In: T.php/JGI/article/view/30/22) (E Miocene Citarate Fm in Cilograng. 2. 2.Oligocene. Kuncoro & K. Indonesia. D.E Miocene 'Old Andesite' and Cimapag Fm volcanics. A. S. Watanabe (2010). K/Ar dates of mineralization 8-9 Ma.. Soc. A. hosted in Late Oligocene. Geology and Mining (NIGM) 5. 2012.H. Conf.pdf) (Yogyakarta region. Indonesia.. Sunarya (1999).ft. Malang. Mineral and Energy Resources of Southeast Asia (GEOSEA 2009). Suparka (2012). E. Basuki (ed. Age of mineralization probably same as at Pongkor. Congress Geology. Barianto. Aboud & L. West Java. 371-391. Cilograng Area.pdf) (Epithermal gold deposit at NE side of Bayah Domein in SW Java. Banten Province. Prihatmoko & E.I. Indonesia.Gold deposit in the Cikidang area. central part <120m.id/index. p.A. & S. gravity data. 85-100. Yogyakarta. Yb) Barianto. NE-SW-trending central depression bordered by two parallel faults. Southeast Asian Applied Geol. p. E. Pliocene uplift after deposition of Kepek and U Sentolo marls. Geol. Nat. Ed. Two major faults divide area into three parts. 13-28. W part uplifted >590m.com Sept 2016 . 65-77.A petrographic study on diagenesis of reef-associated Rajamandala carbonate rocks.pdf) (Development of NE-SW trending Yogyakarta graben. where dated as 2. depression and bordering blocks were in same depositional environment (inner neritic) during N9 (M Miocene). Geologi Indonesia 7. E part uplifted above 170-300m) Barianto. Fac. p. (online at: http://geologic-risk. 1. D. (online at: http://pustaka.A. 9th Reg. associated with Neogene calc-alkaline volcanism. Foraminifera suggest all blocks in shallow marine environment in zone N9 (~15 Ma). Indonesian Soc. Geol..) Proc. Congress Geology.E Miocene 'Old Andesites' volcanic and intrusive rocks from Pacitan area in Southern Mountains basaltic -andesite to rhyolite. Present positions indicate W part uplifted higher than others (>590 m). Sumanagara & D. Geochemical Exploration 50.kyushu-u. West Java. displays 9 phases of diagenetic events. Kuala Lumpur 1998..The use of foraminifera fossils for reconstructing the Yogyakarta graben. Kyushu University. p.vangorselslist. C Java. Teh (ed. Setijadji (2009). 3. D.Gold mineralization systems in Southern Mountain Range. Mem.H.M. (MGEI) Ann. In: G. Inst. (1975). In: Proc. P. Indonesia.H. Padalarang area. 137-144.I.pdf) Bibliography of Indonesia Geology. Central part uplifted <120 mm. (eds.H. D. N. Several samples adakite-like.I..lipi.jp/dspace/bitstream/2324/14900/1/paper4. (online at: https://qir.. Different uplift rates created depressed block between two faults. with high Sr and low Y. p. Suparka & Y. Lebak Regency.esdm. 138-143.1.bgl.id/wp-content/uploads/2016/02/NIGM-5-1. and paleontological data from Tertiary rocks in Yogyakarta.The Tertiary volcanic rocks distribution in Yogyakarta and its vicinity. p.files. (Gunung Pongkor gold-silver deposit in W Java several steeply dipping epithermal quartz-veins. N. Manila 2009. Associated with Plio-Pleistocene intrusion. P.The Middle Miocene diastrophism: its influence on the sedimentary and faunal distribution of Java and the Java Sea Basin.I. N.The Gunung Pongkor gold-silver deposit. Indonesia. (https://gsmpubl. Watanabe (2009). of island arc affinity.0 15 www.) Indonesian mineral deposits. Wiyoga (2012). p. 251-259. Bull.1. West Java. J. Sinambela (1994). Banda and Eastern Sunda arcs.Structural analysis using Landsat TM.go. van Leeuwen et al.go.id/fresh/jsaag/vol-2/no-2/jsaag-v2n2p138. A. J.5 Ma) Basuki. (2009).D. Production started in 1994) Basuki. Earth Science Int. Baumann. (UGM) 2. E part >170-300m) Basuki. Engineering. Conv. Based on foraminifera observations. Mineral and Energy Resources of SE Asia (GEOSEA ’98).ac. 6.) Proc.geotek. West Java.Discoveries of the past 25 years. (Abstract only?) Basuki.wordpress. p. Econ. . Knott et al. 19. L. Petroleum Assoc. p. Ed. P. serpentine. 2nd Ann. P. A.) Petroleum Geology of Southeast Asia. augietandesieten.J. (4) M-Late Miocene.. Petroleum Assoc. Afd. (1943).).Depositional cycles on magmatic and back arcs: an example from Western Indonesia. basalt en tachylyt. p. (2001). with discovery of a new species of Solen and proposal of a new name for a Ptychocerithium species. Of 74 mollusc species. See also Soeria-Atmadja et al. S.Chronologie 40K-40Ar du volcanisme Tertiaire de Java Central (Indonesie): mise en evidence de deux episodes distincts de magmatisme d'arc. J.Fault seal analysis of SE Asian basins with examples from West Java. (On Eocene gastropod species Puruninella permodesta from Upper Eocene of Nanggulan. T. Priadi. Faunal composition and rapid diversification of larger foraminifera (species of Miogypsina. Soeria-Atmadja (1989). (1997).D. (5) PlioceneRecent) Baumann. (IPA). Conv. Maury & R. H. Brockbank. Geologie en Mijnbouw 5. p. ('The species Buccinulum in the Early Miocene of the island Madura') Behrens. Proc. In NE Java basin Ngrayong sandstones unconformably overlie Upper Orbitoiden Limestone (OK). (Summary of geology. 20. 309.C. Natuurkunde. In: A..E Oligocene. Geologie en Mijnbouw. tachylyt and Tertiary conglomerates from the surroundings of Ciletuh Bay'. Mudjito & S. Bazzacco. augite andesites. p. Spec. Beets. Indonesia). p. B.E Miocene. Murphy (eds. Polve. 185-194. p.com Sept 2016 . Samuel. M. while 35 others have affinities with European Eocene species) Beach.(Widespread evidence of M Miocene deformation and regression across much of Indonesia. Proc. Publ.J.Contribution to the geological knowledge of Southwest Java. I.. C. P.Pliocene (11-3 Ma) (initiation of modern Sunda arc). Suminta & Wibisono (1972).. (1944). Conv.. 1994) Bibliography of Indonesia Geology.Uber Puruninella permodesta (Martin) aus dem javanischen Obereozan von Nanggulan. Fraser. de Genevraye. Two Tertiary subduction-related volcanic events in C Java: Eocene. Akademie Wetenschappen. Jakarta. H. n.H. 80p.The Cenozoic of Java and Sumatra. studied earlier by Boettger 1883 and Martin 1914. Francais Petrole 37. p.Beitrage zur Petrographie des Indischen Archipels.W.L. 1931. II. Oesterle. Soc.s. a hiatus spanning planktonic foram zones upper N9-lower N11. Verslagen Kon. 6. (Four main sedimentary cycles on Java-Sumatra-Sunda Shelf. Pringgoprawiro. Jakarta. Paris.J. Sajekti (1973).E Miocene (40-19 Ma) and late M Miocene. (Listings of M Eocene mollusc assemblages from Nanggulan. W of Yogyakarta. Brown. p. R. 126. Indon. basalts.H. Indon.0 16 www. 16 also found in other Tethys basins. 1971-1977. Padova. 53. ) Baumann. each starting with transgression and each ending with a phase of volcanism and tectonism: (1) M Eocene.Die gattung Buccinulum im Altmiozan der Insel Madura (O. (2) Late Oligocene. (3) E-M Miocene (missing in many places under M Miocene erosional surface. ('40K-40Ar chronology of the Tertiary volcanism in Central Java: evidence for two subduction-related magmatic events'. S. 29-35. rise of Barisan Mountains in Sumatra. Matthews & R. Amsterdam. P.-I. May also be time of overthrusting of allochthonous terranes of Timor. Comptes Rendus Academie Sciences. benevens tertiaire conglomeraten uit de omgeving der Tjiletoek-baai. (1982).Revision of a Middle Eocene mollusc assemblage of Nanggulan (Java. Lepidocyclina) may be response to fast changing environments. Revue Inst. (IPA). (1880). 14-16. 1. 31-42. M. C. C Java) Beets. 6. 105-108. Mikroskopische beschrijving van gabbro en serpentijn.vangorselslist. Geol. Memorie Scienze Geol.stratigraphy of SW Java) Baumann. 92-93. Ser. P. ('Microscopic descriptions of gabbro. 3-17. Not clear why gap in volcanism from 19-11 Ma. 1st Ann. One of first descriptions of rocks from SW Java melange complex) Bellon. H. Raninellopsis javana n. 6. Palaeontographica Suppl... No figures) Boachi.sp. Djokdjakarta. (1856). 6th Regional Conf. Natuurkundig Tijdschrift Nederlandsch-Indie 9. Proc. C.Die Mollusken der Oligocaenen Schichten vom Bawang-Flusse.Imaging fluid-related subduction processes beneath Central Java (Indonesia) using seismic attenuation tomography. Yogyakarta and Rembang) from collections of Verbeek and Martin.O. 2.Bellon.6.com Sept 2016 .0 17 www. Insel Java. (1883). 225-266. Wetenschappelijk Gedeelte. p. 1-83. H. Jaarboek Mijnwezen 1883. R. and Martinocarcinus ickeae n. Ed. L.M. 461-464. 49-52.Arthropoda.C. O. E. SW Java'. Suparka & Y. A.. Muria). p.Die Mollusken der Oligocaenen Schichten vom Bawang-Flusse. Residency Yogyakarta. ('Investigation of the coal found along the beach of Peucang Bay'. 32nd Ann.A geophysical study of the forearc region South of Java. Res. from Ci Lalang. p. ('The molluscs of the Oligocene beds of the Bawang River.sp. Java'. Residency Yogyakarta. Indonesia. A. Tectonophysics 590.sp. Ciletuh Bay partly surrounded by serpentine hills. (On Miocene-Pleistocene volcanism on Java Sea islands Bawean.repository. (IAGI) and 28th HAGI Ann. Nucia and Calianassa from E Miocene of W Progo. Prominent zone of increased attenuation below and N of modern volcanic arc down to 15 km related to EoceneMiocene Kendeng Basin. overlain by sandstone. One of few reports by African Prince/ mining engineer Akwasi Boachi. Karimunjaya and Java N coast (Lasem. Java Pleistocene volcanoes (1. Conv. Reichs-Museums Leiden (N. CA. (1856). II Theil. (= Early Miocene?. M. (1922). 10-11. U Eocene Scylia laevis n. Martin. Myra. Eclogae Geol. On occurrences of coal at far W point of Ujung Kulon Peninsula. Natuurkundig Tijdschrift Nederlandsch-Indie 11. facing Sunda Straits. J. from E Miocene of Rembang.. Neptunus from Nyalindung.) Boettger. H. IAGI.naturalis.M (1966). Yuwono (1989). p. S. See also Ngkoimani et al.F. R. HvG)) Boettger.D. Situmorang (ed.I. 1. Sammlungen Geol.nl/document/552452) (Eocene and Miocene crab fossils from Java (Priangan.The planktonic foraminifera in well Bodjonegoro-1 of Java. Helvetiae 59. (Earthquake data used to build 3-D image of seismic attenuation in crust and upper mantle beneath C Java.Chronology and petrology of back-arc volcanism in Java. Geology Mineral and Hydrocarbon Resources of Southeast Asia (GEOSEA VI). Reprint of Boettger (1883)) Bohm. p.Reconstructing Cenozoic Java using paleomagnetic data.sp. Residentie Preanger Regentschappen. p. 245-257. 2006) Boachi. 3. Incl. In: B. (1883). 125-148. Scyllarus junghuhni n. p. Master Thesis. 521-535. Molluscs from marls above andesite in North Serayu Mts. In: Die Fossilien von Java auf Grund einer Sammlung von Dr. Bibliography of Indonesia Geology. 3. (Abstract only.D. Callianassa frangens n. Maury. Djokdjakarta. C.S. Indon. etc. In: R. (1982). R. p. Soeria-Atmadja. p. (online at: www. Verbeek und von anderen bearbeitet durch Dr. Enhanced attenuation also in upper crust near recent volcanoes pointing towards zones of partial melts) Bolli.3 Ma) increasing K2O content away from trench) Benaron. Although unfossiliferous quartz sandstones present. (1883) Die Tertiarformation von Sumatra und ihre Thierreste. Verbeek et al. Abdullah & T. University of San Diego. no outcrops of coal were found) Boehm. Several thin layers of lignite in area with common petrified and coalified wood. Conv.0. Ngkoimani.) Proc. Java'. 175-188.Onderzoek naar het aanwezen van steenkolen in het terrein aan de Tjiletoekbaai.sp. K. Assoc. (Unpublished) Bijaksana. N. O. Jakarta 1987. ('The molluscs of the Oligocene beds of the Bawang River. Ungaran. Insel Java..vangorselslist. Hardjono (2003). Jakarta. ('Investigation of the presence of coal in the terrane on the Ciletuh Bay. Asch (2013). 449-465.M. Haberland & G. Res. 4p. Geol. from Kali Puru. Nanggulan.Onderzoek naar de kolen gevonden langs het strand van de Meeuwenbaai.) 1. Revue Paleobiologie.nl/DL/publications/PU00016873. Padova. Purwakarta and Bandung areas. Width of volcanic arc in W Java and Banten ~80-100km) Bronto. Both wells TD in pre-Miocene volcanic agglomerates and basalt) Boomgaart. (1929). 3. Bayah Pongkor.Merapi volcano and the Southern Mountains. M.Pliocene planktonic foram zonation in Indonesia. (‘West Java Tertiary volcanoes: identification and implications’. 1-14. Most of W Java and Banten areas covered by volcanoes and their products. Two dry wells in Miocene carbonate targets. Bothe. 1934).5169/seals-163383) (Classic study of E Miocene (G.A. Doct. S. Six groups distinguished. 291-309. (Unpublished) (Classic study of E Miocene.Smaller foraminifera from Bodjonegoro (Java). S Mountains of C Java.Significant Miocene larger foraminifera from South Central Java. insueta zone) to Pliocene (Gr. Ages of volcanoes Paleogene.com Sept 2016 .Geology of the South Central Java Offshore area.Smaller foraminifera from the marl zone between Sonde and Modjokerto (Java).(online at: http://dx. 2. Geneve. Lokier (2005).. G. Eocene-Oligocene volcanics more rare and widely scattered) Bronto. (Unpublished).knaw. (IPA). (online at: www. de Ruiter (1975).D. (2003). Fieldtrip Guidebook. (1934). University of Utrecht. Boudagher-Fadel.0 18 www. p. mostly close to South coast. Majalah Geol. p. p. Fifteen Mio-Pliocene volcanoes in central-northern part. (1971-1974 Shell work on South Java forearc basin exploration. W. Petroleum Assoc. 1. p. i. Amsterdam. 75-81. 1949. (Showed validity of the then new ‘global’ E Miocene. (2008). No location maps. See also comments by Renema (2006)) Braga. Bandung. S. Excursion Guide C1.C. Yogyakarta: volcanoclastic rocks for petroleum geologist.Tinjauan geologi gunung api Jawa Barat. p. Vroman (1947). HvG)) Bolliger. 48p. (1949).Djiwo Hills and Southern Range. 1175. Geol. roughly same zone as Quaternary belt. & J.Pliocene smaller benthic foraminifera in continuously cored Bojonegoro 1 well (BPM.Quaternary. & S. Jurnal Geoaplika 3.Gunungapi Tersier Jawa Barat: identifikasi dan impliksinya. Sheet Klaten.vangorselslist. Jakarta. W Java. indicating superimposed volcanic episodes. E Java. p.C. (M Miocene Tf1-Tf2 larger forams from Wonosari Fm in Gunung Sewu area. Ed.K. Java 1929. ('Overview of the volcanic geology of Banten. L. 1. p. rotalids. (2001). A..Occurrence of Cenozoic bryozoa in Nanggulan and elsewhere in the Indonesian Archipelago.D. W Java ten Oligo-Miocene volcanoes.Banten dan implikasinya. Nederl. Bibliography of Indonesia Geology.Pleistocene sediments from eastern Kendeng zone near Mojokerto.dwc. 2.org/10. Alveolina 1 with E-M Miocene carbonate section.doi. 24. 53.e. 39. Indonesia 18.Pliocene section is in bathyal facies) Boomgaart. 111-135. & P. Sukabumi-Southern Mountains. p. (2009). Akademie Wetenschappen. A. based on continuous core samples from 1934 BPM well Bodjonegoro 1. Bronto. Proc. Fourth Pacific Science Congress. Petroleum Assoc. (IPA). L. E of Cepu.Geological map of Java. Kon. 47-61. Conv. S.C. Proc. 61-64. Borelis 1 and Alveolina 1. Indon. Mainly shallow marine miliolids. Entire late Early Miocene. stratigraphy) Bothe. and its implications'. Deep water benthic forams from same well described by Boomgaart.pdf) (Distribution of benthic foraminifera in samples from Late Pliocene. Dano and Cibaliung volcanic complex. 419-425. 4th Ann. Indon. Thesis. 6. One of first examples of use of benthic forams for paleobathymetry interpretation. Survey Indonesia. Bogor-Cianjur. Memorie Scienze Geol. menardii zone) planktonic foraminifera. Assoc.. S.Peninjauan kembali Formasi Nglanggran serta implikasinya terhadap mula jadi dan penamaan satuan batuan resmi di Kabupaten Gunungkidul. 89-101. Conf.. Miocene Early and Middle Miocene. Hartono & B. 24 Oligo-Miocene paleo-volcanic centers identified in W part of S Mountains of C Java. Gunung Kidul.3 Ma). p. 6. 1. Mulyaningsih (2008). Four groups: Parangtritis.Batuan longsoran gunungapi Tersier di Pegunungan Selatan. Mulyaningsih (2005). 1. p. Cianjur District. Jakarta06-OT-09.Z. 37th Ann. General stages of volcanic evolution: (1) Oligocene basaltic pillow lavas in Kebo-Butak and Watupatok Fms. Jiwo Hills. Kapubaten Cianjur. used for megalithic site Punden Beruntak) Bronto. Kecamatan Bayat..Identifikasi gunung api purba Pendul di Perbukitan Jiwo. G. (Extended Abstract) (Volcanic arcs of Paleogene. S. Geosc. ('Identification of the ancient Pendul Volcano in the Jiwo Hills. 171-194. Bandung. P. Koswara & K. Southern Mountains volcanism may be continuous from Late Eocene to E Miocene) Bronto. W Java) Bronto. p. Yogyakarta. Proc..vangorselslist. Yogyakarta 2007. (3) destruction of composite volcanoes to form calderas and pumice-rich Semilir Fm. Ages of volcanism at Pendul volcano in Bayat in particular and in S Mountains into four periods: Paleocene. C Java’) Bronto. p. 2012-GD-01. Proc. 269-284. Spec. Geologi Indonesia 1. Kali Putar dan Jentir. Neogene and Quaternary were superimposed. Geol. G. At E flank outcrop of pillow basalt lava flows. S. S.8 ± 6.Geologi Gunung Padang dan sekitarnya. Indon. Hartono & S. and among them intra-arc basins developed) Bronto. Proc. ('Geology of Gunung Padang and surroundings. Hartono & D. S. Yogyakarta. Basal andesite columnar structure. S.. In: Proc. Bijaksana.Potensi sumber daya geologi di daerah cekungan Bandung dan sekitarnya. Putar rivers and Jentir') Bronto. (On energy and minerals potential of the Bandung basin.Bronto. L. J. Assoc. Sanyoto. (‘Genetic relationships between intrusive and extrusive rocks. Workshop Geologi Pegununungan Selatan. Hartono & S. 4p. J. Gunung Pendul is composed of microgabbro (K-Ar age 32. S. Klaten Regency.Stratigrafi gunung api daerah Bandung Selatan. Geol. ('Fossil volcanoes in the Southern Mountains of Central Java'. S. Majalah Geologi Indonesia 19. Hartono (2006). 2. Yogyakarta. Kecamatan Bayat. Bibliography of Indonesia Geology.Hubungan genesa antara batuan beku intrusi dan ekstrusi di Perbukitan Jiwo. Conv. (2009).Pacitan. Publ. Geologi Indonesia 1. (Review of Late Oligocene Nglanggran Fm volcanic breccias and agglomerates of S Mountains. Jakarta 2006 Int. A. C Java'.and extrusives probably remnants of eroded ancient volcano. 44-49. (IAGI). 27th Ann. E. Petroleum Assoc. (2) first construction of andesitic cones of Mandalika and Wuni Fms. Kabupaten Klaten-Jawa Tengah. Volcanic complex. (IPA). E Oligocene andesite age (32. Klaten. (IAGI). Wonogiri-Wediombo and Karangtengah. (2010). Ngkoimani. p. Indon. G.147-163..Fosil gunung api di Pegunungan Selatan Jawa Tengah. Ed.A new perspective of Java Cenozoic volcanic arcs.Jawa Barat. & D. studi kasus di Kali Ngalang. J. Jawa Tengah.6 Ma in Surono 2006).0 19 www. Conv. ('Tertiary volcanic gravity slide rocks in the S Mountains near Yogyakarta. C Java) Bronto. Herman (2012). (Review of Java Paleogene volcanism) Bronto. p. Proc. 1. Majalah Geol. p. Assoc. Budiadi & G. 4p. Kab. Sumber Daya Geologi 20. In. 41st Ann. 38. Indon.com Sept 2016 .. 9-18. Conv. Late Eocene-Early Oligocene. probably deposited on ocean floor. Jawa Barat.Tinjauan volkanisme Paleogene Jawa. G.Sudimoro. and (4) second phase of construction of andesitic cones of E Miocene Nglanggran Fm) Bronto.3 ± 0. special study at Ngalang. & U.Bayat. Lumbanbatu (2006).O. 3. Purwanto (1998). Bayat. 3-13. S. West Java'. Pusat Survei Geologi.. S. 195-204. Hartono (2006). (IAGI). S. Indon. p. Indonesia 20. Bandung. Astuti (2004). Geol. Baturagung. South Bandung mountaineous area. Indriana & M.S. (Geological overview map and explanation from E Java to Sumbawa. schaal 1:1 000 000. not N5 as suggested?. high plain of Pangalengan and Bandung city eleven Pliocene. p. (Extended Abstract) (Sediment thickness below Kendeng-Rembang zones 11. S. Hartono & B. 2-16. 131. HvG)) Brontodihardjo. 788-806. (Late Oligocene Kebo-Butak Fm at Baturagung escarpment. Res. (IAGI). S. p. Lombok. Jakarta 2006 Int. composed of volcanic sandstones and calcareous sediments.0 20 www.Yogyakarta. Geol. deposited in submarine fan environment. Jiwo. G. Jaarboek Mijnwezen Nederlandsch Oost-Indie 44 (1915). Bibliography of Indonesia Geology. Centre (GRDC). Bataafse Int. C Java) Brotopuspito.. Proc. Purwanto(2002). 2. 79-92. Report EP-37680. Interbedded deep marine limestone with planktonic foraminifera. Madoera.000.Waduk Parangjoho dan Songputri: alternatif sumber erupsi Formasi Semilir di daerah Eromoko. Central Java). 5p. (On Juwangi calcarenitic limestones near Kedung Ombo. Dev. J. sheet 17 of 1:1 million map series. Mulyaningsih. (Oligocene? pillow basalt lava flows exposed at Opak River. Verhandelingen 2. Bayat area (Klaten.Stratigraphy of the younger Tertiary in North-East Java and Madura. Geol. Petroleum Maatschappij (BPM). Bali. Conv. (Two alternative eruption centers for pumice-rich acid volcanics of E Miocene Semilir Fm in the Eromoko area. (Unpublished) Budhitrisna. Small hill ~15 m high and 150 m away from river to W was eruption source. S Mountains. (1987). Petroleum Assoc.Geologic map of Tasikmalaya Quadrangle. S of Wonogiri. Central Java. Ed. S. latest Oligocene. H. Geosciences Conf. 3-54. 117-128. 1-41. Sandstone composed of very angular volcanic glass grains. Pambudi & G. Assoc. 161-188. (IAGI). incl. 3. Mulyaningsih. Assoc. T. S. Surabaya.Geologic map of Salatiga Quadrangle. Geologi Sumberdaya Mineral 12. Hartono (2002). Lavas overlain by pumice-rich Semilir Fm volcaniclastic rock (Early Miocene).Rembang zone. p.Batugamping kalkarenit Juwangi dan masalah penggunaannya sebagai Batu Bahan Urugan bendungan Kedung Ombo di Jawa Tengah. Hartono & D.Quaternary rock units (nine volcanic) over subsurface Miocene volcanic rocks) Bronto. K. Geologi Indonesia 4. p. (1915). J.A. W of Watuadeg Village.. Astuti (2008). (1984). with Kendeng deeper than Rembang) Brouwer. Proc. J. 6. probably unconformable over basaltic pillow lavas) Bronto. SE Java) Bronto. All islands on this map Neogene sediments and young volcanics only) Brouwer. Globorotalia kugleri (= lower N4. Bayat area (Klaten.. West Java'. Toelichting bij Blad XVII (Oost Java. 13th Ann. 1408-6.P. (1957). 31st Ann. Soembawa).Sedimentary rock thickness at Kendeng.13. Indon..D. Nukman (2006). Centre (GRDC). Bandung. >650m thick. Hartono & B.('Volcanic stratigraphy of the South Bandung region.000.Gunung Api purba Watuadeg: sumber erupsi dan posisi stratigrafi. Budhitrisna. R. Sleman. Kabupaten Wonogiri.Indonesia. Indon. T. S Mountains. and hyaloclastites. Bandung. as constructed based on regional Bouguer gravity anomaly map.. p. Indon. The Hague. scale 1:100. Astuti (2009). A. (1992). J.com Sept 2016 . (Same as paper below) Bronto.vangorselslist. Geol. probably products of nearby submarine volcano. (IPA). p. Associated with pillow basalts. S. and Exhib.The genesis of volcanic sandstones associated with basaltic pillow lavas: a case study at the Djiwo Hills. scale 1:100. Pambudi. Proc.The genesis of volcanic sandstones associated with basaltic pillow lavas: a case study at the Jiwo Hills. Res. S. OT-44.P.000m. S. Globigerina tripartita. Central Java). Geologi Indonesia 3.Geologische overzichtskaart van den Nederlandsch-Indische Archipel. Conv. Jawa Tengah. G. G. Dev.000. p.. S. Geol. G. binaiensis. Lunt & T. Geol. 1995. Geol. Budiman. possibly Eocene sandstones. generally N of most E Java fieldtrips. B.technical analyses. Res. p. 305-309.IPA Fieldtrip to Eastern Java. Geol.E. Ser. Silalahi (1994). 330-335. Foraminifera studied by Saint-Marc & Suminta. Proc. Explanatory notes and map. S. Prakarsa (2000). (IAGI). (IAGI). (Semarang-Surabaya route. Bandung.Konsep ekplorasi hidrokarbon untuk Formasi Parigi di Cekungan Jawa Barat Utara. Ed. C Java. Indon. p. Conv. p. 2002. Centre (GRDC). especially in lower part of section) Burgon. G. Java. a dividing line between Tertiary structural patterns in Sumatra and Java islands. 2012-EG50. M Miocene limestone play) Budiyani. Priambodo & B. etc. Geologi Indonesia 3.. (E Java Basin M Miocene Ngrayong Fm sandstone in Gondang area in submarine fan facies. I. Budiman.Pliocene Njepung section.. Allan (2002). Budiyani. Dev. Res.0 21 www. p. 180-198. documenting Early Miocene? uplift event. (IAGI).E Pliocene Thalassiosira convexa zone. & Y. 6.Budiarto R. (1976). Pringgoprawiro et al. with some chemical.a structure. 11-20.Komplek mud volcano Kradenan. 140-154. D. Lower part of Globigerina marls in Late Miocene. (Marine diatoms from Late Miocene. Mudi.The causative body of the old Ungaran volcano based on a gravity data model.Penyebaran Formasi Ngrayong sebagai penghasil hidrokarbon di daerah Gondang dan sekitarnya cekungan Jawa Timur. Geol. 9-15. M. (2012). S. Geoph. Willumsen (1995). p.com Sept 2016 . p. & P. Indonesian Petroleum Association. Burhannudinnur. Assoc. See also Mannhardt 1920. Yogyakarta. J. (3-day trip to Sekarkorong. Conv.1979. Gravity high interpreted as basement high. (1922).Geology of the Besuki Quadrangle. 41st Ann.Remodeling geology of Parigi reservoir at Tugu Barat. Bouwk. (Interpretation of N-S gravity profile of Karangsambung area. Ind. 363-368. No ties to surface geology) Budisantoso Pendowo (1991). 29th Ann. G. Proc. Wikan Haksara (1991). p. Field trip Guide Book. With log crosssections and examples of seismic mounding) Buning. Proc. 1. Indon. middle part M Pliocene Nitzschia jousea zone. 1-6. F. Conv. Java. Assoc.Sunda Strait. with stops at Kali Lutut. Open oceanic environment with strong upwelling suggested by presence of Thalassiosira nitzschioides. 1977) Burckle. Dev.Het voorkomen en de ontginningswijze van natuurasphalt in verband met de asphaltexploitatie te Cheribon. (On the occurrence and exploitaton of natural asphalt near Cirebon. p. (2000). Marine Micropaleontology 7. North West Java Basin. Assoc. Probably fed from overpressured Early Miocene Tawun Fm) Bibliography of Indonesia Geology. 23rd Ann. (1996). Kendeng zone. Tijdschrift 25. Conv.Indonesian Petroleum Association East Java Fieldtrip October 13-15. Mukmen & L. I. Indon. Kalipanjang) Burgon. Proc.H. Geol. (1982). ('The Kradenan mud volcano complex'. 1. ('Hydrocarbon exploration concepts for the Parigi Fm in the NW Java Basin'. p. Centre (GRDC). Bromo. p.Diatom biostratigraphy of Late Miocene and Pliocene sediments of eastern Java (Indonesia). Bandung. Geol. Sumberdaya Mineral 6.e) Burhanudin. L.Main fault structure of Karangsambung area based on gravity model. (IAGI). 20th Ann. E Java. Indon. 60. IPA Field trip Guide Book. p. P. 141-150. & A. Geol. 33 p. Ngepon. 1-68.vangorselslist. Jakarta. Assoc. Indon. (2014). A.The Cibaliung gold deposit. Paleocurrent directions from flute casts suggest main sediment supply from NW (opposite of presumed southern origin of volcanic provenance in Ngawi area?. Mud probably sourced from Tawun Fm) Cahyo. Review of mud volcanoes. Conf. 2004. HvG)) Bibliography of Indonesia Geology. hosted in Neogene volcanics. dry condensate gas. 2007) Carnell. p. NE Java basin. narrow pinnacles to broad platform deposits. IPA07-G-116. Miocene-age mineralization (~10 Ma).iagi. 35th Ann.. (Outcrop study of Late Miocene Kerek Fm calcareous sandstone turbidites in measured sections in Kedungjati area. MINDAGI (Trisakti University) 7. 300-304.B.. These carbonates have different morphology. M. IPA11-SG-036. (eds. 19-25. A. I. I.The Rajamandala limestone of the Sukabumi area of West Java. Malda. 561-567. (IAGI). Other areas of Cepu platform drowned in Oligocene. petroleum gas. A13-A14. In: S. Noeradi. (IPA). (Carbonate build-up morphologies in Cepu Block vary from steep-sided. Indon. Geol. 18 p. I. Central Java: an analog for sandy Miocene Formation in western Kendeng Zone. Prihatmoko (2005).L.vangorselslist. J. Petroleum Assoc.C. can it be considered a field analogue for the Baturaja limestone. (AAPG) Int. Assoc. Jakarta. Buildups developed on isolated platform that began to form in E Oligocene.. Abdassah (2012).A. Burgess (2007). D. A. 41st Ann. Thicker buildups drown in E Miocene and are covered by M Miocene clastics that are low quality seals. Proc. with morphologies related to underlying extensional faults and subsidence rates across platform. Berita Sedimentologi 26.variations in Oligo-Miocene carbonate buildup morphology. Buildups up to 2 km thick. F. (Late Oligocene Rajamandala reefal limestone of W Java outcrops between Cibadak in W and Bandung in E. Geol. surrounded by foraminiferal/algal dominated shelf sediments. p. 6. Field Trip Guide Book. (IAGI) Spec. Jakarta.Burhannudinnur. First discovered in 1992.Pergerakan sedimen bawah permukaan (PSBP) di Jawa Timur. Issue. creating small pul-apart basin (see also Harijoko et al. 2012-EG49. Bali. M. Conv.or. Fardiansyah & C. O. Indon. Conv. (IPA). Carnell. (Cibaliung low sulphidation epithermal Au-Ag deposit at SW tip of Java. Depositional environment interpreted as lower submarine fan system.id/fosi/files/2013/05/BS26-Java. Assoc. etc. Fardiansyah.A.) Burhannudinnur. Ed. (online at: www. Proc. p. SPE Indonesia Branch. drowning at different times. HvG)) Cahyo. Rajamandala Fm often regarded as analogue for oil-productive Batu Raja Lst of S Sumatra and NW Java. formed at shallow depths (250-300m). Conv. F. Proc.com Sept 2016 . 1. W Kendeng zone. Petroleum Assoc. Western Kendeng Zone (North East Java Basin).F. decision to mine in 2004. Deposition interpreted as series of small coral islands. resulting in isolated carbonate buildups. American Assoc. but they are not direct age equivalents (Batu Raja Fm age is of Early Miocene age. Yogyakarta.Karakter mud volcano di Jawa Timur.. 45-57. carbonate deposition ceased over parts of platform while other areas continued to grow. Petrol. 9-34.pdf) (similar to paper above) Cahyono. Price & S. (2000). Prasetyadi (2011). B. Through Late OligoceneE Miocene. Jakarta. Site possibly influenced by NW-SE Sumatra Fault system. p. ('Character of mud volcanoes in East Java'. Banten: discovery to decision to mine. Prihatmoko et al. 46p. 31st Ann. Proc.3D modeling of Kerek turbidite sand bodies based on outcrop study in Kedungjati area.Three-dimensional facies modeling of deepwater fan sandbodies: outcrop analog study from the Miocene Kerek Formation.The Rajamandala limestone at Sukabumi. p. lower reservoir quality and more clay-rich seals and commonly contain large gas columns) Carlile. Mud volcanoes of Randublatung zone. Malda & C. O. ('Subsurface sediment movement (PSBP) in East Java'.) Indonesian mineral and coal discoveries.Cepu 3D seismic. Prasetyadi (2013). Geol. p. & C. contain variety of gases: biogenic gas.0 22 www. Sapiie & D.. Indon. (1996). Leipzig. Banten Block. Die Pithecanthropus-Schichten auf Java.Nannoplankton biozonation in Bengawan Solo River. Publ.T.com Sept 2016 . Jakarta. 6. Bibliography of Indonesia Geology. in particular the excavation area'. 28th Ann. (Sequence stratigraphy of Middle-Late Eocene Bayah Fm on Bayah High. 2/2015. Serie 9. Twelve alternating warm. p. of Mining and Metallurgy (AusIMM). p. Kohar. Little or no stratigraphy context) Caudri.High-sulfidation epithermal Cu-Ag-Au deposit. Petrol. Assoc. E. Blankenhorn. Seven depositional sequences. Verhandelingen Geologisch-Mijnbouwkundig Genootschap Nederland Kol. NN16-NN18). Geol.J. Geoph. Solo River Ngawi area. (1911). Kapid (1999). p.Lepidocyclinen von Java.Carthaus.Palynofacies analysis of the Eocene Bayah Formation in Bayah High. Proc. (IAGI). NN18. NN16). B. L. Mainly on Plio-Pleistocene deposits around Trinil excavation area of Selenka Expedition. (probably too much 'splitting' of morphotypes. p. S.M. Descriptions of 26 Lepidocyclina species from Oligo-Miocene samples from C and W Java and Madura. Indon. C. N. zone 12 warm zones. (1932). Conv. 1896 (Abstract). ('Lepidocyclinids from Java'. 171-204.B. Dyer. Geol.L. PACRIM 2015 Congress.5 Ma.U. Chan. Zone 9 (transitional. Klitik Fm: zone 11 cold.S. Seismic Atlas 2. Selenka & M.0 23 www.Y. 3. Kluwih. Zone 4 warm (NN14-NN15). (HAGI)-Indon. A. S. 12a. In: Proc. S.cold zones. AAPG Foundation Grants-in-Aid Recipients 1999.L. NN19 and NN20. 80-94. Ngawi. ('On the geology of Java. 83. A. Melbourne. Zone 6 (warm.J. NN15). Engelmann. Kalibeng Fm: transitional zone 3 (NN13-NN14). Geol.. many species names probably synonyms. Zone 7 (cold zone. (1939). Berita Sedimentologi 29.M. B. insbesondere des Ausgrabungsgebietes. 4p. Australasian Inst. HvG)) Caughey. Indon. C. (IAGI). p. Kerek Fm Zone 1 and 2 warm zone and cold zone of lower NN12 and NN12-NN13 respectively.Zur Geologie von Java.. Medan. p.. Indonesia. Eastern Java. Geologische Ergebnisse der Trinil-Expedition (19071908). Probability of underlying porphyry copper system.. based on palynology data from cores DDH-1 (242m) and DDH-2 (315m). 11 p. 213-218.T. C Java) Caudri. (eds. American Assoc. Rahardjo & Dardji Noeradi (2014). NN16).Seismic atlas of Indonesian oil and gas fields II: Java. (IPA). p. 1-33. with barren zone between 12a and 12b) Choiriah.) (1995). 135-257. In: M. Joint Conv. Zone 5 (cold. (AAPG) Bull. collected by Gerth. Proc.De foraminiferen-fauna van eenige Cycloclypeus-houdende gesteenten van Java. with depositional environments varying from fluvial plain to estuarine) Chandra. Serie 12.Sequence stratigraphy of Bayah Formation at Banten area based on Core of DDH-1 Well and DDH-2 well: palynological and palynofacies approach..vangorselslist. Mineralisation mainly in steeply dipping quartz-enargite-pyrite veins in porphyritic dacite and breccia of dome and in underlying andesite with zircon U-Pb age of 11. (2015). and Irian Jaya.alteration and implications for potential porphyry Cu mineralisation. JCM2013-0005. Assoc.Paleoclimatic interpretation using calcareous nannoplankton. Petroleum Assoc.A. Verhandelingen Geologisch-Mijnbouwkundig Genootschap Nederland Kol. (1999). SW Java. No location info) Chandra. Banten Province. Natuna.iagi. NN16). and Zone 10 (warm. 35-46. Zone 8 (warm. J. NN16).or.b. ('The foraminiferal fauna from some Cycloclypeus-bearing rocks of Java'. & R. Indon. Haryono et al. Indonesia. Ed. (Late Miocene to M Pleistocene of Kendeng zone shows climate changes in nannoplankton. Priangan and Purwakarta. (Cu-Ag-Au mineralisation at Kluwih prospect in E Java. Ser. Indonesia related to high-sulfidation hydrothermal system within dacitic volcanic dome.U. Kalimantan.B. Geol. Assoc. SW Java. C. Miocene larger forams from Java localities S Kediri. Rahardjo & Dardji Noeradi (2013). A.Y.id/fosi) (Description of palynofacies of Eocene Bayah Formation from cores of wells DDH-1 and DDH-2) Choiriah. Hongkong. (online at: www. Geol. Abstract. 87-104.Etude de la fracturation dans l’ile de Java. (Nannofossil species and diversity from Late Miocene. p. 6. B. 1-431. ('Study of the fracturing on Java island'. 5 p. Paleogene and Late Miocene arcs have thrust northwards by >50 km and are now thrust onto shelf sequences that formed on Sundaland continental margin.R. Rasplus. Geologique France 26..U.E Miocene and volcanic activity probably increased. ('Larger foraminifera in the Wungkal. Jawa Timur.. Bayat Klaten. Indonesia. 1259-1268. & B.L’ile de Java. p.. Priyomarsono (1984). Geol. Rampnoux.Cretaceous to Late Miocene stratigraphic and tectonic evolution of West Java. Klaten.. Giret. Suminta & S. Bayat. 22. 35th Conv. 1325-1333. Ngawi (Kendeng Zone) section suggest 12 alternating warm-cold zones) Choiriah. R. Rasplus. Ikatan Ahli Geologi Pengurus Daerah DIY-Jateng. Hall (2007).0 24 www. Soc. Somm. West Jiwo Bayat. 6. B. Pekanbaru. Geologique France. Left-lateral strike slip faults at N70° offset Quaternary intra-arc and volcanic chain) Chotin. S. Assoc. 47-59. Bull. and Exhib. N135° and N165°. Ph. Jakarta. 4. J. Bull. Triwibowo (2002). 5. Indonesia. R.Pliocene in Solo River. L. P. N70E strike-slip fault is reactivation of pre-Neogene Sundaland margin) Clements. Much of quartz is from lowgrade metamorphics) Clements. Giret. Geosciences Conf.U. J. (IAGI).Gamping daerah Sekarbolo. Jawa Tengah. 175-177. A. Hall (2006). Petroleum Assoc. S. p. L. ('The sedimentation associated with a major strike-slip fault in the central part of the island of Java. New structural model for W Java suggests major thrusting in S Java has previously been overlooked. Suminta & N. Indon. Bandung.com Sept 2016 . Java fault systems determine locations of volcanoes along N 000 and N 045 tension gashes. Thesis Royal Holloway. University of London.vangorselslist. N70°. Proc. Another arc jump since Late Miocene and modern Sunda Arc volcanoes now on deformed Late Miocene arc products. Geologique France 26.Interpretasi paleotemperatur berdasarkan nannoplankton lintasan S. Geol.P. B. Arc became emergent during Late Oligocene.Choiriah. C Java') Choiriah. p. N 070 strike slip zone marks boundary between western subduction system and eastern collision-subduction Australian system) Chotin. (IPA). Bibliography of Indonesia Geology. & R. Ngawi. un enregistreur des mouvements tectoniques a l’aplomb d’une zone de subduction. In C Java eeper structural level is exposed and arcs have been removed by erosion. Jiwo Barat Bayat. C Java') Chotin. & R.J. Hasjim (1984). Java fault systems N30°. rarely did its products reach Java. P. B. Indonesia'.Paleogene to Early Miocene tectonic and stratigraphic evolution of West Java. Klaten. N90°. IPA07-G-037. Klaten. from North.D. Assoc. Kurniawan & Surono (2006). Conv.Gamping limestones in the Sekarbolo area. 29th Ann. Ed. M Miocene carbonates deposited above arc rocks. Indon. (‘Java island. p. Prastistho. (Eo-Oligocene quartz-rich sediments in W Java from multiple sources. Conv.. (Unpublished) (Eocene arc S of Java. Bengawan Solo.Provenance of Paleogene sediments in West Java. Rampnoux. Soc. Soc. Pringgoprawiro (2000). C. p. 16p. 41-53. Rampnoux. Jawa Tengah. Paleogene quartz sandstones sourced from Sundaland granitic and metamorphic rocks.La sedimentation associee a une structure decrochante majeure dans la partie centrale de l'Ile de Java (Indonesie). A. In: Sumberdaya Geologi daerah Istimewa Yogyakarta dan Jawa Tengah. Proc.U. Zircons from M Eocene record contributions from Cretaceous arc and post collisional volcanic rocks. P. (IAGI). p. Jakarta 2006 Int. Sumarso & Suminta (1980). Proc. Indon. Petroleum Assoc. Age of thrusting Late Miocene or Pliocene) Clements.Studi biozonasi nannoplankton daerah Gunung Pendul Formasi Wungkal. Indon. Kapid & H.P. mostly submerged. 31st Ann. Late Miocene resumption of volcanism N of Paleogene arc. Proc. S..Foraminifera besar pada satuan batugamping formasi Wungkal.E. ('Nannoplankton biozonation of the Wungkal Fm in the Gunung Pendul area. a record of tectonic movements up a subduction zone’. Indonesia. (2008). (IPA). J. 6. Geol. Ritha. D. Vienna.Oligocene quartzose formations sourced from Sundaland. Mid-Cretaceous zircons in U Eocene. W. 1. and W Sulawesi arc developed later. C Java displays deepest structural levels of N-directed thrusts. Geol. with wide zircon age ranges (Proterozoic.L. M. Paper 487. Jakarta.E Paleogene local volcanic arc source. L.W. Geophysical ReseEGU General Assembly 2010. p.Detrital zircon U-Pb age and Hf-isotope perspective on sediment provenance and tectonic models in SE Asia. 145-74 Ma (Cretaceous). online at: http://meetingorganizer.vangorselslist. (IPA). (Abstract only. K. Late Eocene Bayah Fm higher contribution of E-M Cretaceous granites from Borneo Schwaner Mts) Clements. overthrust arc largely removed by erosion. Hall. America (GSA). Late Cretaceous and Paleogene zircons derived from two volcanic arcs in Java and W Sulawesi. Smyth & M. R. B. IPA08-G-115. and active cross-arc extensional faults. Permian-Triassic zircons from granites in SE Asian Tin Belt. N Serayu Mts folds and at S border Cretaceous ophiolitic basement and melange outcrops of Lok Ulo) Cook. Ed. Kangean PSC.Eocene).pdf) (Java island complex history of volcanism and unusual subduction characteristics. 1-17. extension related to development of Makassar Straits. M Eocene. Belousova.U-Pb dating of detrital zircons from West Java show complex Sundaland provenance. E. Proc. Griffin & N. Petroleum Assoc.Y. Pardyanto &. and derived from Malay Peninsula and Tin Islands granites. (Ages of zircons from M Eocene volcanoclastic Ciletuh Fm indicate Late Cretaceous.. Development of 1 TCF GIIP complicated by shallow gas in overburden and faults. some with seabed expression. Dev. with potential mass flow features. In: E. (U-Pb age populations of zircons in Paleogene formations in W Java: 80-50 Ma (Late Cretaceous-Paleogene). D. L. In E Java volcanic arc thrust onto thick volcanic/sedimentary sequence formed N of arc in basin due largely to volcanic arc loading) Clements. W Java arc now thrust onto shelf sequences that formed on Sundaland continental margin. Petroleum Geoscience 15. B. Zwaan (2003). (Terang-Sirasun reservoir Plio-Pleistocene Paciran Fm Globigerina calcarenites. Episode of Late Miocene thrusting at ~7 Ma observed throughout Java linked to Nward movement of volcanic arc. p. Java arc was active before microcontinent collision.. S.org/EGU2010/EGU2010-12437. R. 1996) (Map of C Java Dieng Plateau.0 25 www. Little geology info) Cottam. Cottam (2009).Lw Oligocene derived from granites of Schwaner Mts of SW Borneo. H. 19p.J. Indonesia: slab tearing and changes in magmatism. Proc. Older zircons from allochthonous basement and sedimentary rocks deposited prior to rifting of continental blocks from Gondwana in E Mesozoic) Condon. Collision age is ~80 Ma. 298-202 Ma (Permian-Triassic). Sevastjanova. Nichols. with Cretaceous basement exposed. 159-174. 2. Res.copernicus. Conv. M Eocene Ciemas Fm zircons mainly Permo-Triassic ages. Hall.Thrusting of a volcanic arc: a new structural model for Java. In E Java gap in seismicity between ~250-500 km and seismic tomography shows hole in slab.com Sept 2016 . Hall (2008). Soc. Indonesia. Major thrusting in S Java displaced Early Cenozoic volcanic arc rocks N-wards by 50km or more. Zircons older than ~80 Ma have continental Sunsambung?)daland provenance. Java.) Mineralogical and geochemical approaches to provenance. Clements & W. P. In W and E Java overthrust volcanic arc still preserved. Simplicity complicated by structures inherited from Cretaceous subduction. R. 32nd Ann. Late Cenozoic contraction. 29th Ann. on newly accreted crust at SE Sundaland margin. Rasbury et al.Geologic map of the Banjarnegara and Pekalongan Quadrangles. p. (also 2nd ed.B. Spec. Centre Bandung. B.. Ellis & J.Neogene subduction beneath Java. 5p. consistent with subduction of a hole in downgoing slab. Sundoro volcano.(Cretaceous-Late Miocene paleogeographic maps W Java) Clements. Indon. B.A. by extension related to development of volcanic arcs. W.A.T. (Java apparently simple structure with E-W physiographic zones broadly corresponding to structural zones.. 12437. Spakman (2010). Conv.Quantifying geohazards through advanced visualisation and integration in the Terang-Sirasun development. Jayson. P. I. 653-480 Ma and 1290-723 Ma.R. respectively. (eds. 37-61. & R. Hall. (IPA). p..H. Pearson (2012). Petroleum Assoc. Indon. Ketner (1975). Jakarta. Cross. Sirasun fewer faults and little shallow gas but near shelf-slope break. Explained by tearing of subducting slab when buoyant oceanic plateau arrived at trench S of E Java at ~8 Ma (Kundu & Gahalaut 2011 suggest slab detachment under E Java between 10-20 Ma)) Bibliography of Indonesia Geology. Indonesia. W Indonesia mature province with >300 fields producing in 12 basins. In: C.W. Classic Southern Mountains karst study around Wonosari. which developed during MiddleLate Quaternary.J. Voskuil (1996).fr/exl-doc/pleins_textes/pleins_textes_6/TDM/42325. Symp.com Sept 2016 .Introduction.. West-Java. D. Plant fossils from tunnel drilled in volcanic terrains of Gunung Kendang. 1. ser.Courteney. Amsterdam. 1-335. p. D. (‘The Gunung Sewu karst region of Java’. Melbourne.A. 5.C. Reichs-Museum.ird. Indon. M. 1-77. (1910). 1. (Bandung area large intramontane basin surrounded by volcanic highlands. L. Geol.A chronology for geomorphological developments in the greater Bandung area. Published in more detail in 1915) Danes..vangorselslist. ser. Muharam.. 227-235. p. 1-252.M.nl/document/552405) ('Investigations on the Pliocene flora of Java'.. Jakarta 1995. P.C. M. (online at: http://horizon. Indonesia. Thesis Universite de Paris VII. (1993).P. S. Thesis. Miller. PACRIM 2015 Congress. (IPA).0 26 www. SW Java) Dahrin.Recherches sur la flore Pliocene de Java. See also review by Hol (1918)) Bibliography of Indonesia Geology.Das Karstgebiet Goenoeng Sewoe in Java. 27. Indon. Publ. Res.S. J.-Naturwiss. 1-90. J. Cianjur region.G.Etude bathymetrique et gravimetrique de Detroit de la Sonde et du volcan Krakatau (Indonesie): implications geodynamiques et volcanologiques.P. p. of Mining and Metallurgy (AusIMM). Ph.pdf) ('Bathymetric and gravimetric study of Sunda Straits and Krakatau volcano (Indonesia): geodynamic and volcanological implications'. Hermawan & J. M. Hongkong. In: Proc. Wight (1989). West Java. Gesellschaft Wissenschaften in Prag. Petroleum Assoc. p. Prague. M.J. Framework based on sequence stratigraphy established for productive basins) Courteney. A1-A4. Sammlungen Geol. p. Cockroft. Suparan (1992).K. Nossin & R.Geology of the Bandung Basin.A. (1996). (‘The karst phenomena in Gunung Sewu on Java’. 49-71)) Cunningham. Leiden.The future hydrocarbon potential of Western Indonesia. Carter et al.. R. 19 February 1915. Sequence Stratigraphy in SE Asia. p. Phoa & A. Bandung. (1994).) Proc. M.13. (1915).documentation. With Naucleoxylon spectabile (also in Jaarboek Mijnwezen 17 (1888). 14. Ser.R.A. 2/2015. Southeast Asian Earth Sci.V. 6. 247-260. Ed. Nederlands Aardrijkskundig Gen. J.C. 1-21.The Late Quaternary evolution of the Bandung Basin. M. 13. S. Australasian Inst.repository. Suparan. Damanik. Doct. 2. (1888). p. Indonesia Oil and Gas Fields Atlas. Caughey. Dev. Brief summary of early study of the famous cone karst of the Southern Mountains of C and E Java. & P.naturalis.A. Crie. E. Sitzungsberichte Koningl. Publ. Int. in particular since 125 kyr B. p. (Extended Abstract) (In SW Java low-sulfidation epithermal gold mineralisations in series of extensional and strike-slip faults that cut Miocene-Pliocene calc-alkaline volcanic rocks intruded by shallow-level plutons.Die Karstphanomene im Goenoeng Sewoe auf Java. (eds. etc. Kl. Krakatau volcano bimodal basalt-dacite volcanics and is different from volcanoes of Java and Sumatra) Dam. (Over 3000 exploratory wells drilled in W Indonesia and ~750 discoveries reported.L. Discussion of epithermal mineralisation at Mt Subang. Spec. (Unpublished) Dam. Tijdschrift Kon. (online at: www. Indonesia.C. J. Petroleum Assoc. Vrije Universiteit. 101-115. p.) Danes. p. 397-415. W Java.D.V. (IPA). Jakarta. Widjaja (2015). Boehm. P. Dam.J. E of Sukabumi and SW of Cianjur. Pacitan. A further 100 fields abandoned or shut-in. R.A. Java. 4. Centre (GRDC). Math. Sunda Straits characterized by extensional tectonics ('pull-apart basin').Structural controls on the localisation of low-sulfidation epithermal mineralisation in West Java. p. Zone is between two majors NE-SW lineaments i.B. Berita Sedimentologi (Indon Sedimentologists Forum) 3. 3-11. ten suspected gas seeps and one discovery well in E-M Miocene turbiditic sandstones) Dardji. A. Five higher order sequences in 1.0 27 www.Pliocene sediments) Datun. (Pleistocene volcanoclastics gas-bearing in Wunut field. Southeast Asian Earth Sci. Satyamurti (2001). (1996). p.e.000.T. & A. kaitannya dengan paleogeografi Miosen daerah Bantarkawung. Exhib. Majalah Geol. N.Holocene. tied to Mitchum 1993 cycle chart) Datun. AAPG 2006 Int. ('Effects of texture and diagenesis on porosity and permeability of sandstones of the Jatibarang and Cibulakan Formations in the Cirebon area') Bibliography of Indonesia Geology.Studi provenance batupasir Formasi Halang. 29p. (Kendeng Zone and W Cepu zone folded M Miocene.. Java Island. West Java. Feldspar and volcanic rock fragments more dominant in most other Miocene sandstones. Wahono.Basin evolution and hydrocarbon potential of Majalengka-Bumiayu transpression basin. 9. 71-78.. (online at: www.Short note: mineral composition of Eocene and Miocene sandstones in Java Island. H. Villemin & J.com Sept 2016 . shallowing upward to coarser turbidites and to fluvial-shallow marine clastics in Plio-Pleistocene. p. Noeradi (1997). plutonic 28. H. (Abstract only) (NW-SE zone from Majalengka to Bumiayu characterised by fold belt of Neogene sediments. J. p. East Java.P. (Provenance study of Halang Fm sandstones and implications for Miocene paleogeography of Bantarkawung area. 1. Toha & Widiasmoro (1985).Penelitian asal pasir Ngrayong.Holocene. Muljana & J. Brebes. 6.. Rampnoux (1994). 1:100. (Quad. Stratigraphy complicated. N. Pleistocene overall regressive marine to nonmarine sequence prograding to N in E Pleistocene.0. 2.2%). composed of OligoMiocene to Pleistocene rocks. Zaim (2006). Central Java’. biotite (0. Sandstones from Late Miocene Halang Fm in NW Java dominated by feldspar and rock fragments) Darmoyo. T.Pengaruh tekstur dan diagenesa terhadap porositas dan permeabilitas Batupasir Formasi Jatibarang dan Cibulakan di daerah Cirebon Jawa Barat. Jawah Tengah. SW Java') Dardji. 15-38. M. Indonesia 16. Measured sections of 590 m thickness in Candi and Todanan areas show M Miocene (N11-N12) Ngrayong sandstones composed of quartz (71-87%). M.iagi.Paleostresses and strike-slip movement: the Cimandiri Fault Zone. van Gorsel (2013).E.2%).. H. Jawa. 2nd Ed. Brebes area. Teknik Geologi UGM. (1982). Berita Sedimentologi 26.C. 1-2.Fieldtrip guidebook Sangiran Dome and Southern Mountains.Dardji.5 My of Pleistocene. Ed. B. Indonesia. M. E. B.pdf) (Quartz-rich sandstones common in Eocene across Java and in Miocene of N part of Java Island. Conf. E Java. (Cimandiri FZ sinistral strike-slip zone) Darman. p. Gadjah Mada University. more to NE and E in Late Pleistocene. p. Res. reworked sedimentary 7.The sedimentology of Pleistocene volcanoclastic in the Lapindo Brantas block. 33-37. Hermanto & Y. M.A. 27-42. Central Java.2%. clay minerals (0-11%).vangorselslist.. Ngrayong provenance mainly metamorphic and granitic plutonic rocks) Datun. p. At least twelve oil seeps. ('Evolution of the Paleogene basin in the Giletuh area.Evolusi Cekungan Paleogen di daerah Ciletuh Jawa Barat Selatan. glauconite (0-11%).. Geol. Buletin Geologi (ITB) 27.4%. Dev. S. Quartz types: metamorphic 64. Indonesia. E.or. B. opaque mineral and plagioclase (0-2. Hermanto & N. C Java) Darman. Geologi Indonesia (IAGI) 9. 1508-4). Priyantoro (1998). (Unpublished) Datun. Sosromihardjo & B.3%. Jawa Tengah.1% and vein quartz 0. (‘Investigation of Ngrayong sandstone provenance. Bandung. Centre (GRDC). Suwarna (1996). Distal turbidite system in lower part.Geological map of the Ngawi Quadrangle.P.id/fosi/files/2013/05/BS26-Java. Both indicate left lateral movement and place Majalengka-Bumiayu folded zone in transpression zone. Perth. Subroto. Sukandarrumidi. Cimandiri and N70E fault zones. p.. 0 km.F. 517-523. Indon. (2009) The LUSI mud volcano controversy: was it caused by drilling? Marine Petroleum Geol. p. L.P. E. Brumm. 168. Indonesia). 17-30. 2. Land surface subsidence of ~ 95. offshore Bali. American Assoc. Ed. Soc. Yogyakarta district. Romein et al.2–1. R. (1987). P.. Medwedeff. Most of island is volcanic rock. Lusianga & R. M. initial pressure 13. Time for flow to decline to <0. Samuel (1972). S.. 27. Tingay.Analysis of oil and gas seeps from Central Java.Davies. 4-9. (N Serayu Mts ‘classic’ oil seep of Reerink 1865 mixed terrestrial-marine biomarkers. Nuclear Instruments and methods in Physics Res.T. De Creve. 1st Ann. Proc. Manga.J. PT Geoservices. Swarbrick & M.475 m can be expected within 26 year time) Davies. p.The geology of Kendeng Zone (East Java). London. C. (Fish teeth (incl. Letters 272. Evans & M. presumably with Cycloclypeus annulatus (= M Miocene)) De Boer.Eiland Bawean. (Estimate of duration of LUSI mud volcano in E Java.J.H. East Java Sea. Multi-client study. porosity 15-25%.Discussion: Sawolo et al. G. p. with area 100-600 km2. A.J. O'Donnell et al.. not much specific geologic information. (1995). Natuurkundig Tijdschrift Nederlandsch-Indie 1. Early paper on occurrence of oil seeps on Java) De Genevraye. Indonesia. Tingay (2011). (1996). and separate. M.The East Java mud volcano (2006 to present): an earthquake or drilling trigger? Earth Planet Sci.A.Regional and reservoir scale analysis of fault systems and structural development of Pagerungan gas Field. GSA Today 17. (Mud eruption appears triggered by drilling of overpressured porous and permeable limestones at ~2830m in Banjar Panji 1 exploration well) Davis. Jakarta. Swarbrick & M. also hot springs. P. 29 May 2006. shark) and teeth of ?crocodile and Cetacea (whales) in agglomerate at base of manganese ore seam in Kleripan mine.A. J. Swarbrick. Indie 1865.. 130 p. Eocene clastic reservoir affected by two generations of faults: Eocene normal and Neogene compressional) Davies.E. Langereis. Conv. Geol. M. 627-638. (Classic BEICIP Kendeng zone summary paper) De Groot. M. R. Sediments include Bibliography of Indonesia Geology. R. 2. A33. (1865). R.Aardolie en haar voorkomen in Nederlandsch Indie. R. (AAPG) Annual Conv.Beryllium-10 data from redeposited Late Miocene pelagic sediments (East Java. San Diego. Mainly travel report.9-17. Petrol. assuming carbonates at 2500–3500m are water source.D. Petroleum Assoc. shallower source of mud. Huuse (2007). Can continue to flow at lower rates for thousands of years. D. Tijdschrift Nijverheid Landbouw Nederl.com Sept 2016 . Zijderveld. p. B29. (Disagree with the Sawolo et al.. Rubiandini. 322-325. 4. Java Sea. W. results of field survey. C. J. R.On a collection of Miocene fish-teeth from Java.G. Kulun Progo.K. (First geological reconnaissance of Bawean island. 2. p. but significantly different isotope ratios from ’Cepu’ oils) De Beaufort.Probabilistic longevity estimate for the LUSI mud volcano. (2009) conclusion that drilling was not cause of E Java Lusi mud volcano) Davies. Seam is between Miocene limestones. 262-274. Wetenschappelijke Mededeelingen Dienst Mijnbouw Nederlandsch-Indie 8. Swarbrick (2010). Manga. 5..A. ('Petroleum and its occurrence in Netherlands Indies'. Geol. 6.6 MPa.. including columnar basalt. East Java. (Abstract only) (Pagerungan gas field complexly faulted and folded anticline N of Sakala-Paliat Fault System. (1851). p. Kleripan fish fauna similar to that of oil-bearing limestone in Ngembak described by Martin 1919. R.0 28 www. (1928).L. Abstracts. (‘Lusi’ active mud volcano in E Java probably caused by drilling of nearby Banjar Panji-1 exploration well) Davies. Mathias. p. p. p. R..J. possibly with Lepidocyclina flexuosa. 3-6.. 1651-1657. thickness 0.1 Ml/day is 26 years. & L.J. Tingay (2008). S. R.J. p. R. 6.Birth of a mud volcano: East Java.C.vangorselslist. B.limestone (with E-M Miocene larger forams..younger sediments. Jakarta. kompleks petrotektonik jalur subduksi Kapur Jawa Barat. (1927). Conn & C. minor coal (lignite). 14p. J. Proc. Joint systems in metalliferous areas of South Banten mainly trending ESE-WSW and SE-NW (N115° E). Berbek 2. Karlsruhe. H. p. Also map of M Miocene reef complexes) Den Berger. Assoc. Hancock. Oh (2011). Koeti 20. D. Bonvalot. Bibliography of Indonesia Geology. Vol. Gogor and Roengkoet. p. Dahrin. buried under >2 seconds TWT of mid-late Tertiary forearc deposits. p. from bathymetry and gravity surveys) De Vogel. Sunda straits. NE Java. I. M. With descriptions of fossil wood from West Java. M. Ed. 6. W. Geologie en Mijnbouw 16. Java'. P. see Van Bemmelen 1949. Dubois & V. dan Citirem. HAGI-SEG Int. followed by paraffins. Indon. L. Y. Hudson. D. Tamannai. ('The Tertiary ore vein tectonics in South Banten. (2000). Spec. p.com Sept 2016 . burning Kayangan Api ('fire-spirit') gas seep(s) in teak forest near Dander. Dubois (1995). ('Characteristics of recent and fossil Dipterocarp species'.Inner structure of the Krakatau volcanic complex (Indonesia) from gravity and bathymetry data. W sector of offshore S Java Basin heterogeneous basement with no significant internal reflectivity over large areas but some low angle dipping reflector sequences. 35 th Ann. 84-87. etc. Conv. M. 59-64. explained by formation along contact with andesite intrusive body) Deighton. tobleri. Conv. believed to be of Pliocene age (but: Hochstetter 1858 p. 37th Ann. G. Pecten and Spondylus that looked rather like Cretaceous)) De Haan.Kajangan-api of vuurwellen van Bodjonegoro. 51 p. IPA11-G-068. Bali 2010. Volcanology Geothermal Res. Dryobalanoxylon javanicum. Gogor and Roengkoet oils very heavy and no paraffins) Deplus. Thesis Technische Hochschule. Renard (1990). O. (More new. (New long-offset 2D seismic along S Java forearc basin images basement under mid-late Tertiary forearc fill. IGCE10-OP-167. This and sharp rugose basement interface suggest oceanic or transitional crust. underlain by 3+ seconds of block-faulted parallel-bedded sedimentary section.Unterscheidungsmerkmale von rezenten und fossilen Dipterocarpaceen Gattungen. With occasional sulfurous odor) Dharma. Petroleum Assoc. T.Gunung Badak. L. p. Club Conchylia Informationen 32. One prominent gold-silver vein at Cikotok strikes WNWESE.. Two basin sectors separated by a prominent structural high) Deighton. Natuurkundig Tijdschrift Nederlandsch-Indie 16.0 29 www.. Deplus. Ser. I. Harjono & J. Indon. (‘On some new crude oils from Java’. Lassal. Geol. Bandung. 31-42.G. Conn & K. 10. 321). Cikepuh-Citisuk. similar in seismic character to Mesozoic from Australian NW Shelf. p. (IAGI). E sector of offshore S Java relatively thin Miocene. H. white quartz-rich sandstones.Fossil molluscs from Java. Underlying basement too deep to image.Extension in the Sunda Strait (Indonesia): a review of the Krakatau programme. Bulletin du Jardin botanique de Buitenzorg. M. Early chemical analyses of crude oils from five NE Java wells: Koeti 4. (Early description of long-lived. (1954). Larue. C. J. Saamena (2008). Oils mostly naphtene. p.Ueber einige neue Erdole aus Java. LeRoy (2010).F. Geosciences Conf. & Y. 25 km SSW of Bojonegoro. H.. C. 320-324. 8p. 3. Harjono. imaging >3 seconds TWT of unexpected blockfaulted parallel-bedded sediments. 291 noted fossils collected by De Groot included Terebratula.. S.A. (Study of inner structure of Krakatau volcano. 1. (IPA). Proc. P. Dianto.New seismic in the Java forearc basin: implications for plate tectonic reconstructions. Diament.Infill seismic in the Southeast Java forearc basin: implications for petroleum prospectivity. Oceanologica Acta. with similarities in seismic character to Mesozoic sections from Australian NW Shelf. incl. deep 2D seismic lines along E part of Java forearc. 64. p. 495-498.) Dengler. Diament. (1859).vangorselslist. 717-729.Tertiaire ertsgangtektoniek in Zuid-Bantam (Java). and possibly fragment of Gondwanaland ('Argo Land'). 23-52. (1893). Proc. Proc.vangorselslist. 33-48. Java.com Sept 2016 . lherzolite. (Fluid inclusion analysis and geochemical fingerprinting from wells in Cepu Block. I. (Unpublished) Dirk. Best reservoir in skeletal packstones and wackestones with extensive mouldic and vuggy porosity. p. (2) lagoonal back-reef mudstonesmarly limestones and (3) narrow band of reef core coral. Basal transgressive platform limestone with several successive carbonate build-ups.. A. and with some fracturing) Djuhaeni (1994). Jawa Barat. 28th Ann. suggests all wells in hydrocarbon fields experienced early charge of waxy. et al. Sutrina (1977). 26-31. M.Hubungan antara fluktuasi paras muka laut relatif dan biostratigrafi pada endapan Neogen dan Plistosen di daerah Cepu. (1997). Natawidjaja & Praptisih (1993). IPA14-G-194.H. (1985). Conv.Facies distribution in the Nurbani carbonate build-up. Jakarta. 6. (IAGI). (IAGI).algal boundstone.S. hartzburgite. Conv. 38th Ann. Conv. Proc. p. p. Res. (Lithology. Petroleum Assoc.wackestones along E flank.B. Ciletuh area melange' with ophiolitic rocks including peridotite (dunite. D. Cekungan Jawa Timur Utara. Indon. 17p.J.H. Direktorat Jenderal Minyak dan Gas Bumi. wehrlite). E Java. Another summary of the Ciletuh melange complex of SW Java. Bandung. 1: 100 000. (1987). Jurnal Teknologi Mineral (ITB) 2. Geol. Cepu (1993). Sulistyaningrum & S. Clastics immediately above carbonates at Banyu Urip not sealing facies. Thesis. Proc.Penosogan. 2. Petroleum Assoc. (On potential play at E side of Arjuna basin in 'Main' Sst and 'Massive' Lst formations) Djajadihardja. (E-M Miocene Nurbani reef Batu Raja carbonate build-up on W flank Sunda Basin. p. W Java'. 1. & S. metamorphosed into greenschist facies) Ditya. biostratigrafi dan model sedimentasi dari Formasi Waturanda. I. Indon. 22nd Ann. 47-58. 67. Proc. p.Studi petrologi batuan ofiolit dari komplek bancuh Ciletuh. Penosogan and Halang Fms of C Java) Djuanda. ultimate top seal for Banyu Urip appears to be basal Pliocene Za1 SB) Djaja. ('Petrologic study of ophiolite rocks from the Ciletuh melange complex. Cikepuh-Citisuk and Citirem. Geol. Jakarta.Geological map of the Kendeng zone. Dev. terrestrial oil.Bouger anomaly map of Banjornegara & Pekalangan quadrangle. biostratigraphy and sedimentation model of Miocene turbiditic Waturanda. bassin Nord-Est de Java. p. 2. NE Java) Djuhaeni (1995).000. (Unpublished) (Sequence stratigraphy of the marine Neogene-Pleistocene in the Cepu region. K. gabbro and basalt.Investigation of methane venting and hydrothermal activity in the Sunda Trench. Jakarta. Djoehanah. Assoc. Southern offshore of West Java Island. Indonesie. Bibliography of Indonesia Geology. H. (IPA). p. Indon.Stratigraphie sequentielle des series sedimentaires marines du Neogene et du Pleistocene dans la region de Cepu. Cretaceous subduction complex. with some new rock geochemical data)) Dibyantono. Ed. Indon. Conv. Centre (GRDC).new insights from application of fluid inclusion technologies. (IPA). Y. Doct. (1999). 14th Ann. Universite Claude Bernard. Sunda Basin. W Java'. H. Three lithofacies: (1) reef front skeletal packstones. 41-56. 1218. Indon. Soenandar.Karakteristik perubahan litologi. S. 507-533.('Gunung Badak. Proc.Halang. Assoc. Geologi Sumberdaya Mineral 7. offshore NW Java: a new approach to an old play. Petroleum Assoc. Petersen. (IPA).The FWS Area on the F-High Trend. Most structures (except Kedung Keris) also experienced later gas charge. Lyon. Geol. displaced oil in many structures moving oil updip to ultimate trap at Banyu Urip. 1076-1090. Becker (2014). 16th Ann. Sub-commercial 1983 oilgas discovery.0 30 www. Bandung. 1:100. 2.Cepu Block hydrocarbon migration and seal evaluation . J. H.. Conv. Stratigrafi daerah Majalengka dan hubungannya dengan tatanama satuan litostratigrafi di cekungan Bogor. Maximum transgression at N7. p. 26th Ann. identified. marked by middle-neritic marl. 30. Assoc. Second TR supercycle N11 . Dev. Jawa Tengah. Sequences in NE Java Basin primarily highstand systems tracts dominated by carbonate or pelagic/hemipelagic facies. Maximum transgressive during N19-N20. Larger foraminifera from base of Wonocolo Fm at Kedungatta River. Centre (GRDC). 2.T. First TR Supercycle P15 to N11 (Upper Eocene-M Miocene). 1. indicating zone Tf1-2 age. p. (NE Java basin stratigraphy) Djuhaeni (2004). local tectonic and relative sea-level fluctuation or transgression-regression) Djunaedi.Efek tektonik dan ‘ecstasy’ terhadap terkembangan sikuen: suata contoh pada endapan Miosen Atas-Pliosen. 3. 25th Ann. 10p. Mtg. (In Indonesian. 227-252.vangorselslist. Centre (GRDC). p. ('Stratigraphy of the Majalengka area and relationships with nomenclature of lithostratigraphy units in Bogor basin'.N22 (Pliocene). 12. Cekungan Jawa Timur Utara. Ed. with maximum regression at N11 (Middle Miocene). and maximum transgression during N19-N20 (Pliocene).Stratigrafi cekungan Jawa Timur Utara: perkembangan tatanama satuan stratigrafi.Pliocene N17-N20 in Cepu area) Djuhaeni (1997). (IAGI).. ('Study of the Selorejo sand in the Cepu area') Djuhaeni & D. incl. Dev. Buletin Geologi (ITB). Proc. Res. Geol.com Sept 2016 .Problem tatanama satuan litostratigrafi endapan volkanoklastik laut-dalam di P. Mtg. Assoc. Geol. Spec. Geologi Indonesia. 19th Ann. Taufiq (2010). p. Jawa: suatu alternatif peningkatan kedalam kelompok. Larangan village. Bandung. Publ.Studi batupasir Selorejo di daerah Cepu. (Tectonic and stratigraphic effects on sequences in Upper Miocene. Conv. Cekungan Jawa Timur Utara. Workshop Stratigrafi Pulau Jawa. Indon. Proc. Martodjojo (1990). Late Miocene volcanoclastics) Djuhaeni & S. Deposited in middle neritic environment) Bibliography of Indonesia Geology. Conv. PIT-IAGI-2010-248. (‘Problems of marine volcanoclastic deposits nomenclature on Java’) Djuhaeni & S.Signifikasi aplikasi konsep stratigrafi sikuen pada endapan berumur Neogen-Plistosen di daerah Cepu. Geol. (IAGI). (‘Application of sequence stratigraphic concepts in the Neogene. 216-229. M. Sequence boundaries. p. 314-325. Jurnal Teknologi Mineral (ITB). Can be correlated with planktonic foraminifera zones N15/N16. 242-261.Djuhaeni (1996). Bandung 2003. Lombok.Fenomena stratigrafi selama Miosen-Tengah hingga Pliosen di cekungan Java Timur Utara. p. Proc. Indon. Indon. p. Geol. Jakarta. 1 (Katili Volume). (IAGI). Geol. marked by upper-bathyal Mundu Fm marls. Assoc. Geol. In: Proc. Proc. 3. Nugroho (2002).lower Late Miocene. In: Stratigrafi Pulau Jawa.Siklus transgresi-regresi dan sedimentasi Tersier di Cekungan Jawa Timur Utara: suatu kajian berdasarkan stratigrafi sikuen. Indon. (IAGI).Pliocene sequence stratigraphic phenomena in NE Java basin) Djuhaeni (2004). 95-106. & M. upper M Miocene.0 31 www. 43-60.Larger foraminifera from the bottom of Wonocolo Formation. NE Java’ Fourteen measured sections sampled for foraminifera. Assoc. Bandung. characterized by erosional surfaces caused by drop of sea-level.Pleistocene of the Cepu area. 39th Ann. Spec. East Java. Bandung. Lepidocyclina (T. (NE Java Tertiary sediments two transgression-regression (TR) supercycles. Special Ed. three species: Cycloclypeus eidae. 30. zona N17-N20 di dareah Cepu. p. 59-69. Res. part of Tuban Fm. Publ. Early transgression at P15 (Upper Eocene). Bandung. Pati District. the biggest transgression in Tertiary. C Java Majalengka-Sumedang area between Bogor and Kendeng Troughs characterized by M MiocenePliocene deep marine turbiditic facies. (M Miocene. Evolution of sedimentation from Kujung Fm up to Lidah Fm indicated relationship between sediment supply. 6. or Paciran Fm shelfal limestones. 34. Martodjojo (1989).) rutteni and Lepidocyclina B form. Basal parts of sequences may be lowstand and transgressive systems tracts) Djuhaeni (1996). 242-244.com Sept 2016 .A. Leipzig. Tuban (mixed carbonate mounds-siliciclastics. Geol.naturalis. Blankenhorn. Bandung.sp.repository. Described as Goniocidaris paraplu n. (1930). Geologische Ergebnisse der Trinil-Expedition (1907-1908). Sammlungen Geol. (Area around Slamet volcano.0 32 www. Nephrolepidina. Engelmann. (Area around and NW of Ciremai volcano. not Australian continental terrane?.nl/document/552386) (’The foraminifera from the Rembang Beds’. Brief note on stratigraphy of latest PliocenePleistocene deposits around Trinil excavation area of Selenka Expedition. 5. scale 1:100. Geometries of platform and mound margins vary through time and interval from steep and aggradational to gradual and progradational and do not have consistent windward-leeward direction) Druif. Survey Indonesia. (online at: www.E Oligocene Nummulites from Gerth Java collections.H. Die Pithecanthropus-Schichten auf Java. With 3 plates) Douville. Ngandong. and Exhib. S of Rembang in NE Java.Geologic map of the Purwokerto and Tegal Quadrangles. etc.Tertiary Nummulitidae from Java. C. Cidaroida) from the Middle Miocene of Java. 19-35. p. Lewis (2010). (online at: www. Reichs-Museums Leiden. Ed.N. 8. dispansa. along RembangBojonegoro road. Kalang Anyar.~22-15 Ma). 34-36. some of folding of Miocene rocks concentric around Slamet) Donovan.sp.K. ser. Java. vredenburgi. Jakarta 2006 Int. 4. (1912).Een nieuwe vindplaats van glaucophaan in den bodem van Java. In: M. No locality maps. ~28-22 Ma).000. D. (1932). (IPA). D and decipiens). J. p. previously studied by Verbeek (1881). Miogypsina. Survey Indonesia.Bemerkungen zur Stratigraphie der Sedimente in der Triniler Gegend. vredenburgi).. J. Bandung.Geologic map of the Arjawinangun Quadrangle. Geosciences Conf. N. 6. 6 p. 1. ~13-12 Ma). 10. fritschi n. p. stratigraphy) Douville. Serie 9..W-C Java) Djuri. C Java) Dragan... M.vangorselslist. Geol. Eocene larger foraminifera collected by Martin from Kali Poeroe in Nanggulan area. ('A new location of glaucophane in the soil of Java. p.) Doornink. E Java. with some remarks regarding its probable origin'. djokdjokartae (= megaspheric generation of N. E. D. javana. Presence of glaucophane suggests High P metamorphic 'accretionary' basement. M. from Ngampel. S of Surabaya (= just N of Lusi/ Sidordjo mud blowout. (Distinctive cidaroid echinoid spines from M Miocene Bulu Fm.Djuri. Alcheringa 34. Selenka & M. (1973). Geol. ('Notes on the stratigraphy of the sediments in the Trinil region'. (Extended Abstract) (E Java Basin three main intervals of carbonate platform and mound growth: Kujung (carbonate mound and off-mound. Petroleum Assoc.Les foraminiferes des couches de Rembang.000. Simo. (1975). omphalus. De Mijningenieur 11. Reichs-Museums Leiden. D. Naranjo & A. Tang.Quelques foraminiferes de Java.M. W...repository. p. Renema & D. HvG) Bibliography of Indonesia Geology. Miocene Cycloclypeus annulatus and Lepidocyclina papulifera n. Java.. Carroll (2006). 5 km NNW of Sale. H. N. and Wonocolo (Bulu limestone. Material from extinct mud volcano of Pulungan. 279-294. J. benevens enkele opmerkingen aangaande de vermoedelijke herkomst. 1. 1.nl/document/552404) (‘Some foraminifera from Java’. Jakarta06-SRC-03. etc.. p.L. H. E.A new species of Goniocidaris Desor (Echinoidea. Sharaf. 87-95. pengaronensis) and Orthophragmina (=Discocyclina) (D. Proc. Indonesia.naturalis. S. scale 1:100. Also Flosculinella bontangensis from Sedan in sample collected by Verbeek) Dozy.sp. H. (1916). Associated with Katacycloclypeus annulatus. Sammlungen Geol.Oligocene-Miocene carbonate mounds in the East Java Basin. (M Eocene. 267-316. Verhandelingen Geologisch-Mijnbouwkundig Genootschap Nederland Kol. Indon. sampled by Martin. (1911).W. J. With well-preserved Nummulites (N. Each interval multiple generations of carbonate growth and demise. 72-73. Dienst Mijnbouw Nederlandsch-Indie.pdf) Duyfjes. J.Duhaeni (2004).Aturia in the Upper Miocene of Java. IV Mijnbouw en Geol. (1938). Fmi.S. R. (Brief note on first reported occurrence of nautiloid Aturia aturi in Indonesia.Volcanic reservoir characterization of Jatibarang Formation base on an integrated study of petrography. Toelichting bij blad 115 (Soerabaja). 4. 20. (One of first descriptions of fossil corals from Java) Durham. (1938). 68 p. W Java. 73 p. Geol. Jaarboek Mijnwezen Nederlandsch Oost-Indie 1874.000. 136-149. (1938). R. Indon Geol. Dev. Conv. Geol.W. J. 59-70.petropep. 8. Proc. p.N. Toelichting bij blad 109 (Lamongan).de/Duyfjes36engl.Note on a coral from Mount Sela in the island of Java.Sandbox modeling of thrust-fold belt in Kendeng zone.C. GRDC Bandung Spec. p. Jakarta. 1998. 167-171. Assoc. Fathoni (2011).000. 30. scale 1:100. Indonesian Inst.Geology of the Krakatau Complex. (2006). J.Geologische kaart van Java 1:100. Discussion of PlioPleistocene geology and stratigraphy of 1930's E Java mapping by Bandung Geological Survey. in Late Miocene dark shales of Middle Bodjongmanik beds. Effendi.Geologische kaart van Java 1:100. Geological Survey Bandung Open File Report E40-88 (or 8/g/41) (Early report on Ciletuh area Pretertiary. Quart. p. Paleontology 14. rocks) Dwi Putranto.0 33 www.Stratigrafi cekungan Jawa Timur utara: Perkembangan Tatanama Satuan Stratigrafi. below beds with Lepidocyclina) Duyfjes. Science. Ernando. ('NE Java basin stratigraphy: development of a stratigraphic scheme') Duncan. (1941). Kartakusumah & S. Batavia. In: D. Proc. 35th Ann. (‘On the geology and stratigraphy of the Kendeng area between Trinil and Surabaya’. p. Batavia. G. Pekanbaru. Dienst Mijnbouw Nederlandsch-Indie. p.M. Symposium on 100 years development of Krakatau and its surroundings. P. 2nd ed. 68 p. J. (1936). Batavia. (1940). 1. 247-252. (1864). Sastrapradja et al.Geologische kaart van Java 1:100. (eds. p. Indon.000. Soc. (1874). sidewall core. In: Stratigrafi Pulau Jawa. Java. and well log. 12p. De Ingenieur in Nederlandsch-Indie. Z. 4 km N of Jasinga. Duyfjes. 160-161. A.vangorselslist.Report of the geological survey made in the southern part of the District Djampangkoelon during two trips in 1940. Dienst Mijnbouw Nederlandsch-Indie. J. J. etc. Centre Bandung.Geologische kaart van Java 1:100. ('On petroleum in the Residency Cirebon on Java') Bibliography of Indonesia Geology.Zur Geologie und Stratigraphie des Kendenggebietes zwischen Trinil und Soerabaja (Java). Petroleum Assoc. well test data. East Java Basin. Toelichting bij blad 116 (Sidoardjo). Dienst Mijnbouw Nederlandsch-Indie. 6.000. Duyfjes.Iets over aardolie in de residentie Cheribon op Java. Sect. (IAGI). Duyfjes. Bronto (1985). IPA11-G-166. Duyfjes. 79 p. Effendi (1974). Conv. Batavia. J. p.Geologic map of the Bogor Quadrangle.) Proc. Publ. English translation at www.000. 2.com Sept 2016 . (1938). & A.. J. Toelichting bij blad 110 (Modjokerto). Ed. (IPA). Res. 35th Ann. J. (On reservoir properties of Eo-Oligocene Jatibarang Fm fractured volcanoclastics in NW Java basin) Everwijn. Indon. C.Kemagnetan purba daerah Ciletuh. Prasetyadi (2012)Ichnofacies study of Oligo-Miocene volcanoclastic turbidite based on outcrop data in Ngalang River. Indonesien). Pfeiffer (1965). Stratigr. Geophysics 14. p. Maulana & E.W. 533-562. Jawa Barat pada Mesozoikum Akhir: studi pendahuluan untuk rekonstruksi kemagnetan purba daerah Jawa Barat. Indonesia. E. Han. 14Franchino. Preferred model is N-directed thrust fault) Febriani.Fahlevi. p. Conv. Ed. Indon. Asmoro.. (2014). Bellini & S. (‘The fossil corals from the surroundings of Trinil’. (IAGI). ('Paleomagnetism of the Ciletuh area. I. Indonesia.Remarks on the age of the limestones of southeastern Java (Indonesia). 37th Ann. Conv. F. 131-143. P. Rivista Italiana Paleont. D. Proc. West Java. F.Z. 3-4. p. A. Hashimoto & Y. p. 29. & D. Budiman. R. Jahrbuch 83. (Using satellite data to detect subsidence around E Java Lusi mud volcano. B. Sartorio (1991). Proc. Yulianto. 1740-1750. 68-79. Geologie en Mijnbouw 13. H. R. F. 10-15. (‘Fundamentals of the morphology. (probably Late Pliocene.vangorselslist. Geologie und Hydrogeologie im Karstgebiet Gunung Sewu (Java. Limestone gently folded and dips slightly to SE. I. (1913).H. Dario (1990). K.G. Assoc.H. Central Java.Subsidence associated with the LUSI mud eruption.. active since May 2006) Gaffar. On tropical karst in massive reef limestone of Miocene Wonosari beds of Gunung Sewu region along S part of C and E Java. p. Geol. Geol. IPA13-G-076.Mangaanertsen op Java.S. Conv. Drainage mainly subsurface) Franchino. Repeated common development of Zoophycos and Nereites trace fossils in all fine-grained beds suggest quiet conditions between turbidite deposition events) Fardiansyah. geology and hydrogeology in the Gunung Sewu karst area.chiba-u.K.D. Buletin Geologi (ITB) 20. (1998).Subsurface structure of the Cimandiri Fault Zone. V.. (1951). Rohmana & C. ('Manganese ores on Java'. Proc. M. E. Assoc.Preliminary notes on the age of Miocene limestones from South East Java to Sumbawa. Gaffar (2014).ll. (IPA). Hattori. Marine Petroleum Geol. Indon.pdf) (Gravity and magnetotelluric modeling around WSW-ENE trending Cimandiri Fault Zone. study for paleomagnetic reconstruction of the W Java area') Bibliography of Indonesia Geology. 97. Indonesia. P.. Febriani. p.M. Yoshino. p. which runs between Bandung and Pelabuhan Ratu. Gunung Kidul. 311-365. Nurdiyanto. With some remarks on Tertiary stratigraphy) Flathe. p.E Pleistocene) Fermin. M. Galena & C. Thesis Chiba University. 2. Robba & D. Prasetyadi (2013). Widarto. Yogyakarta. E. Effendi. East Java. Palaeontographica 60. 2012-SS-04.com Sept 2016 . investigated by SAR interferometry.Control of syn-contractional sedimentation of Kendeng fold thrust belt: new perspective analogue to evaluate risk associated with trap formation. (Age of Wonosari Lst in eastern Southern Mountains of SE Java with Flosculinella bontangensis (Lower Tf larger foram stage= planktonic foram zone N8-N9 or slightly younger)) Fukushima. L. N. 1-154. R. p.jp/metadb/up/thesis/SGA_0071. Mori. Petroleum Assoc. Yogyakarta: an explanation the dynamic process from Upper Sambipitu Formation. (IAGI)..Die fossilen Anthozoa aus der Umgegend von Trinil. West Java. 629-638. 27th Ann.Audio frequency magnetotelluric imaging of the Cimandiri Faullt. 5p.. Kano (2009). W Java at end-Mesozoic. (Volcaniclastic turbidites of E Miocene Sambipitu Fm are distal turbidite facies on slope to basin floor. Felix. Terrain here called sinus karst because of sinusoidal contour of rounded hills which rise 30-70 m above floor.N. Jakarta.A. 41st Ann. (online at: http://mitizane. p. Indonesian J. A.0 34 www. J. Anom. Purnamasari. Java’. J. Geol.C. 6.Grundzuge der Morphologie. Y. 1-11. 1. A. & N.The stratigraphical distribution of the larger foraminifera in the Tertiary of Java. Geologi Sumberdaya Mineral 10. Gerth. With one plate) Gerth. Martin. Martin. (1929). Sammlungen Geol.Geological map of Java and Madura. p. 2. CCOP Techn.M. Geological Survey of Indonesia (1963/1977).Penampang geologi sepanjang Jawa Tengah. Verbeek.Genesis of cockade breccias in the tectonic evolution of the Cirotan epithermal gold system. Good example of mineralized cockade breccia. R. S. Verbeek und von anderen bearbeitet durch Dr. K-Ar age of adularia of Cirotan vein 1. Dev. (Pliocene Cirotan gold deposit up to 25m thick and hosted by Pliocene microdiorite (4. Amsterdam. etc. Schiller. Siemers & J. Geol. 497-520. K. Syaifudden.T. p.Echinoidea. R. Milesi (1996). Petroleum Assoc. (IPA). E.A. van Gorsel (1990). 387-445. Martin. Bull.) 1.Gafoer.com Sept 2016 . Reichs-Museums Leiden (N. in right-lateral strike-slip fault that evolved to normal fault at end of development. Bandung. 392-395. H. Marcoux & J. 7-12.Geological map of Java and Madura. 111. (1930).knaw. (online at: www. Rutten and others.. 86 p.000.Miocene outcrops of Cibadak. (1921).M. Bayah. p..) 1. Nederl. Kon. With 3 plates) Gerth. Canadian J. In: Die Fossilien von Java auf Grund einer Sammlung von Dr. Ratman (1998).vangorselslist. Martin's 'Fossils of Java' series.Ein neues Eocaen-Vorkommen bei Djokja auf Java. Ganie. Sheet II.P. Akademie Wetenschappen.D. A. Ed.F. self-organizing system in fault zone) Geological Survey of Indonesia (1963/1977). S.. H. (online at: www. West Java. 4. Rajamandal Limestone W of Bandung with only Coeloria singularis Martin (= only Late Oligocene corals known from Java?) Typical Pacific assemblages. Proc. Breccia formation of hydrothermal origin.1 Ma. p.M. (4-day fieldtrip to Eocene. J. 33. scale 1:500. Centre (GRDC). 17-32.0 35 www. in active. Reichs-Museums Leiden (N. Martin. K. 19.naturalis. (Short paper with larger foram distribution table. Sammlungen Geol.Echinodermata. Geological Survey of Indonesia (1963/1977). 591-599. In: Die Fossilien von Java auf Grund einer Sammlung von Dr.repository. A. Proc. p.000. ('Geological cross section from Central Java to West Kalimantan') Gafoer. Garrard. with descriptions of ~42 species of EocenePliocene echinoids from Java collections of Junghuhn. p.Geomorphological features in the Eastern Sunda Trench. Bandung. B. M.D. IIB.pdf) Bibliography of Indonesia Geology.IPA Post-Convention fieldtrip. (online at: www..Geological map of Java and Madura. (2000).SouthWest Java.000. H. 6. Jebrak. C. Earth Sci. West Java. 2nd ed. Superman & E.naturalis.repository.5 Ma). Ciletuh and Pelabuhan Ratu areas) Genna. East Java. Bandung.nl/document/552457) (Part of K. 4 th Pacific Science Congress.Kalimantan Barat.Geological map of western part of Java. Indon. 33. not much new) Gerth. Res. Bandung.dwc.nl/document/552456) (Tertiary echinoids chapter in K. R. Eocene (Nanggulan) and MiocenePliocene corals from collections of Verbeek.F. Sheet I. Verbeek und von anderen bearbeitet durch Dr. 2. H.000. Martin (1891 and later) series on Tertiary fossils of Java. scale 1:500. Sheet III.nl/DL/publications/PU00015901.7±0.5 Ma) that cuts Miocene volcano-sedimentary series with rhyolitic ignimbrite (9.T.Coelenterata-Anthozoa. 93-102. scale 1:500. Honza (1987). Central Java. 1:500.M. p. D. (1922). 3. (‘A new Eocene locality near Yogyakarta on Java’. Gertisser. Unconformities between Pretertiary and Paleogene and between Paleogene and Neogene reflect Tertiary orogenic phases: main phase at end of Neogene. S. 196. Composed mainly of fresh-water diatoms Cymbella.000 years BP and ~31. p. Excursion D1. P.000 years BP in S part of basin. Palaont. Rundschau 22. (1854).e. The Hague.R. p.Neue Beitrage zur Kenntnis der Korallenfauna des Tertiars von Java. (1931). Plains of Darma. C. Illustrated in Junghuhn (1850) and thought to be of Miocene age by Verbeek and Fennema (1896) and Martin (1914). Oppenoorth (1929). H. Little stratigraphy and locality information) Gerth. p. Fort. Mieling. 60m) zones P15-P19 (Late Eocene-Early Oligocene)) Grandjean. Java 1929. I. With cross-sections. 3. ('On the Tertiary flora of Java') Grandesso. Fourth Pacific Science Congress. Reinhold (1933). Borobudur temple was never buried under volcanic material during historic times) Goppert. nach den Entdeckungen des Herrn Fr. Padova.W. 1-7. Die Korallen des Eocaen und des alteren Neogen. (online at: http://books. ('The geologic framework of Java'.com/books/ ) ('The Tertiary flora of the island of Java. M.R. White limestone outcrops of Gunung Gamping. i. collected by Junghuhn.Borobudur. 3. Nitzschia and Gomphonema. Typical reefal limestone with common coral. 245-264. stratigraphic columns and tables) Gerth. 3-4. R. H. Several generations of paleolakes in Borobudur basin and Borobudur Temple probably stood by water body. a basin under volcanic influence: 361.Die Tertiarflora der Insel Java. Volcanic activity strongly influenced evolution of basin.F.000 years BP to present. F. (Borobudur basin N of Yogyakarta City. H. Volcanology Geothermal Res. J.. ('The diatomaceous earth of Darma in Cirebon'. different facies from nearby Nummulites limestone localities of Jiwo and Nanggulan) Gerth. Bibliography of Indonesia Geology. 177186. described and placed in context of total flora of the Tertiary period'. C. 1864. De Mijningenieur 14. (1864).The Upper Eocene Nanggoelan beds.google. and species from Oligo-Miocene of Rajamandala. Murwanto (2010). 40-46. p. Lahitte. J. surrounded by three andesitic volcanoes: Merapi. & W. Ed. Geol. (1933). Wassmer.vangorselslist. Neues Jahrbuch Mineral. Serayu and Rembang areas. & T. 6. Degroot & H. S. M. Only three areas of Pretertiary outcrop. SW of Kuningan. Navicula. Wetenschappelijke Mededeelingen 25. S of Darma. Today’s active volcanoes appeared in Quaternary. Hadmoko. 188-200. Two major volcanic deposition events up to tens of meters thick at ~119.com Sept 2016 . 200m) with planktonic foram assemblages of zones P11. P. p.0 36 www. Dienst Mijnbouw Nederlandsch-Indie. (2001). Descriptions of four species of solitary corals from Nanggulan. 53.F. 23-28. 4 km W of Yogyakarta. p. below thick cover of Tertiary sediments. Lavigne. H.B. P.De diatomeeenaarde van Darma in Cheribon. Junghuhn beschrieben und erortert in ihrem Verhaltnisse zur Gesammtflora der Tertiarperiode. S of Ciremai volcano.Uber die Tertiarflora von Java.P14 (M Eocene). p. The corals of the Eocene and older Neogene'.R. Gomez. I. but abundant Pellatispira and some Nummulites demonstrate Late Eocene age. Junghuhn.. p. Merbabu and Sumbing. Charbonnier. H. Synedra. ('New contributions to the knowledge of the coral fauna of the Tertiary of Java. V. lake deposits with interbedded fine Ciremai tuffs and ~15-40cm thick beds of white diatom earth. (Nanggulan section W of Yogya: lower part (Kalisonggo Mb. Geol. First description of Tertiary plant leaves and petrified wood fragments from Java.Contribution to biostratigraphy of the Nanggulan Formation (Java) based on planktonic foraminifera. Melosira. upper part (Seputih Mb. Janin. W of Yogyakarta.Der geologische Bau Javas. 1-169. 1-45. Memorie Scienze Geol. after discoveries of Mr Fr. Mainly from 3 localities) Goppert. 287-295.CP 16 (M. S. J.) (First paper on calcareous nannofossils of ~70m thick section of Wungkal Fm.dwc. p. AAPG/ IPA Int. & E.B. Jakarta.go.Potensi hidrokarbon di sub-cekungan Banyumas. Akademie Wetenschappen. A. (Calcareous nannoplankton zonation of Nanggulan Fm. Proc. S. Jawa Tengah bagian selatan.jp/. 20km E of Yogyakarta. Johnstone. 8. 1096-1104. Geol. on the South coast of Java. M.J. JCM2011-474. Indon.. Makassar. Spiker (1932). J. Japan (Chishitsugaku Zasshi) 106. Haanstra. 5. (online at: www. Fauzan (2015).. (1889). Asch (2014).jst. Geosc. Jurnal Teknologi Mineral (ITB) 8. Discoaster barbadiensis and Cribrocentrum Bibliography of Indonesia Geology. Stevens & D.5E). Proc. R. Jakarta 2006. U. Central JavaIndonesia. 36th HAGI and 40th IAGI Ann. Setyoko (2011). marls and quartz sandstones. Widodo (1982). (IPA). Ed. N Java’. H. Images show asymmetrical crustal structure and can be interpreted to show low-velocity continental fragment or remnant of Woyla Arc in south coastal area (E of 110°E). Syaiful.P. Scottish Geogr. 4.G. which has been accreted to Sundaland margin. Amsterdam 35. ('Hydrocarbon potential of Banyumas sub-basin. Banyumas Sub-basin numerous oil and gas seeps. 2. Ruswandi & Y.Early Oligocene/CP 16c. Oil from seeps of fluvio-deltaic kerogen origin) Guppy. A. of which 17% Recent) Haberland. Bayat area. p.P. Indon.Calcareous nannoplankton biostratigraphy of the Nanggulan Formation. 20p. Drevet. 10. Soc. p. Sapiie. A. Eocene-Oligocene boundary recognized by last occurrence of Discoaster saipanensis. Molluscs 47 species. 5 p.Karren carbonate rocks. likely reflecting ophiolitic. J. Used in Java sugar industry for filtration raw cane sugar solutions and insulation of pipes) Gross. A.age probably Pliocene. B. T. J. Range from Late Eocene/CP 14. Bohm & G.Paleostress analysis of Grindulu Fault in Pacitan and surrounding area its implication to regional tectonic of East Java. zones CP 13. p. p. Source rock identified includes Paleogene of Nanggulan and Late Miocene of Halang Formations.Uber Fossilien aus dem Altmiozan von Rembang (Nord Java).Calcareous nannoplankton of Paleogene sediment from the Bayat area.com Sept 2016 .. (Extended abstract of ExxonMobil NE Java basin study) Gultaf.C. With plate reconstructions of Sundaland region. O.5-111. Proc. Grey and brown-grey clays interbedded with Lepidocyclina limestones. E. L. but unsuccessful.knaw.journalarchive. Sulaeman. E side of Gunung Pendul.. Johnstone (2006)A new look at the East Java Basin using a genetic basin analysis approach. (Seismic travel time data confirms accretionary nature of crust in C Java segment of Sunda subduction zone (109. 96. Petroleum Assoc.Preliminary note on the geological structure of the Sindang-barang district. Bachtiar & A.0 37 www. M. Kon. (online at: www. 39th Ann.East Java Microplate since Cretaceous (80 Ma)) Guntur. C Java. arc rocks and metamorphic rocks of Meratus assemblage subduction melange) Hadi.Field trip guide book Prupuh. J. IPA15-G-059..vangorselslist.. McPherson.. Joint ASCOPE/ CCOP workshop on hydrocarbon occurrence in carbonate formation.Recent paleostress history along SW-NE trending Grindulu Fault in Pacitan District in Southern Mountains of E Java. Asian Earth Sci. Central part of Java crust lower than average crustal velocities. Petroleum Assoc.L Eocene)) Hadiwisastra. H. 651-658. 6. (Descriptions of Early Miocene Prupuh and late Miocene Karren limestone formations for 1-day fieldtrip) Hadiwisastra. Samuel & H. S part of C Java'. (IPA). Kumai (2000). Nederl. Proc. Central Java. Study of molluscs collected by Erb from Ngrayong Beds at N side Lodan saddle. Conv. C.Accretionary nature of the crust of Central and East Java (Indonesia) revealed by local earthquake travel-time tomography. & H.. (2001). 34p. Conv. Sriwijaya. 73-76.pdf) (‘On fossils from the Early Miocene of Rembang.nl/DL/publications/PU00016326.M. Conf. (Analysis of Cretaceous. 9 p. Surabaya 1982.. Several wells drilled. Inter-University Seminar House of Kansai. also malachite. (IPA). B. K.1-6. IPA07-G-035. Conv.P. which is carbonate-cemented and brittle) Hakiki. Subzone CP 16c in upper part of section identified by co-occurrence of Reticulofenestra umbilicus. IGCP-355. Associated rocks are basalt. 137-144. Conv. Cottam (2007). 1-13. p.. Geosc. upper part (Totogan Fm) Oligocene age) Hadiwisastra.osaka-cu.media. Hadiwisastra. and also in basal 50' of clastic section above top carbonate.Depositional setting and distribution of carbonate facies of Wonosari Formation. Sapardina (2015). F. R.reticulatum. Jakarta. 37th Ann. W Java'. (Losses of drilling mud while drilling Oligo-Miocene carbonates in Banyu Urip Field mostly in tight rock of drowning cap of carbonate reservoir.H. Excellent pressure connectivity throughout reservoir from carbonate reservoir to overlying clastic section. Musgrove. East Java. onshore East Java. Sulistijo (2013). F.Biostratigraphy of calcareous nannofossils in the Paleogene chaotic sediments in the Karangsambung area.vangorselslist.P. J. thought to be horizontal fault zone) Hadiyat. (IPA). with low porosity rim of ~8-9% (a gradual diagenetic transition caused by less fresh-water dissolution) Hakiki. Varnai. Early diagenesis associated with exposure to fresh water at sequence boundaries creates cementation and dissolution over 50m cycle. Jakarta.Oligo-Miocene carbonate reservoir quality controls. Indon. p. 1-17. E. Sci. Thesis Institute Teknologi Bandung (ITB). 39th Ann. Not much detail) Hall. Siregar. S. Symp. galena and sphalerite. Hakiki. Central Java. Bibliography of Indonesia Geology. Procedia Earth and Planet. Thio & S.jp/infolib/user_contents/kiyo/DB00010785. Conv.M.A. Indon. pyrite. Siregar (1979). 2. chalcopyrite. p. 36th Ann. Osaka City University. Kumai (2000). A.. Central Java. Utomo & Suwijanto (1994). Proc. Blitar. Proc. black shale.R. Cyclicargolithus floridanus and Reticulofenestra bisecta) Hadiwisastra. J. S Mountains of Java. Clements.. 750m wide zone of cataclastic rocks. S.A new interpretation of Java’s structure. Smyth & M. 15p. mica schist exposed N of Cihara granodiorite.Y. 6. which is characterized by fractures and hydrothermal leaching. NE Java refined shape of M Miocene Drowning Cap. Indonesia. 43. F. 31st Ann. p. Petroleum Assoc.. 6. Average porosity in carbonate platform interior 27%. Late burial diagenesis also important. Handyastuti (2013).Banyu Urip field development. S. incl. Indon. p. graywacke and brecciated tuff. Neogene Evolution of Pacific Ocean Gateways. (1982). 2. A.Geologi dan kemungkinan-kemungkinan minyak dan gasbumi daerah Wangon Jeruklegi Jawa Tengah.Understanding Oligo. T. (New development wells at Banyu Urip carbonate platform field. S. Int. Y. Conv.. IPA15-G-228. dominated by red algae. p. hornblende schist. p.ac. & B. Ed. 2131. Ditya & D. F.0 38 www. Jawa Barat. & H. (IPA). S. Petroleum Assoc.Suatu tinjauan mengenai batuan metamorf di daerah Cihara. Musgrove.result of drilling 32 wells. Bayah. Presence of sulphides. S. Jakarta. Jakarta. Simo. Drowning phase up to 300m thick. (On polymetallic mineralization in Seweden district. 64-69. Sekti.pdf ) (Paleogene of Loh Ulo mainly olistostromes with mudstones and scaly clays with exotic blocks. granodiorite and dacite in E-W trending. Fullmer & F. ('Some views on the metamorphic rocks in the Cihara area. Indon. A. Kobe. demonstrated by vugular dissolution that cross cuts stylolites) Hakim. Japan.deposition and diagenesis study of Banyu Urip Field. Proc. H. Suparka. In: Proc. R.A. 1. Petroleum Assoc. Riset Geologi Pertambangan (LIPI). P. Actinolite chlorite schist.. (Oligo-Miocene carbonates of Banyu Urip Field almost 1000m aggrading phase composed of repeated 50m thick shallowing-upward cycles. Xiao & U. Musgrove (2012).Miocene carbonate drilling losses causes and achieving zonal isolation. Petroleum Assoc.com Sept 2016 . Bayah. F. Proc.. Lower part (Karangsambung Fm) with late M Eocene NP16-NP17 and reworked Upper Cretaceous nannofossils. 23p. (IPA). IPA12-G-037. (online at: http://dlisv03.Integrated exploration method to determine Cu prospect in Seweden District. IPA13-G-193. Econ. (Three-year GPS observation on SW Java suggest coastal uplift of uplift of 1. reflecting recycling from earlier eruptions. (online at: http://ocean. 6. L (2010). (1980). 22-31. Indonesia. W. (online at: http://journal.2-2. 2.S.Kendali stratigrafi terhadap penyebaran batubara dan serpih bitumen di Karangbolong. Sci. Thrusting in S Java displaced Paleogene volcanic arc rocks N by >50 km and eliminated flexural basin in W Java. overlain by Late Miocene turbiditic limestones) Hantoro. H. 2. N.php?li=article_detail&id=459) (On thermal modeling of subducting plate below Java and tectonics of overriding plate. Peaks in distribution of dates similar to E Gondwana basement ages and Permo-Triassicmodern sediments from W Australia. 127-134.re.. In E Java volcanic arc thrust onto thick volcanic/sedimentary sequence formed N of arc in flexural basin due largely to arc loading. J.. Indonesia. Environm.2-No. J. exploration for metallic mineral found anomalous zones in Gempol for Cu. and Cretaceous basement is exposed.com Sept 2016 .(Paleogene arc volcanoes acted as load which caused flexural basin to develop between Sunda Shelf and S Mountains Arc. Abidin & I. Three distinct structural sectors in Java. overthrust volcanic arc largely removed by erosion. (online at: www. Smyth. indicating potential of rupture propagation to shallow part of plate interface and generation of large tsunami) Hantoro. 42 A. close to Cretaceous basement exposures (2) Cambrian-Archean (500-750 Ma.Interplate coupling model off the southwestern coast of Java. Central and E. Env. Meilan (2014).pdf) ('Turbidites of the Kerek Formation'. based on continuous GPS data in 2008-2010. Econ.Geochemical exploration for metallic mineral resources on the Pacitan District. & S.kr/downfile/volume/kseeg/JOHGB2/2012/v45n1/JOHGB2_2012_v45n1_1. p. suggesting S Mountains volcanoes sampled deep crust of continental Gondwanan origin beneath E Java.0 39 www. Riset Geologi Pertambangan (LIPI) 2.) 44. J. Geochimica Cosmichim.ac. Econ. Econ.itb.Z.K. J.vangorselslist. Sagiya. Kimata.Zircon age constraints on the basement in East Java. particularly in W Java) Hamilton. F. (Korean Soc.or. 18. T.H.kisti.near E and C Java border). 27-44. (1979). Jawa Tengah.geotek. Hall & P. A225 (Goldschmidt Conference Abstract) (Inherited zircon U-Pb dates in E Java volcaniclastics mixed populations.Turbidit pada Formasi Kerek. 900-1250 Ma and 2500-2700 Ma). Geol.K.id/wp-content/uploads/2016/02/Riset-Vol.pdf) Bibliography of Indonesia Geology. Efendi.confined to S Mountains Arc. East Java. Env.D. Age of subducting lithosphere under Java increases from W to E. (online at: http://pustaka. (Korean Soc. Acta 70. Jompong for Au. S Mountains. 1-8. p. J. Ed.lipi. P. p. Kinny (2006). East Java. Choi (2011).koreascience. Geol.3-No. Suppl. Indonesia. Amount of thrusting diminishes from W to E Java. C Java displays deepest structural levels of N-directed thrusts.14 mm/yr. Letters 401. Indonesia.go. ITB J.H.id/index.lipi. C Java. possibly related to differences of thermal structure of subducting plate) Hanifa. and horizontal slip deficits. p. different from Cretaceous accretionary basement of W and N Java) Han.S. p. in limestone layers of Late Oligocene Arjosari Fm) Handayani. W.geotek. Inherited dates peaks at: (1) Cretaceous. 159-171. & S.kr/ ) (Pacitan district in S Mountains of E Java.Ore geology of skarn ore bodies in the Kasihan Area.go. In W Java arc thrust onto shelf sequences of Sundaland margin. H. p. (online at: http://pustaka.restricted to W and NW of E Java. Geol. Geol.pdf) (Copper-zinc-bearing skarns in Kasihan area (Pacitan District. from about 90 Ma to 120 Ma.) 45. Choi (2012). Volcanoes of W Java generally closer to trench (~240 km) than volcanoes of E Java (~290 km). Riset Geologi Pertambangan (LIPI) 3. Kerek Fm of NE Java Kendeng zone M Miocene turbiditic volcanoclastics.Thermal structure of subducting slab along the Java Arc and its significance to the volcanoes distribution. 1. Traps beneath overthrust arc offer new hydrocarbon exploration possibilities. Earth Planetary Sci. W. 1.id/wp-content/uploads/2016/02/Riset-Vol.J. p. R. Kasihan for Cu-Pb-Zn) Han. 1-10.R. Environm.4.1-2-2-. In W and E Java overthrust arc preserved. basaltic lavas (11. K-Ar dating shows age of andesite and Cibaliung tuff 11. youngest 0.0 40 www. Setijadji. In Argosari area thin oil shale (45-150cm) at top of Old Andesite Fm. Arnoldy (2015). S. Central Java'.Timing of the mineralization and volcanism at Cibaliung Gold Deposit. (2009). 14. 2 (Geol.9±0. C Java) Harjanto. 85-96. Borelis pygmaea n. SE Java.Magmatisme dan mineralisasi di daerah Kulonprogo. Java. Heterostegina borneensis.jp/naid/110004624567/en) (Late Oligocene larger forams collected by Yabe in 1929 from limestone cliff at N foot of Pasir Pabeasan. Resource Geology 54. IPA15-SG-145. (IPA). unpublished). p. 114-123. with absence of Spiroclypeus and Miogypsinoides more likely Te1/ Early Chattian?. In: Proc. p. Ed.8 Ma and 4. (online at: http://jurnal.Long-term volcanic evolution surrounding Dieng geothermal area. Watanabe (2010). A. J.Studi batuan volkanik dan plutonik Tersier di daerah Pacitan.ac. hosted by M Miocene Honje Fm andesitic.com Sept 2016 . p. Oldest rocks erupted at ~3. Bali. W Java (Rajamandala Lst).07 Ma. 27p.2-10. A. (1930).). Indonesia. Sanematsu. Indonesia. (2011).E. Volcanic edifices grouped into 3 stages: pre-caldera (~3 Ma). World Geothermal Congress 2010. 2. Teknologi Bandung (ITB). Proc. Indra.4 Ma) and covered by Pliocene Cibaliung tuff (4.F.Note on foraminifera found in the Lepidocyclina-limestone from Pabeasan. 6p.Petrologi dan geokimia batuan volkanik di daerah Kulunprogo dan sekitarnya daerah istimewa Yogyakarta. Indonesia.nii. Paleocurrents mainly NW to SE) Hardjadinata. Ilmiah Magister Teknik Geologi (UPN) 4. L. Imai & K.9 Ma)) Harijoko.3D modeling of Miocene Cinambo turbidite sandstone based on surface data in Cadasngampar Area.A. and Upper Pacitan Fm basalt-andesite-dacite dated as ~17. R. ser. (E-M Miocene Cinambo Fm submarine fan deposit in Bogor Basin.andesite in Lower Pacitan Fm.392 ± 1. Jakarta. Resource Geology 57. Dokt. Rept. respectively. 1932. A. S Mountains.976 Ma!)) Harijoko.4 Ma (17. Sumedang District. p. 34. 1. Dissertation Inst. (Unpublished) ('Magmatism and mineralization in the Kulunprogo area'. A. R. W of Tagogapu. post-caldera I (~2.sp. (M-L Miocene (11. (Dieng Volcanic Complex in C Java on back side of Java Quaternary arc. Y. Western Java. 187-195. Ohbuchi. Prihatmoko & K. J. Petroleum Assoc.7 Ma.vangorselslist. Motomura. 40Ar/39Ar dating show mineralization ages from 11.P. ('Study of Tertiary volcanic and plutonic rocks in the Pacitan area'. 39th Ann. Saefudin (1994).6 Ma) epithermal gold mineralization in Cibaliung area.id/index. 2.Characteristics of the Cibaliung gold deposit: Miocene low-sulfidation-type epithermal gold deposit in Western Java.. Indon.upnyk. & I. Gold-bearing quartz veins hosted by Late Miocene Honje Fm basaltic andesite. Tohoku University. Magmas cyclically evolved from basaltic to dacitic composition) Harjanto. (Cibaliung low-sulfidation epithermal gold deposit at ~70 km W of Bayah dome. formed in continental environment (originally discovered by Keil. Conv. Watanabe (2007). H.('Stratigraphic control on the distribution of coal and oil shale in Karang Bolong. dated as ~30. comparable to gold host rocks at Bayah dome. K. Include picrite basalt. 2-19. HvG)) Haqqi. Imai & K. SW Java. 6. H. Watanabe (2004). With Lepidocyclina (N).8 Ma. Pratama..S. (online at: http://ci. S. at transition from underlying nonmarine to overlying marine facies) Hanzawa.6 Ma. Large collapse structure with 17 post intra-caldera eruptive centers. Sci. Duncan. At younger horizon E Miocene coal. p. A.ac. A. Eulepidina. (This assemblage. Cibaliung deposit is oldest epithermal gold deposit yet discovered in W Java) Harijoko. 13p.4±0. Wibowo. West Java.D.2-10. 1. A.1 Ma) and post-caldera II (<1 Ma).php/mtg/article/view/274/237) Bibliography of Indonesia Geology. Geologi Sumberdaya Mineral 4.6 Ma. Abbas & V. Y. K. A. Uruma. Volcanic rocks NE of Pacitan in S Mnts of E Java are part of 'Old Andesites' island arc volcanics. A. Microearthquake survey recorded 300 local events. (On palm-like pollen types from M Eocene lignite in lower Nanggulan Fm at Watupuru River. C. M. 8. Ilmu Kebumian Teknologi Mineral 22. De Mijningenieur 10. J. p.A. p. Wirasantosa (1995).E. etc. (2) in graben in W part of strait. C Java. W Sulawesi and India subcontinent) Harloff. also containing peridotite/ serpentinite. E. p.Detection of magma bodies beneath Krakatau volcano (Indonesia) from anomalous shear waves. L. Sabrier (1993).E Miocene diorite. 153-182. Likely age of thrusting Late Cretaceous.T. 17-30. De Mijningenieur 10.. 57-61. Ed.S. (1929).upnyk. Yogyakarta region'. H. associated with epithermal quartz veins with gold mineralization) Harjono. Thrust direction from S to N. (Corrected Table 3 of Sunda Strait earthquake focal mechanisms in Harjono et al.E. Diament & M.. andesite to dacite from low-K to calc-alkaline series..M.. Central Java’. Typical island arc affinities) Harjanto. dacite and diorite. H. H.Ultrastructural studies of some fossil and extant palm pollen. Nanggulan. Morley (1995). M. (1929).. Sediment complex isoclinally folded. intrusions of Late Oligocene.Over radiolarienhoudende gesteenten in het Praetertiair van Loh Oelo (Midden Java). p. Diament. (Sunda Strait between Java frontal subduction and Sumatra oblique subduction. marble. and (3) in diffused zone to S of Sumatra. Nouaili & J.Voorloopige mededeeling over de geologie van het Praetertiair van Loh Oelo in Midden-Java. Oligocene-Miocene volcanic rocks in Kulon Progo('Old Andesite Fm') consist of interbedded volcanic breccia. Compositions basalt. M. Volcanol. Zen (1991). Yuwono (2011). Suparka. Also present in E Java Sea. Two monosulcate forms (Iguanurinae) are compared to fossil form-genus Palmaepollenites kutchensis and Palmaepollenites sp. Geothermal Res. 39. Dubois.('Petrology and geochemistry of volcanic rocks in the area of Kulon Progo and surroundings. andesite. A. 3.vangorselslist.. daerah istimewa Yogyakarta.Seismicity of the Sunda Strait: evidence for crustal extension and volcanological implications.pdf) ('Neogene epithermal gold deposits in the Kulon Progo area and surroundings. C. & R. andesite.Correction and addition to "Seismicity of the Sunda Strait. Tectonics 10. (‘Preliminary note on the geology of the Pre-Tertiary of Luk Ulo in Central Java’.800m wide.id/351/1/Paper%20JIK%20UPN%20Des%202009.ac.1 Ma??). and dacite of Kaligesing/Dukuh Fm (K/Ar age ~8. D. Yogyakarta special region' In S mountains W of Yogyakarta. Crustal earthquakes in the Sunda Strait area occurs in three main areas: (1) beneath the Krakatau complex.A.J. Harjono.). p. Complex overthrust by two complexes of crystalline schists (with glaucophanite. Sunda Strait is in extensional tectonic regime as result of NW movement of Sumatra sliver plate along Semangko fault zone) Harjono. Likely presence of nappe structures with 15km or more displacement. M. (‘On radiolarian-bearing rocks in the Pre-Tertiary of Lok Ulo. tuff. eclogite. C Java. Diament. with mylonitized thrust surfaces. Rev. S. p. Tectonics 12. schists. Larue & M. 133143. 6.0 41 www. and the reconstruction of the biogeographical history of subtribes Iguanurinae and Calaminae. 787790. almost all dipping to South. p. Kyoto. Cretaceous and igneous-metamorphic complex unconformably overlain by M Eocene and younger sediments) Harloff.Neogene opening of the Sunda Strait: constraint from gravity data. Harjono. H. M. 2. J. 240-242. IGCP-355.Endapan emas epitermal berumur Neogen daerah Kulon Progo dan sekitarnya. Chert with radiolarians in deep water limestone) Bibliography of Indonesia Geology. J. Cretaceous sediments with Orbitolina and radiolarites 'intruded' by dynamo-metamorphically altered gabbrodioritic intrusive. (online at: http://eprints. Third pollen type referred to Dicolpopollis malesianus (Calaminae). Palaeobotany Palynology 85. 335-348. 172-177. 1991) Harley. Asikin & Y.com Sept 2016 . 18km long. p. Dubois (1989). evidence for crustal extension and volcanological implications" by Hery Harjono et al. Kalisonggo. Dahrin & S. In: Proc.Oji Seminar on Neogene Evolution of Pacific Ocean Gateways. C. Magetsari & C. Common boudinage structures) Harsolumakso. Discocyclina. No evidence found for postulated presence of Quaternary lake around Borobudur temple complex) Harrison. Geol. p. (New copper-gold porphyry discovery in East Java) Harsolumakso.0 42 www. R.I. With core of Pretertiary rocks of Luk Ulo complex. (MGEI) Ann. A.E. In: Sampurno et al. 190-215..000. red radiolarites.J. Pannekoek (1933). Kebumen. N.I. Noeradi (1996). ('Status of the olistostrome in the Luk Ulo. Y. granite. etc. Conv. etc.E. unconformable on crystalline schists.A. p. Eocene Karangsambung Fm overlies Late Cretaceous-Paleocene melange complex.E.) Proc. B. Indonesian Soc. Upper Cretaceous. Ansori (1995). Abdullah (1996). A.Karakteristik satuan melange dan olistostrom di daerah Karangsambung. D. Zaim. and two small occurences of limestones with common mid-Cretaceous Orbitolina. & A. D. Indonesia: from subduction to collision tectonics. A. 422-441. C Java: a review of the stratigraphy. Paleo-Eocene accretionary-wedge like sediment.. C Java'.The geology. C. Banjarnegara sheet’. Persidangan Bersama UKM-ITB.) Pros. composed of crystalline schists. Kapid. (‘The surroundings of the Borobudur’. greywackes.. but highly folded and thrusted. 45-54. M. 273-278. p. Abdullah (1996)Karakteristik struktur melange di daerah Luk Ulo. Jawa Tengah: suatu tinjauan ulang. overlain by Eocene Karangsambung Fm and Oligocene Totogan Fms. phyllites.H. Kumoro et al.. M.Paleocene Luk Ulo melange complex. Hasil-hasil Penelitian Puslitbang Geoteknologi LIPI. A. (eds. Noeradi. LIPI. Bandung. Buletin Geologi (ITB) 26.. 1.A. Kapid. folded Eo-Oligocene sediments.) Proc. (eds. Seminar Nasional Geoteknologi III. C. C.com Sept 2016 . Magetsari. p. ('Deformation of the Karangsambung Fm in the area of Luk Ulo. alteration and mineralization of the Tumpangpitu porphyry Cu-Au and highsulfidation epithermal Au-Ag deposit.) Harloff. Folds trend ENE-WSW and indicate SSE vergent thrust system) Harsolumakso. 2012. 1:100. 6. C. p. Scaly clay with limestone and conglomerate blocks not olistostrome. U Cretaceous. Seminar Sehari Geoteknologi dalam indistrialisasi. Java 1929. Suparka. 13-23. Central Java'. p. Jawa Tengah: suatu tinjauan stratigrafi.De omgeving van den Boroboedoer.I. D. Econ. N. R.E.H. N. Kapid. Noeradi.. 1-47.E. etc.Geologische kaart van Java.vangorselslist. 1:100 000. (‘Geological map of Java.A. Fourth Pacific Science Congress. Abdullah & C.Loh Oelo. umur dan deformasi. radiolarian chert. Malaysia. (1929). Magetsari & C. In: N. R. age and deformation') Harsolumakso. (2012). Dienst Mijnbouw Nederlandsch-Indie. p. 18p.. Malang.H.A.H. Proc.I. with clasts of glaucophane schist and other metamorphics. Y. both with locally common large clasts) Bibliography of Indonesia Geology. Suparka.A. Sapiie & M. A. (1933). etc. Langkawi. Ed. Toelichting bij Blad 67 (Bandjarnegara).E.Paleocen melange complex with metamorphic and ultramafic rocks. Jawa Tengah.H. Suparka (2006).Harloff. Eocene sandstones with limestone lenses with Nummulites. Kebumen.E. R. Bandung. Noeradi. Seminar Nasional Peran Sumberdaya Geologi Dalam PJP II. Jawa Tengah. (One of earliest descriptions of classic Lok Ulo area. & D. Basuki (ed. M. ('Review of the characteristics of melange and olistostrome units in the Karangsambung area. serpentinite.The Luk Ulo-Karangsambung Complex of Central Java.. Pellatispira. Banda and Eastern Sunda arcs. Excursion Guide C1. C Java'. Thick Miocene tuffaceous marls with Miogypsina and andesites unconformable on Eocene) Harloff. Harsolumakso. Suparka. ('Characteristics of melange structure in the Luk Ulo. 101-121.E Miocene. p. In: Y. Prasetyadi. Proc. Nederlands Aardrijkskundig Gen. with oldest rocks on Java: Cretaceous metamorphic basement. probably in Oligocene. Tijdschrift Kon. Map sheet covering South Serayu Mountains.Status olistostrom di daerah Luk Ulo. Zaim.Deformasi pada Formasi Karangsambung di daerah Luk Ulo. Review of Late Oligocene.0 43 www. (Unpublished) (NE Java basin biostratigraphy and paleogeography) Harsono Pringgoprawiro & Baharuddin (1980). A. 6th Ann. 23p. Res. traces of oil in Lower Palembang layers and nearby gas seeps named Kaboel (96% CO2. Verhandelingen I. p. p. Cepu. Kebumen. p. not Late Miocene.The Kromong carbonate rocks and their relationship with the Cibulakan and Parigi Formation. Centre (GRDC). Banten’. at N tip of Kromong complex which consist mostly of andesitic intrusive rocks. 14p. E. Geol. (Sentolo Fm overlying ‘Old Andesites’ in W Progo Mts are Burdigalian. 125-165. thin (60m?). Proc.Struktur melange dan asosiasi ofiolit daerah Luk Ulo. (Planktonic foraminifera study in shallow wells Tobo 5. Jawa Tengah. 64.Geologic map of the Bojonegoro Quadrangle.B.1-21. Conv. Includes mention of some very thin coal beds in M Palembang layers. Fourth Pacific Science Congress.com Sept 2016 . (Unpublished ITB Research report) ('Melange structure and ophiolite association of the Luk Ulo area.vangorselslist. Bandung. Thesis Inst.Pliocene planktonic foram zonation.X. Technology Bandung. Geol. Contr. Spec. overlain by rel. Ed. and the implications for tectonic plate subduction'. ('Old Andesite Formation. Centre (GRDC). 1. but complete Pliocene Mundu marl section. Praptisih et al. 141-149. fractured and brecciated. p.Pliocene in age) Harsono Pringgoprawiro (1983). Excursion Guide C1. Age of Upper Cibulakan Fm E-M Miocene Tf 1-2. HvG) Harting. Dev. 6. N. S. Plio-Pleistocene andesitic and dacitic rocks intruded carbonates. Jawa Timur. Dev.Biostratigrafi dan paleogeografi cekungan Java Timur Utara suatu pendekatan baru.A. On Luk Ulo tectonic melange of mafic-ultramafic rocks (ophiolite). 1-239. Limestone belongs to Miocene Cibulakan and Parigi formations. Parigi limestone is Late Miocene Tf3. Suparka & N. Doct.Harsolumakso. & Roskamil (1977). Soeharsono & F.Verslag over eene verkenning van de Sadjira antiklinaal en omgeving in Bantam. (Kromong carbonate 20 km W of Cirebon. Laporan Penelitian DIK-ITB. A. 18p. Entire section apparently deep water with rich planktonic foram faunas) Harsono Pringgoprawiro & B. 1. Geologi Indonesia 13. Rocks highly deformed. Petroleum Assoc. (Miocene. 6. Fennema 1891) and burning gas at Kedjaban) Bibliography of Indonesia Geology.. 2nd Working Group Mtg. Bandung.Biostratigrafi foraminifera plangton dan beberapa bidang pengenal Kenozoikum akhir dari sumur Tobo. Jaarboek Mijnwezen Nederlandsch Oost-Indie 47 (1918). Kebumen. Technology Bandung. (‘Report on a reconnaisance of the Sajira anticline and surroundings. Riyanto (1988). (1920).a revision'. 5-21. Bandung. serta implikasinya terhadap tektonik jalur pertemuan lempeng. p. Harsono Pringgoprawiro. Jawa (1500-5).000. Sujanto (1977). 8 near Cepu. Magetsari (1998). 21-31. Java 1929. Geol. as blocks or boudinage structure in similar rocks or on other rocks) Harsono Pringgoprawiro (1968). 221-240. Oil and asphalt seeps found along faults in N part of area (N. Publ. Central Java. (2012 clearly show Parigi Lst is Early-Middle Miocene age (Te5-Tf1-2). 1.Subsurface Neogene planktonic foraminifera biostratigraphy of North-West Java Basin.Tagogapoe. 1:100. p.On the age of the Sentolo Formation based on planktonic foraminifera. Proc.Formasi Andesite Tua: suatu revisi. Biostratigraphic datum-planes of the Pacific Neogene. Dept. E. W Java. Deepest well Tobo 5 penetrated Late Miocene Ledok sands-shales between 412-451 m. (‘Eocene’ quartz sandstones with Nummultes fichteli-intermedia (=Lower Oligocene) overlain by ‘Miocene’ Lepidocyclina limestone (= Late Oligocene) outcrops in Rajamandala area. W Java.H. based on 7 Pertamina wells in NW Java) Harsono Pringgoprawiro & Sukido (1992). Res. p. 1. Inst. (1929). Geologi Indonesia (IAGI) 7. Suwito P. W of Bandung) Hartmann. A short geological description of the mountain Tagogapoe and Tjitaroem.E Miocene 'Old Andesites' of S Mountains of Java) Harsono Pringgoprawiro. Indon. Hartono & Suharsono (1997). Late Oligocene.bgl. Description of Oligo-Miocene 'Old Andesite' submarine basaltic breccias and pillow lavas in S Mountains. p. G.Wonogiri.Gumuk gunung api purba bawah laut di Tawangsari. 27-30. Bandung. (1969). Jawa Tengah. Syafri (2008).Pleistocene Karren Lst present in Rembang-Madura zone.pdf) ('Stratigraphic analysis of early activity of Gajahdangkak volcano in the Bulu area: implications for stratigraphy of volcanic rocks in the Southern Mountains. Geol. 2. Geologi Indonesia 3. Jawa Tengah. Sukoharjo. G. 1. Contr.Formasi Kerek: fasies turbidit kipas bawah (lower fan) di daerah Dadapayam. claystone and thin marl layers (5-200 cm). Publikasi Teknik. p. Seri Paleontologi 1.E Miocene volcanism in S Mountains generally starts with basaltic pillow lavas. Survey Indonesia 2. Geol.000. p.go. p.Globigerina marls and their planktonic foraminifera from the Eocene of Nanggulan.esdm. 157-165. Central Java. 63-80. E of Bayat) Hartono. 37-48. 152-159. J. Presence of Bulimina marginata.net/articles/2014/1150-1407921652. Late Miocene? Mundu Fm Globigerina marls) Hartono. C Java'.The stratigraphic position of the Karren Limestone in the Tuban area. (2001). Publ. C Java'. Bronto (2007). & I. J.S. implikasinya terhadap stratigrafi batuan gunung api di Pegunungan Selatan. followed by construction of composite volcanoes consisting of basaltic to andesitic lava flows. A. Java. (online at: http://oaji. Sukoharjo. Syafri (2007). Survey Indonesia. Geol. followed by destructive phase with high silica pumice-rich pyroclastic breccias and tuffs (Semilir Fm'). 12/XIII. T. B. p. Jurnal Teknologi Mineral (ITB) 8. p. Sudrajat & I. Dips gently to N and unconformably overlies different Miocene formations. thickness 120m or more. Sheet 1509-3. 6.bgl. SalatigaJawa Tengah.Geologic map of the Tuban quadrangle. Bandung.id/dmdocuments/jurnal20070303.com Sept 2016 . Geologi Indonesia 33. Res. Bronto (2009).Analisis stratigrafi awal kegiatan Gunung Api Gajahdangak di daerah Bulu.000. East Java. Sukoharjo Wonogiri. p.G. Dentalina sp.Hantkenina in the Nanggulan area. Yogyakarta. Direktorat Geologi Indonesia. Quad. Gunungkidul. (online at: www. Illustrated by stratigraphy of Gajahdangak Volcano W of Wonogiri) Hartono (1960). C Java. Bull.esdm. (1973). 3. deposited in deep marine lower fan turbiditic facies. W of Yogyakarta. scale 1:100. Foraminiferal Research 20. Southern Mountains. G. GRDC Spec..M. Associated with larger forams Nummulites Discocyclina.S. H.go. scale 1:100. Ed. Planulina sp. (Merapi modern volcano used as model to interpret Oligo-Miocene ‘Old Andesite’ volcanic centers and volcanic cycles in the Wonogiri area. breccias and tuffs (' Mandalika Fm'). Cushman Found. (Kerek Fm of C Java intermittent calcareous sandstone. Geologi Indonesia 4..S.M.0 44 www. strata. incl. Dev. H. C Java) Hartono. (online at: www. Geologi Indonesia 2. Bibliography of Indonesia Geology. Pellatispira) Hartono.pdf) ('The Gumuk ancient underwater volcano at Tawangsari-Jomboran. p. Centre (GRDC). H. 4.Asal-usul pembentukan Gunung Batur di daerah Wediombo. including new species Hantkenina nanggulanensis) Hartono. J. (Eocene planktonic foraminifera from Eocene of Nanggulan.id/dmdocuments/jurnal20090301.vangorselslist. (1965).pdf) (Southern Mountains Wediombo 'Old Andesite' lavas and breccias associated with Batur intrusive rock probably remnants of one paleovolcano) Hartono. 1-8. 6 km N of Nanggulan. Hartono. 143-158.M. 3. 3.Geologic map of the Tuban Quadrangle. (Plio. & S. & S.Jomboran. 1. H. Java. (First record from Java of of Late Eocene planktonic foram Hantkenina from shallow corehole along Kali Progo. Hartono.Peranan Merapi untuk mengidentifikasi fosil gunung api padi ‘Formasi Andesit Tua’: studi kasus di daerah Wonogiri. 33rd Ann. J. (Collection of papers on geology of Southern Mountains. (UNPAD) 13. Java.Biostratigrafi daerah Dadapayam. 2. p. polygonal. Geologi Indonesia 3.com Sept 2016 . (online at: http://jurnal. H. p. U. 1.lipi. (ed. E..) (2009).bgl. J. 2. 1508-2.. I. 1-233. Bandung. (UNPAD) 7.unpad. p.. I. Northeast Java Basin. Polygonal karst in western perimeter on hard but thinner limestone beds. Scientific Contr. Spec. (W Java E-W Baribis fault is Plio-Pleistocene thrust. Res.go. Conv. Saputra (2015). Two possibilities of parental magmas: basaltic/ or andesitic magma of Cikotok Fm or crustal melting magma from a subduction process (E Miocene radiometric age. composed of Kerek Fm below (zone N15-N16) and more tuffaceous sand-rich Banyak Fm above (N17-N18)) Hartono. Ed. A.pdf) (Late Oligocene Cihara Granodiorite N of Bayah. Ramadian & F. Gunung Kidul. Indonesia') Haryanto. and residual cone karst. Publ. originated from magma of continental origin in subduction zone environment. SW-NE Cimandiri fault older. Riset Geologi Pertambangan (LIPI) 1. (online at: www. 22 p. H.. U. Provinsi Jawa Barat.. Baharuddin & K. Kusuma (2016).Tektonik sesar Baribis-Cimandiri. Safudin 1995)) Haryanto. Cave and Karst Studies 66. (Gunung Kidul/ Gunung Sewu three karst subtypes: labyrinth-cone. stratigrafi. Indon. W Java'.id/wp-content/uploads/2016/02/Riset-Vol. Syafri & R. Bull.Prosiding Workshop geologi Pegunungan Selatan 2007. 107-116.0 45 www. thick limestones have undergone intensive deformation. p.Jawa Tengah. Centre for Geological Survey (PSG). Day (2004). U. Jakarta. Residual cone subtype occurs in weaker and more porous limestones (wackestones or chalks). Helmi (2009). IPA16-59-G.Majalengka. U. Hartono. Geol.vangorselslist. Dev. 62-69. Gunung Kidul and Wonogiri') Hartono.. Assoc. (IAGI).Landform differentiation within the Gunung Kidul Kegelkarst. pola jurus lapisan batuan dan sebaran batuan: studi kasus daerah Bantarujeg. (Attenuation/ spectral decomposition of N Madura Platform seismic to determine fluid composition) Haryanto.lower bathyal zone. Klaten dan Wonogiri.id/dmdocuments/jurnal20080205. ('Geology of the eastern part of the Southern Mountains. despite considerable bed thickness) Bibliography of Indonesia Geology.Majalengka area. Java.Geologi Pegunungan Selatan bagian Timur. Zone of NNE-directed thrusting N of Bantarujeg (SE of Ciremai volcano)) Haryono..Geology of the Madiun Quadrangle. p. p. Age Middle -Upper Miocene (N14N16). Indonesia. Centre (GRDC). Proc. Proc. SW Java. Labyrinth-cone subtype in central Gunung Kidul karst where hard. Brata (1992).go.geotek. T. Survey Inst. 140-151. Salatiga. deformation and distribution of rock layers: a case study in the Bantarujeg. Yogapurana & A. 33. (IPA). Indon. Petroleum Assoc. Ardiansyah (2008). 40th Ann. (1995)..Intricate seismic time-frequency analysis in Kujung patch reef. Bandung. Publ. Panggabean et al. Conv. 2. acostaensis) Hartono. stratigraphy. 60-66. 38..ac. ('Tectonics of pre-Tertiary rocks of West Java. & M.and Gyroidina soldanii suggest deposition in middle. Scientific Contr. J. Central Java'.id/bsc/article/view/8400/3908) ('Identification of geological structures based on aspects of morphology. Salatiga. districts Bantul. Kabupaten Bantul. Spec. p. I. C and E Java.1-1995-. I. Geol. Planktonic foraminifera from ~1000m thick Late Miocene turbiditic series NNE of Salatiga.Identifikasi struktur geologi berdasarkan aspek morfologi.pdf) ('Biostratigraphy of the Dadapayam area. p.Tektonik batuan pra-Tersier Jawa Barat Indonesia. based on presence of Globorotalia siakensis and Gr.esdm. from 2007 Yogyakarta workshop) Hartono. Nurdradjat & I. (eds.1-No. (online at: http://pustaka. Geol. Bull. 9p. (2004). sinistral strike-slip fault) Haryanto. Explanatory notes and map. E. SE of Semarang.The origin of Cihara granodiorite from South Banten.) (2012). 6. Bandung. NE-SW lineaments on Java as observed from ERTS-1 images. Hayat. 6. With extensive reference list) Hasibuan. In: Stratigrafi Pulau Jawa. C Java. East Java. Geologi Sumberdaya Mineral 13. High maturity may be local due to proximity to Pendul igneous intrusion.. F. Suparka. Congress on Pacific Neogene Stratigraphy. Banyumas. T. p.iagi. In sandstone with shallow marine trace fossils and crab fossils. Kapid & Djuhaeni (2014).web. Berita Sedimentologi 30.Hasibuan. Central Java. (online at: www. N of Bandung. D. p. linear scars. p. Dark grey color of mudstone not caused by organic material but is mainly chlorite) Hendrizan. Res. Sumber Daya Geologi 16. F.ugm. N. (Unpublished) (Online at: www. (Dark grey Eocene Wungkal-Gamping Fm mudstones E of Pendul Hill. and coastline configurations.0 46 www.16-0. 141. W Java) Hehuwat. Conv. Spec. (Abstract only) (C and E Java NE-SW trending lineaments.Pliocene mollusc biostratigraphy of Java. have 0. Assoc. Suparka & Suwijanto (1974). SW Java. W of Bayah. 2 vols. Indon.65. Ed. Indonesia.Analisis data gayaberat dalam permodelan struktur geologi bawah permukaan serta kaitannya dengan cebakan hidrokarbon di daerah Subang dan sekitarnya. Ratanasthien et al. R. jogjacartensis of Martin (1914-1915)) Hastuti. different land-use patterns across lineament.E. J. (2006).Ostrea (Turkostrea) doidoiensis Hasibuan from the Bayah Formation. p. 425. ('Analysis of gravity data in modeling of subsurface geological structure and its relation to hydrocarbon deposits in Subang and the surrounding area'. equivalent of Ro of ~ 0. Marliyani (2006). Indonesia'. showing no hydrocarbon source potential.1. Harsolumakso (2003). D. 30. Amijaya (2008). Review of Eocene.42 % TOC.Miocene volcanism related to hydrothermal alteration in Ponorogo. 2003. Gravity showing up to 2km deep Tertiary basinal areas in Pamanukan-Subang area. D. p. 630-637. E.id/fosi) (Biostratigraphic study nannofossils from 1. 32-43. 8th Int. Sporinite color orange to red or brown.Biostratigrafi Kenozoikum moluska di Jawa.H. divided into five Late Miocene biozones: Discoaster brouweri.4 km thick outcrop section of Late Miocene Halang Fm at Loh Pasir.L. quinqueramus) Bibliography of Indonesia Geology. Geol. Central Java. petrography and mineralogy of WungkalGamping mudstone in Bayat Area. Banten.late mature). Publ. hamatus.W. Geol. strongly suggest fault-origin of lineaments) Heidrick. D.Organic geochemistry.Nanggulan-Bayat Eocene and Southern Mountains Miocene carbonate sedimentation models from the Yogyakarta area. (IAGI). F. D.michel. bollii. (2003).or. Centre Bandung.1 % (peak mature. prepentaradiatus and D. Klaten. West Jawa: a new find. In: B. LIPI Indonesian Inst. & M. & Gayatri I..vangorselslist. 71-86. Unpaired terraces. Tectonophysics 23. 37th Ann. Species originally described from SW Sulawesi Malawa Fm and may also be present in Nanggulan Fm of C Java (O.Nanggulan tectonostratigraphy. Siregar (2004). ('Biostratigraphy of Cenozoic molluscs in Java.Biostratigraphy of the Late Miocene Halang Formation in the Loh Pasir succession. 1. (2004). Indonesia. 16-29. 1 (151). Bandung. F. (M Eocene oyster species from lower part of Bayah Fm at Cibobos Bay. Proc. p. p. (Fieldtrip guidebook Southern Mountains) Hehuwat.Z.S. 121 samples with 57 species.. Asikin & A. & H. morphological unconformities. 20-31. S.id/sedimentology/nanggulan%20by%20gayatri/…) Hendriyanto. Sciences.) Pacific Neogene paleoenvironments and their evolution.ac. J. (eds. few 10 km long. Direction of lineaments corresponds to Meratus trend. Chiang Mai. M. Bayat. Dev.com Sept 2016 . Asikin & R. S. publies par ordre de S. 1. Y. Merapi)) Hol. Putra (2012). (1918). E. 2. Physical Geology of the Indonesian Island Arcs. Joshima. Manganese mainly as concretions in or on top of Miocene reef limestone. docteur-es-sciences.Depositional environment of the Batuasih Formation on the basis of foraminifera content: a case study in Sukabumi Region. Nat. Geology and Mining (NIGM). S. Bull. 1-53. receuillis des lieux par M. J.000.php/dir/article_detail/403) (Batuasih Fm overlies (Eocene?) Walat Fm and grades upwards into Late Oligocene Rajamandala Lst Fm. Nederlands Aardrijkskundig Gen. Praptisih & P. Haak (2001). Tijdschrift Kon. (online at: http://jrisetgeotam. Toelichting bij blad 54 (Madjenang). Geology and Mining (NIGM).5m deep in forearc off C and E Java at water depths between 3212-442m all Late Quaternary clays with ash beds. Description des restes fossiles d'animaux des terrains Tertiaires de l'ile de Java.Fossiles de Java. Kyoto University Press. Otofuji. (1980).esdm. CCOP Techn.Hendrizan. (Three piston cores up to 7. Soebedo (1969).id/publication/index.0 47 www..com/index. p. formed by dissolution of limestone) Higasinaka. M. (1935). Mining activities in area took place since 1912 around three fields. 25-36. Kliripan. p..An interim report of paleomagnetic study in Jawa Island. p. 67-71.com Sept 2016 . M. central Java.Magnetic prospecting at the Tjikotok gold mine. collected by Dr F. 131-151. & B.Formation of accretionary wedge in the eastern Sunda Trench.archive. Nat.Magnetotelluric and geomagnetic modelling reveals zones of very high electrical conductivity in the upper crust of Central Java. 3-4. A. Padaarang. Inst.bgl. West Java Province. Bandung. Joint Prospecting Mineral Resources in Asian Offshore Areas (CCOP). No evidence of turbidites) Bibliography of Indonesia Geology. Outcrops in 3 sections W of Sukabumi. Andjir and Kembang. Co-Ord. Bull.L.A.T. Comm.S. South Central Java) Honza.vangorselslist. p. Fr. SE West Progo Mts. p. Ganie (1987). M. p. Dienst Mijnbouw Nederlandsch-Indie. 19.. 113m. Physics Earth Planetary Interiors 124. H. O. Inst. (online at: www.go. 101-112.php/NIGM/article/view/166/161) (Magnetic anomaly survey around Krengseng manganese mine in Kliripan field. E. p. Nishimura. 1. 36m.M. 35. E. Techn. (Modelling of magnetotelluric and geomagnetic data from C Java. (online at: www. K. Cibatu River. Junghuhn.com/index. H.6m. Two zones of extremely high conductivity best explained as geothermal activity in the vicinity of active volcanism (Mt. S.J.Danes’ verhandeling over den Goenoeng Sewoe. 6. (1854). deposited in shelfal marine environment in E Oligocene (zone P19)) Herklots. Geologi Indonesia 7. Higasinaka. (Review of Danes (1915) detailed report on cone karst of Southern Mountains.B. published by order of the King of the Netherlands'. Sasajima. Hoffmann-Rothe..H. C Java. (online at: http://jrisetgeotam..org/details/fossilesdejava00herk) ('Description of animal fossils from the Tertiary terrains of Java.Bali) Honza. Bandung. Zen & S. W Java: Batuasih Village. p.php/NIGM/article/view/47-59/158) Hirooka.Sediments and rocks in the Sunda forearc. (Brief discussion of multichannel seismic profiles across accretionary prism and forearc basin of E Java. p. Foraminifera poorly preserved black benthic and planktonic foraminifera. 2. Junghuhn.. 1. W. Mainly black shaly claystone. A. Ritter & V.I.Geological and geophysical investigations of the Kliripan manganese field. Leiden. 19. 414-421. Ed. 119-124. Bull. J. J. 6368. le Roi des Pays Bas. Nishimura (1987). Y. Early description of Tertiary echinoid fossils from Java (see also revision of identifications by Martin (1880)) Hetzel. West Java. Masuda et al. Soemarno (1968). 2. Brill. Bull. Setiya Budhi & A.Geologische kaart van Java 1:100. Indonesia. with limestone intercalations in upper part. p. 1-24. 47-56. 60.au/item/107941page/1/mode/1up) (Probably the earliest. regentschap Soekapoera. Folds in Rembang zone controlled by movement along ENE-WSW oriented basement fault.. Ed. 668. Proc. p. (1816). p. Zeitschrift Praktische Geologie 23. vol. mineralogy and botany of the western portion of the territory of the native princes of Java. tuff). (online at: http://bhl. (1878). p. Axis of volcanic activity progressively shifted N in E-M Miocene. associated with clays containing Miocene molluscs. Dept. 2. P. Priangan.archive. (Evaluation of manganese ore deposit in the Ciberem River. Spec. (IPA).Hooze. p. Yogyakarta 2015.N. M. p.Ein Jod und Oel produzierendes Feld bei Soerabaja auf Java.A. T. No maps or fugures) Huguenin.Onderzoekingen in het kolenterrein bij Soekaboemi. Jaarboek Mijnwezen Nederlandsch Oost-Indie 1878. p. Teknik Geologi. Verhandelingen Bataviaasch Genootschap 8. Natuurkundig Tijdschrift Nederlandsch-Indie 22.Sunda Strait and central Sumatra fault.pdf) ('Investigation into the presence of coal on Ciletuh Bay. lava. Braholo Bibliography of Indonesia Geology. 218-227. Natuurkundig Tijdschrift Nederlandsch-Indie 12. 5-65. near Kankareng. J. (1976). 6. Jaarboek Mijnwezen Nederlandsch Oost-Indie 11 (1882). (Right-lateral Central Sumatra fault accommodates oblique subduction and terminates in SE at extensional zone of Sunda Strait) Hughes-Clarke. Jaarboek Mijnwezen Nederlandsch Oost-Indie 1880. Kakda & H. Carbonates drowned and capped by younger deepwater sediments) Huguenin.Onderzoek naar het aanwezen van steenkolen in het terrein aan de Tjiletoekbaai.672. 1.Carbonate build-ups on volcanic highs South of Java. J. Reporting mainly volcanics ('basalts'. J. 175-312. ('Report on the survey of coal deposits in the Priangan Regencies-1'. Proc. & X. (‘Investigations in the coal terrain near Sukabumi. K. Residentie Preanger Regentschappen. Geological map and survey of Eo-Oligocene coal beds W and SW of Sukabumi.A. Petroleum Assoc. Aditya (2015)-Mekanisme perlipaten en echelon di antikinorium Rembang Utara. Indon. with a report on the beds encountered in the railway tunnel near Cimenteng in the Preanger Regency’.us.org/8/items/natuurkundigtijd12koni/natuurkundigtijd12koni. Manganese veins in 'felsite-porphyry' and breccia. Wetenschappelijk Gedeelte. 120.Essays of the geography. Main coal bed at Gunung Walat about 40 cm thick good quality coal. Le Pichon (1984). Residentie Preanger Landschappen. Universitas Gadjah Mada (UGM). (1880). 10p. 'pudding stones' (=conglomerates/ breccias) and sandstones) Hotz. by American-born naturalist Horsfield.ala. Geology 12. 162-167.Onderzoek naar mangaanerts. with carbonates on remnant volcanic highs. 3-38.vangorselslist.A. Jakarta 1976. S. Early evaluation of Eo-Oligocene coal deposits near Sukabumi. dipping ~35° to SE. & L. p. W Java.org. Rutten (1915). (1856). basic geological observations on Java.F. 1861.0 48 www. voorkomende te Tjikangkareng. (online at: http://ia700308.Verslag naar het onderzoek van kolenafzettingen in de Preanger Regentschappen. 96-116.com Sept 2016 . benevens eene mededeeling omternt de aardlagen aangetroffen in den spoorwegtunnel bij Tjimenteng in de Preanger Regentschappen. 8th Seminar Nasional Kebumian.A. ('Report on the survey of coal deposits in the Priangan Regencies-2') Husein. Sukapura regency. Potential for exploitation not favorable) Horsfield. (Abstract only) (Mid-Oligocene volcanic arc S of Java.A. p.Verslag naar het onderzoek van kolenafzettingen in de Preanger Regentschappen. W.2.. (1882). producing en echelon arrangement of folding. Deposits deemed too small to be commercially attractive. ('En echelon folding mechanism in the North Rembang Anticlinorium'. (1861). Deemed non-commercial) Huguenin. Priangan Residency') Huguenin. 110-128. ('An iodine and oi -producing field near Surabaya on Java') Huchon. IPA Carbonate Seminar. J.1. J. p. NE-SW trending thrust fault in Tegalrejo River at break of slope of Baturagung escarpment. Bayat. S. p. Central Java.. Associated with gabbro and pillow basalts. 7-10. (online at: https://repository. Jawa Tengah dan implikasinya terhadap sejarah deformasi Pegunungan Selatan. & M. Bandung. p. Jawa Barat. (UNPAD) 13. Nainggolan & Z.vangorselslist.E Miocene volcanoclastic turbidites. Marliyani (2008). Seismic tomography study does not show extent of microcontinent and paleomagnetic studies indicate paleolatitude in Eocene age is at 16°S of current position. 213-220. dismembered during emplacement on microcontinent) Hutubessy.Tinjauan keterdapatan batuan ultramafik dalam komplek ofiolit Ciletuh di daerah Ciletuh. Interpreted as relics of oceanic crust.ac.Pemutakhiran data gayaberat Lembar Madiun. S. ('Genesis of the joint system in Semen. magnetics. p. 47-59. (1985). Jawa Tengah bagian selatan.M Miocene. 40. based on gravity. I. 6. accommodated by double subduction and transform fault which later became Progo-Muria Fault and which trapped oceanic crust under Kendeng basin) Hutabarat.id/135435/1/. Indon. signifying stress in N30°E direction and later(E Miocene?) shear stress in N300°E direction. (Baturagung Range of S Mountains SE of Yogya is SE-dipping cuesta with of 1600 m Oligocene. (On basement configuration of E Java basin in Randublatung. Bayat. 1. J. Int. ('Review of ultramafic rocks in the Ciletuh ophiolite complex in the Ciletuh area..Genesa sistem kekar di Semen. Central Java and implications for Southern Mountains deformation history'. Ultramafic rocks in outcrops of Ciletuh area are scattered NE-SW trending 'pockets' in Ciletuh Fm. Bandung. This paper proposes collision occurred in Late Oligocene. Spec. 258-268. 33.Pola cekungan dan struktur bawah permukaan detinjau dari hasil analisa gaya berat dan magnet di daerah Banjarnegara. p. 235-248. p. Proc. dan sekitarnya Jawa Tengah dan Jawa Timur. with two types of fractures. 37th Ann. 2. Cepu. p. Dev. Scientific Contr. (See also Harjono et al. followed by relaxation) Husein. Toha (2008). 27-61. D. Conv. Yogyakarta 2015.I. & G. Sumber Daya Geologi 18. Series of interpreted N-S and E-W profiles) Hutubessy. ('Basin patterns and subsurface structure from gravity-magnetic data in the Banjarnegara area.Rekonstruksi tektonik mikrokontinen Pegunungan Selatan Jawa Timur: sebuah hipotesis berdasarkan analisis kemagnetan purba. Geol. Bull. S. Jawa Timur. S. Geology and Mineral Resources) 5. East Java') Bibliography of Indonesia Geology.deformed in two phases. S. Proc. Publ. Assoc.A. A. Centre (GRDC). (2008). not block faulting or normal faulting) Husein. south C Java') Hutubessy.Seismicity of Sunda Strait in West Java. Dept. Seminar Rekayasa Teknologi Industri dan Informasi. (2007). J.Tegalrejo thrust fault as an indication of compressive tectonics in Baturagung Range.Konfigurasi batuan alas cekungan hidrokarbon berdasarkan gaya berat dan magnet di daerah Randablatung. Nukman (2015). NW-SE trending compression in Late Pliocene. 3rd Nat. 428-434. Ed. S. Geol. In: Proc. ('Update of gravity anomaly data of the Madiun Quadrangle.) ('Microcontinent tectonic reconstruction of the Southern Mountains of East Java: a hypothesis based on analysis of ancient magnetism'. 8th Seminar Nasional Kebumian. Teknik. Seismology and Earthquake Engineering 21. p. West Java'. Sudarno & B. and surrounding areas. Bull.. early extensional. Mustofa.com Sept 2016 . & Ismawan (2015).ugm. possibly caused by Australia. Zircon ages in Miocene volcanic rocks of S Mountains led to reconstructions suggesting SE Java is fragment of Gondwana that collided with Sundaland at end of Cretaceous. (IAGI).0 49 www. 10 km N of Blora. Inst. S. Yogyakarta. Bayat. In: Geologi Indonesia: dinamika dan produknya. Geologi Universitas Gadjah Mada (UGM). 265-278. Cepu. 1900-1976.Sepik Arc collision) Husein. Bayat District. Res. 3.. suggesting range formed under compressive tectonic regime. p. Kebo-Butak Fm near Nengahan village. J. Hayat (1995). Geologi dan Sumberdaya Mineral (J.Anticline. 4. 1991) Hutubessy. (Yogyakarta depression is releasing bend of pull-apart basin.. Shinomiya.5% quartz grains (monocrystalline). Setijadji. 2. 36th HAGI and 40th IAGI Ann. Assoc. Proc. Publ..28%. 6.M. Conv. Soe.T. 230240.W. L.62% feldspars and <6. Prasetyadi & B. Conv.Petrography of Sambipitu Sandstone. K.B. Small-scale mining of N-S-trending quartz veins for gold associated with base metal sulfides) Indarto. Indonesia. Toha (2011). Conf. 19p. N. Widiasmoro & A.Pemodelan geologi sub-cekungan Yogyakarta. S Mountains Zone regional uplift as response of compressional tectonic regime since M Miocene.T. J. A. M. Warmada (2007). Banyumas. V. Pudyo & S. 12p. Gunungkidul.Hydrocarbon discoveries in the frontier areas of Eastern Indonesia: lessons for future discoveries. 2012-GD-29. Saputra (2006).W. p. (IAGI). (IAGI). Setijadji. 231-245. J. L. Prasetyadi & B.. Dioritic-andesitic rocks intruded into Eocene Wungkal Fm. Watanabe & I. Southern Mountains: implications for tectonic setting and paleogeography. One thin section also shows planktonic foram and Lepidocyclina) Indranadi. Yogyakarta 2007. ('Geological model of the Yogyakarta sub-basin'. Pusat Survei Geologi. Latest Miocene. Satyana. p. Conv. Resource Geology 57. S. p. Central Java'. 41st Ann.early Middle Miocene Sambipitu Fm volcaniclastic sandstone exposed in Gedangsari area. 39th Ann. Geology 23. Jawa Tengah. Provenance is reworking from 'undissected magmatic arc '(Old Andesite Fm). carbonate and minor iron oxides. 7p.B. Warmada. (Extended abstract) Iddings.Ibrahim. C. Indon.D. Geol. In: Proc.Pliocene. Lombok. Indon. Peak of this event is in Pliocene (~5 Ma). Proc. (Brief petrographic and geochemical analyses of lavas and crystalline rocks of Bulu Saraung (Maros Peak). 135-143. porphyry copper-gold and skarn deposits in S Mountains of C Java) Imai. Proc. 13.9 Ma.vangorselslist. 7p. p. 2.P.D. with K/Ar ages of 21. Indon. Toha (2010). with probable porphyry type mineralization. (IAGI). Ed. 2006 AAPG Int. V. V. (late Early. ('Potential of hydrothermal ore mineral resources in the Southern Mountains'. Modeled as NE-SW trending pull-apart basin) Indranadi. 968-980.com Sept 2016 . ('Relation between tectonics and hydrocarbon migration in the NW Java basin') Ibrahim. Matrix 4. 38.Yogyakarta pull-apart basin. SE of Yogyakarta. Riset Geologi Pertambangan (LIPI) 6. J. Wonogiri Regency. (1985). Morley (1915). composed of silica. Geol. (Selogiri area in Wonogiri regency one of several gold prospecting areas in S Mountain Range in Java. Titisari (2009). Assoc. Fault activity started and controlled basin configuration and facies in M Miocene.W. (1994).. SW Sulawesi and Pleistocene Muria volcano NE Java) Idrus. (2012). Brief review of potential of epithermal gold deposits.Potensi sumberdaya mineral bijih hidrotermal di Pegunungan Selatan. 23rd Ann. Central Java.Porphyry-type mineralization at Selogiri Area. Yogyakarta.0 50 www. Assoc.B. A. PIT-IAGI-2010-047. Banyumas. A.. Perth.Hubungan tektonik dan migrasi hidrokarbon di cekungan Jawa Barat Utara.E Pliocene turbiditic volcanic greywacke series) Indranadi. Conv.7 Ma and 11.Lingkungan pengendapan anggota Tajum Formasi Halang di daerah Gumelar. A. Geol. C.. polymetallic (Zn-Pb-Cu-Au) deposits. Proc. Yogyakarta earthquake in 2006 shows Opak-Muria Fault still active to present-day) Bibliography of Indonesia Geology. Spec. Makassar. I. Bandung. 1.. Workshop Geologi Pegununungan Selatan. (Depositional environment of the Tajum member of the Halang Formation in the Gumelar area.Contributions to the petrography of Java and Celebes. p. formed as response of sinistral transtensional strike-slip movement along NE-SW Opak-Muria Fault. 7-19. J. Exhib. A. & E.D. JCM2011-081. Mainly feldspathic litharenites with up to 85% rock fragments (all volcanics). Mineralization characteristics in Cikidang-Cirotan-Cikotok trend. T.G. (IAGI). Heterostegina. Miogypsinoides. (IAGI). Indon. 28th Ann.0 51 www. JCM2011-103.com Sept 2016 . Hartono (2007). 34th Ann. Pararotalia. Makassar.6000' (yield Globorotalia truncatulinoides and nanno fossil index Geohyrocapsa. Bandung.S. Underground blowout in Banjarpanji-1 well not believed to be trigger for LUSI mudflow disaster) Bibliography of Indonesia Geology. Proc. Bandung.M.Iriska. but locally >1 Darcy) Irkamni. p. Indon. Sawolo (2008). Kabupaten Trenggalek. ciperoensis zone) to earliest Miocene? (Catapsydrax dissimilis and D. East Java Basin.C. p.P. Conv.The Mundu Formation: early production performance of an unconventional limestone reservoir. UNPAD. Geol. Centre (GRDC). Geol. Jakarta. Isnawan. (Nannoplankton and planktonic foraminifera biostratigraphy of Batuasih Fm near Cibadak. Amphistegina. Indonesia. Austrotrillina. West Java'. based on mud samples and from Banjarpanji-1 well from between 4000'. Geol. Conv. Assoc.. London. Petroleum Assoc. 43rd Ann. 207-218.. A. & I. K. B..Indonesia. Sulistyo (1999). 326-341. Proc. suggest Late Oligocene (Gr opima and Sphenolithus distentus... (6) restricted platform/ lagoon: Quinqueloculinids. Dev. B. (Maleo and Oyong oil-gas fields in S Madura Basin producing from E-M Pliocene Globigerina planktonic foram-rich limestone reservoir of upper Mundu and lower Paciran sequences (~3-6 Ma). Publ. (On diagenetic processes and sandstone porosity. Operculina. V. a special study of (Eocene) Wungkal sst. Source of fluids deeper. 160 . 12p. Bayat. Proc. Res. druggi. 2. 24p..Aplikasi metoda kuantitatif unitary associations terhadap kelimpahan foraminifera besar pada sumuran di cekungan Java Timur Utara untuk optimalisasi korelasi biostratigrafi. 173-180. Cycloclypeus.Late Miocene planktic foraminifera biostratigraphy of Central Bogor Through. Spec. Pararotalia and Spiroclypeus. 6. London 2008.. Jawa Timur. Geol.Pengaruh proses diagenesis terhadap perkembanganan porositas batupasir. 17p. Conv. Conv. Ed. Basuki (2011). (4) organic buildup: coral. Indon. IPA10-G-174. (5) open platform: Quinqueloculinids and Austrotrillina. (IAGI).Analysis and recent study results on East Java mud volcano. N. HvG)) Isnaniawardhani.Miocene larger foram assemblages in two unnamed East Java Sea wells. coral and algae. (2) deep shelf margin: planktonic foraminifera. Exh. On Oligocene. Assoc. D. Joint. andesites and dacites from Tugu district are subduction related magmas) Irwansyah (2011). carinatus zone) age (underlies latest Oligocene Rajamandala Limestone. ('Characterization of Rajamandala Fm carbonate rocks based on larger foraminifera in the Padalarang area. 2.. Indon. Sharp &.W. (3) foreslope: Lepidocyclina. Society. In: Subsurface sediment remobilization and fluid flow in sedimentary basins Conf. Isnaniawardhani. Spiroclypeus.Triq. 36th HAGI and 40th IAGI Ann. Adhiperdana & Nurdradjat (2012). ('Application of the quantitative biostratigraphic method of unitary associations to the abundances of larger foraminifera in wells in the NE Java Basin for the optimalisation of biostratigraphic correlations'. which is Pleistocene in age.I. A.Biostratigrafi nannoplankton Formasi Batuasih serta korelasinya dengan biostratigrafi foraminifera plankton. S. Jateng. (1997). Kadar & N. p. Conv. Kueh (2010). 26th Ann. W Java. Jakarta. Anwar M & N. D. In: Geologi Indonesia: dinamika dan produknya. Assoc. Proc. Darijanto & B. (Abstract only) (Solids in LUSI mud eruption are marine U Kalibeng Fm blue-grey clay. Geol. Assoc. C Java) Istadi. 33.Karakterisasi batuan karbonat Formasi Rajamandala berdasarkan foraminifera besar di daerah Padalarang. 1 p.168. Sumarinda (1996). p.vangorselslist. Proc. Geol. Cluster analysis shows larger foram biofacies: (1) open sea shelf: planktonic foraminifera. (IAGI). Conv. studi kasus batupasir Formasi Wungkal.Petrologi batuan gunung api Kecamatan Tugu dan sekitarnya. Bayah. V. West Java. Hendratno & U. Typical porosities 3655%. Indon. p. (E Java Southern Mountains Oligo-Miocene Mandalika Fm basalts. 25th Ann. Jawa Barat. Not much detail) Irwansyah. permeability 300-500 mD. Proc. 2. A. Borelis) Isjudarto. Facies and diagenetic level of the Upper Cibulakan and Parigi Formation. America (GSA).esdm.N. Proc.. which exposed carbonate platform and resulted in alteration of hard limestone to porous and friable chalky limestone) Jaya. I.. 39th Ann. G. 76. Located N of Oligocene volcanic arc. Cirebon) Jihan A.On some Tertiary Mollusca from Mount Sela. in Randegan and Palimanan Area. 42nd Ann. Kosasih.M. in the island of Java. Syafri. I. 1724-1739. and Late Miocene (Parigi Fm) of W Java) Jambak. Northeast Java Basin. U Cibulakan Fm deposited locally. Presence of residual hydrocarbon in surface limestone samples suggests potential of subsurface hydrocarbon traps) Jauhari. Soc. Model predicts June 2010 peak of mud volcano at 26 m above original ground level. Review of carbonates of Early Miocene (Baturaja. ('Cenozoic magmatic evolution of the Banyuwangi. Airlangga. Rodriguez (2015). Ed. B.High resolution sequence stratigraphy and diagenesis in carbonate rocks. 30 th Ann. (1864).M. Local uplifts likely caused by intrusion of igneous rocks.. p. Jakarta. Yogyakarta: an outcrop analog for modeling chalky limestone distribution.Evolusi magmatik Kenozoik daerah BanyuwangiLumajang. Geol. 5. Bibliography of Indonesia Geology. ('Evaluation of stratigraphy of carbonate rocks in the NW Java basin'. Taufiqurahman & F. (2010). & D. 3. Isnaniawardhani (2014). B. (online at: http://ijog. Quart. M. p. Indon. p. Soc.Facies characterization and mechanism of termination of a Tertiary carbonate platform. Geol. Geol. P. Indon. (M Miocene Wonosari Fm reefal carbonates in S Mountains show four periods of relative sea level fall. 9.Modeling study of growth and potential geohazard for LUSI mud volcano. Conv.H. (1999). Benjamin & H. Indon. Katacycloclypeus).go.P. Conv. Top Rajamandala changes to dark brown argillaceous foram packstone followed upward by siliciclastic turbidites of Citarum Fm) Jenkins.Lumajang area. East Java') Johannes. Wonosari Formation.Sequence stratigraphic studies in Kawengan oil field. H. No figures) Jeffrey. Geol.. East Java. 45-73. U.0 52 www.com Sept 2016 . Alam (2009). 32nd Ann.Evaluasi stratigrafi batuan karbonat pada cekungan Jawa Barat Utara. 20. PIT-IAGI-2010024. Rajamandala Formation. Indonesian J. & B. Isnaniawardhani. Conv. Abstracts with Programs Geol.bgl. 297-315.K. like in Kromong Complex. HAGI. p. Supriatman S. L. B. J. Geoscience 2. Lehrmann (2008). Conv. West Java. and maximum subsidence 63m below original ground level) Jambak.id/index. I. 139-150. Propinsi Jawa Timur. Petroleum Assoc. Donny Setijadji & I. (Eocene Walat Fm clastics near Sukabumi. B. Assoc. Proc. 3. W Java subdivided into upper anastomosed and lower sandy braided fluvial systems. M. Indonesia. 1. M Miocene (Mid-Main). (IAGI).A. p. Assoc. IAGI and 28th Ann. Pramono.. p. (Early paper on Tertiary gastropods from Gunung Sela.Is the fluvial system in the Walat Formation (Eocene) of Southwest Java attributed to changes in accommodation? Proc. S of Ciremai volcano.A. Mtg.. 157-166. 9p. 40. M. Marine Petroleum Geol. 1. Lombok. p. Kunigan District. 20p.P. facing deep-marine back-arc basin to N. (LUSI mud eruption prediction of future mudflow. MINDAGI (Trisakti University) 7. Proc. 26. V. 6.php/IJOG/article/view/202/199) (Study of core and outcrop samples of M Miocene U Cibulakan and Parigi Fm limestones (with Miogypsina. Conv. Soc. Toha (2005). U Cibulakan). Syafri & V. Presence of sandstone layers at base and presence of quartz sand in reef and lagoon facies suggest it formed as shelf attached to southerly arc.vangorselslist. 28th Ann. America. (Abstract only) (Oligocene Rajamandala Fm of SW Java exposed along N-verging thrust. Sumintadireja & S. Chaerudin (2003). 35-43.Istadi. North-Central Section. (IAGI). Parigi Fm limestone was deposited evenly and continuously. U. one as part of lineation anomaly of Indian Ocean) Juliansyah. 29-32. K. from onshore into Java Sea. Villasenor (2014)Seismicity of the Earth 1900-2012. Vol.Java. (Brief description of magnetic anomaly profiles in forearc S of Java. Furlong. (Heatflows measured in three piston cores in forearc S of E Java: 10.gov/of/2010/1083/n/pdf/of2010-1083-N.. 1 mainly on topography/ physiography and flora) Junghuhn. deszelfs gedaante. 153-171.S. major basin inversion and wrenching at ~7 Ma along E-W trend (Rembang zone. (Review of stratigraphy of NE Java basin..Johnstone.Regional stratigraphic correlation across the East Java basin: integrated application of seismic. Jakarta. (1850). Bull. Petroleum Assoc. Comm. (1853). T.Java.W. Honza & B. Vol. (1872). F. Bernardino. Mazied & M. East Java Basin. bekleeding en inwendige structuur. (1853). Conv. etc. E.Heatflow measurements in the Sunda Arc. Vol.W. Tamaki & A. 1-671. Deutsche Akademie Naturforscher. Benz & A. Systematic description of Java volcanoes and flora) Junghuhn. F. Arisandy (2016). Y. Bull.P. deszelfs gedaante. (Text online at: Google books) ('Java. Res. Amsterdam. 1p. Supangat (1987). (online at: http://pubs. 1-506. Eocene rifting along SW-NE trends. M.pdf) Jonker. 2. showing two strong anomalies.Topographische und naturwissenschaftliche Reisen durch Java. E. outcrop and biostratigraphic data. Baensch. cover and internal structure'. G. Jaarboek Mijnwezen Nederlandsch Oost-Indie 1872. Ed. Kisimoto. Techn.6 mW/m for forearc and 41. McPherson.W. Proc. H. (Text online at: Google books) ('Java. Mainly travel journals) Junghuhn. De gedaante en bekleeding van het land. Gross (2006). 19. 14p. well. M. Rodda. Res. no reference to Lunt (2013)) Junghuhn. The volcanoes and volcanic features'. But biostratigraphy in wells like Bojonegoro 1 suggest deep marine environments) Jones. of classic natural history of Java book. cover and internal structure. Petroleum Assoc. Ganie (1987). its appearance.vangorselslist. H. De vulkanen en vulkanische verschijnselen.. 40th Ann. Widarmayana. p. F. K. M. Volume 2 of 1st Ed. Stevens.3 and 23. ('Topographic and natural science trips through Java'.usgs. M. Indon. its appearance. Van Kampen. Dannemann.M.. p. 19.A revised sequence stratigraphic and depositional interpretation for the Miocene clastic interval in the Cepu region. Survey (USGS) Open File Report 2010-1083N. E.. Van Kampen. (Text online at: Google books) Bibliography of Indonesia Geology. Jakarta 2006.G.K.Geomagnetic anomaly measurements in the Sunda Arc. Vol. ('Report on a survey of coal deposits near Bojongmanik. J. Indon. 1-518.P.. Proc.W. Okuda. Comm. p. 1-494. Joint Prospecting Mineral Resources in Asian Offshore Areas (CCOP). deszelfs gedaante. Oligocene subsidence.Java. Geosc. Bantam. Conf. IPA16-510-G. Central Uplift). A. Java and vicinity. C. 3. Hayes. (IPA). 2. Int. (1845). J. Non-commercial Neogene coal in W Java) Joshima. Van Kampen.com Sept 2016 . Pierce & O. 4 p. first systematic description of natural history of Java by German naturalist Junghuhn in 3 text volumes + Atlas.N. Geol. 6. M. Amsterdam.Verslag van een onderzoek naar het voorkomen van kolen bij Bodjong Manik. Co-Ord. p. 1. With 5 mega-regional S-N seismic/ well cross-sections (Oddly.S. Amsterdam. Bantam'. volume 2.M.0 53 www. bekleeding en inwendige structuur. First Dutch edition of classic. Techn. Co-Ord. Joint Prospecting Mineral Resources in Asian Offshore Areas (CCOP). p. bekleeding en inwendige structuur. A. Yokokura. F. K..W.P. one parallel to forearc ridge. De neptunische gebergten. p.1 mW/m on edge of Roo Rise) Joshima. p. (Suggest deltaic depositional environment of M Miocene clastics based on seismic facies character. F. Magdeburg. 51-54. D. Jawa Barat. 's-Gravenhage. its appearance. (1853-1854). Leipzig. Centre.pdf) Bibliography of Indonesia Geology. zijne gedaante. Volume 3 of 1st Ed. Djawa Tengah. At E end of Rajamandala ridge (Padalarang) Batuasih Fm nannos zone CP18. 201-215. F. Rel. seine Gestalt. Central Java. In: P. Mud samples contain planktonic foraminifera and calcareous nannofossils of Pleistocene age) Kadar. (Unpublished) (Smaller foraminifera fauna in Sangiran Dome. J. overlain by Rajamandala Lst with Lower and Upper Te zone larger forams) Kadar. Ounchanum & B. (IAGI). (1991). Ratansthien (eds. 17-29. Publ. Kadar.org/works/OL187158W/Java_seine_gestalt_pflanzendecke_und_innere_bauart) (German translation of second edition of 1854 Dutch original above) Juniarti. Seri Paleontologi 1. Mieling. (IPA). ASRI basin. Int. p.Early Miocene calcareous nannoplankton from the Sentolo drill hole. 53-62.P. Indonesia. (Some text volumes online at: Google Books) (‘Java. Dev. A. Jakarta. Teknologi Bandung (ITB). Indon.On the age of the Rajamandala and Batuasih Formations. A. Petroleum Assoc. Proc. F.Biostratigrafi nanofosil akhir Oligosen Awal-Oligosen Akhir dan lingkungan pengendapan Formasi Batuasih. Conv.full. Geol. A. volume 3. expanded edition of Junghuhn 1850. Jakarta. p. Kadar & F. CP19b. (Two late Early Miocene nannofossil zones in 103m deep BR-2 hole in Sentolo Fm marls. (Sidoarjo mud volcano main eruption point 200m SW Banjarpanji 1 well. Bandung 1990.vangorselslist. + Atlas.('Java. p. C. cover and internal structure. of classic natural history of Java book: overview of sedimentary rocks (incl. Central West Java. Central Java'. Proc. p.Planktonic foraminifera from the lower part of the Sentolo Formation..P. 2nd Ed. Central Java.. A. Cekungan Bogor.Facies and depositional analysis of sandstone “X” in Gita Member Talang Akar Formation at Alpha Field. en inwendige bouw. Geol. 19th Ann. Aziz (2008). A. Second Dutch. Indonesia. coal.Java. above) Junghuhn.Pleistocene stratigraphy of Banjarpanji 1 well and the surrounding area. Geologi Indonesia.Fauna foraminifera ketjil dikubah Sangiran. (1857). Proc. Foraminiferal Research 5. Pflanzendecke und innere Bauart. (1981). A.0 54 www.Rajamandala Limestone succession: older in East. D. 2nd. 1-964.Biostratigrafi nanofosil Miosen Bawah. 6. Indon.com Sept 2016 . (online at: http://openlibrary. (1990). p. W Java) Kadar.Miosen Tengah Formasi Sambipitu.W. its plant cover and internal structure’. rich foraminifera suggest at least 4 marine ingressions in Pleistocene Pucangan Fm (Sartono 1970)) Kadar. p. Assoc. Arnoldische Buchhandlung. W of Yogyakarta: Helicosphaera ampliaperta and Sphenolithus heteromorphus) Kadar.P.) Proc. p.P. Conf. Res. (On E Miocene. (Apparent diachronous ages of Batuasih marl. Conv. Chiangmai 1990. Bogor Basin. SE of Yogyakarta) Kadar. (2007). p.Pacific Neogene Events in Southeast Asia. planktonic foram zone N1. (1966). 4 text-vols. CP19a. 1. limestones) and fossils) Junghuhn.org/content/5/1/1. ed. 397-404. serta kolerasinya dengan biostratigrafi foraminifera plangton. 1-20. 1. 3p. Ed. Masters Thesis Inst. 31st Ann. (1991). its appearance. overlain by Rajamandala Lst with Upper Te zone larger forams.W. zijne plantentooi. (1975). Geological workshop on Sidoarjo mud volcano.geoscienceworld. The Neptunean Mountains'.P. D. Nannofossils from Batuasih Fm in Sukabumi area CP18..W.Java.early M Miocene nannofossils of Sambipitu Fm stratotype of Batur Agung escarpment. (online at: http://jfr. Southern Mountains. IGCP 246. February 2007. (Oligocene nannofossil biostratigraphy of Batuasih Fm. Foraminifera of the Kalibeng Formation in the Sambungmacan area. Spec.Geological map of the Rembang Quadrangle.) Centenary of Japanese micropaleontology.Upper Cenozoic foraminiferal biostratigraphy of the Kalibeng and Pucangan formations in the Sangiran Dome area.Neogene planktonic foraminiferal biostratigraphy of the South Central Java area. D. Central Java. W of Yogyakarta) Kadar. Spec. Indonesia. (Oldest formation outcropping on Rembang Quad is marine E Miocene Tawun Fm. p. overlain by Bulu Fm platy limestone (N13) and further MioPliocene marine sediments) Kadar. D. Geol. van Roermund. Permana & Munasri (2007). 1:100. D. Upper Kalibeng interbedded limestone.P-T evolution of eclogites and blueschists from the Luk Ulo Complex of Central Java. 6. (1992). Geol. Proc. Package A: Rembang and Kendeng Zones. H.0 55 www.id/fosi) (Planktonic foraminifera from marine Ngimbang. Terra Scient. Int. In: N.N22). Saito (eds. Bandung. p. Indon. 5.Excursion Guide Book. D.. 35-47.sandstone Late Pliocene zones N20-N21.) Quaternary geology of the hominid fossil bearing formations in Java.Pliocene foram zones in Sentolo Fm. p. Dev. (1985). Tokyo. 45. Ed..or. North Central Java. Baharuddin & S. Dev. Ishizaki & T. (13 Early Miocene. Publ. Wijaya.A.. Kujung. Res. Dept. Selorejo and Lidah Formations in Kuripan-1 well. Bandung. (Descriptions and ranges of Ammonia. p. 1-83. Centre (GRDC). schists and gneisses in black-shale matrix. 4.000. Publ. (Four shallow marine benthic foram zones recognized in Late Pliocene Kalibeng Fm. Hastigerina klampisensis) Kadar. D.Rotaliid foraminifera from the Rembang zone area. 245-256. Indonesia. p.A. Massonne. In: K. Spec.iagi. Subandriyo. Dev. p. D. sedimentary rocks. W Progo Mts. (C Java Lok Ulo Cretaceous accretionary-collision complex with tectonic slabs of dismembered ophiolites. Geol. Suminto. Indonesia. Tuban. Kadar. 329-356. Centre (GRDC). Sebayang & E. & Sudijono (1994). p.. (1978). Geology Review 49.com Sept 2016 . Indonesia. North Central Java. Kadarusman. Centre (GRDC). (1985). Spec. Watanabe & D. R. 219-241. with common reworked planktonic foraminifera.vangorselslist. Nanggulan area. Aziz. (Key documentation of Miocene. 95-115. Indonesia. 243-251. Java. (1986). Res. Publ. S Java. Publ. (online at: www. ESCAP. Musliki (1992).Pleistocene (upper Zone P17. Saito (ed.J.Pleistocene planktonic foraminiferal biostratigraphy of the Kuripan-1 well.Late Eocene. confirming the rotalid biozonation established in E Kalimantan can also be applied in NE Java) Kadar. F. Petroleum Assoc. Central Java. petrology and lithostratigraphy of Cenozoic rocks of the Yogyakarta region. Pseudorotalia. Quad. H. Watanabe & D. In: N. Forty-six early M Miocene planktonic foram species identified in Sentolo Fm. Asterorotalia in Miocene of NE Java. North C Java range in age from Late Eocene. Bandung. Kadar.Kebumen areas) Kadar. Pleistocene Pucangan Fm barren) Kadar. Kadar (eds.. A. High-Pressure eclogite and blueschist in thin Bibliography of Indonesia Geology. 1509-14. Japan. Wibowo. p. Res. One new species. Yamagata University. 25-38. Centre (GRDC). overlying 'Old Andesites'.) Quaternary geology of the hominid fossil bearing formations in Java. Patriani (2014). Publ. 6.(One of first studies of Tertiary planktonic foraminifera in Java. D. Central Java. Berita Sedimentologi 29. 4. two brackish lagoonal zones in Pleistocene Pucangan Fm) Kadar.) Micropaleontology. 4. (1981). W of Yogya. Earth Sci. 3rd Working Group Mtg. Geol. In: T. (Lower Kalibeng marls with Early Pliocene fauna. H. Dev. H. D. Res.Planktonic foraminiferal biostratigraphy of the Miocene-Pliocene Sentolo Formation.Y. Kadar (eds. Grades upward ino late EM Miocene (N8-N12) Ngrayong Fm quartz sst. L. Bandung. D..Pliocene foram biostratigraphy of outcrop sections of Java Southern Mountains and Banyumas. p. D.Mapping by the Geological Survey and stratigraphic correlation. 25p. Proc. (1994). ('Study of source rock potential in the Banyumas and North Serayu sub-basins'. Jurnal Teknologi Mineral (ITB). H. Gaol & Praptisih (1996). 25th Ann. 301-311.D. p. ('The marine Mio-Pliocene of NE Java.. Geol. ('Configuration of basement rocks in the Karangsambung area constrained by gravity profiles') Kamtono. 1-12. Conv. p.php/JGI/article/view/32/24) (Gravity survey in onshore NW Java Basin.05 dan To. 3. Volcanics >1124m thick. H. Indon. R. p. A. Cekungan Jawa Timur Utara. In: N. mining operation started in 1992. Praptisih & M. 23rd Ann. Proc.I. Basuki (ed. Indonesia: qualitative and quantitative biostratigraphy of foraminifera and nannoplankton') Kapid.esdm. 1163.bgl. Priadi (2010). 77-84. H. 1.Jatibarang Field. which is mostly covered by young volcanics. J. Analyses of 9 samples of finegrained rocks in Banjarnegara. Total metal content of ore reserves ~68. Rionanda (2015). T.Le Mio-Pliocene marin du NE de Java.Studi foraminifera dan nannofosil pada kala Pliosen. 39th Conv. Massonne. J. 1. 3.metapelites. Geologi Indonesia 7.Contrasting protoliths of Cretaceous metamorphic rocks from the Luk Ulo accretionary wedge complex of Central Java. Indon. Permana. (Jatibarang oil field in volcanics of Eocene. (Late Pliocene Pongkor epithermal low-sulfidation gold-silver deposit on NE flank of Bayah dome in W Java Discovered in 1988. Indonesia: the resources and reserves up-date.Nose structure delineation of Bouguer anomaly as the interpretation basis of probable hydrocarbon traps: a case study on the mainland area of Northwest Java Basin. Indonesian Soc. p. October 1996.J.79 Mt at 14. Schiller (1996). Different P-T paths explained by metamorphism in subduction channel. Riset Geologi Pertambangan (LIPI) 16.0 56 www.L. (online at: http://jgi. (IPA). Indonesia: biostratigraphie qualitative et quantitative des foraminiferes et du nannoplancton.08. Bibliography of Indonesia Geology. Warhana (2012). (MGEI) 7th Ann.Karangsambung area show generally low TOC's (0.. (IAGI). Lombok. Universite de Reims-Champagne-Ardenne. Hartono & H. Sudarman. Lunt & D.go.) Proc. marble). Siregar (2005)..S. Econ. West-Java. and (2) 'continental crustal protolith' metapelites. 1. eclogite).P. Ed. Eman (1994). associated with serpentinite.515 kg gold and 732.id/index. Metamorphics not simply result of oceanic subduction metamorphism along Indo-Australian oceanic plate (Sundaland craton margin). 6. R.Konfigurasi batuan-dasar daerah Karangsambung dengan pendekatan studi penampang gayaberat. K. Indonesia.Plistosen di sumur eksplorasi To.zone between low-grade schists and serpentinite zone. (IPA). Petroleum Assoc.com Sept 2016 . Proc. PIT-IAGI-2010-121.42%). but early involvement of continental crust during collisional event in Karangsambung area) Kalan. chert. T. 229-244. Indon. Geol. H. geologic study of volcanic reservoir for horizontal well proposal. Assoc. Balikpapan. 9p. (1991). Sitorus & M. 157-166. Geol. Conv. Indon. Munasri & B.. red limestone. quartzite. These Doct. (Metamorphic rocks in C Java Luk-Ulo Early Cretaceous accretionary complex two types of protoliths.The Pongkor Au-Ag deposit. p. 53p. calc-silicate rocks and metagranites (gneiss. N-S trending faults) Kamaruddin. H. p. Gas fields of Jatirangon and Cicauh areas exist on flank of nose structure of Pangkalan-Bekasi High.884 Kg silver) Kamtono & D.E Oligocene age.Studi potensi batuan induk pada sub cekungan Banyumas dan Serayu Utara. Low geothermal gradient probably due to high rate of subduction of cold oceanic plate) Kadarusman.IPA field trip to Eastern Java. Reims. (IAGI). some undergone high P metamorphism (blueschist.vangorselslist. p. H. Conv. Assoc. with different P-T evolution: (1) 'oceanic plate protolith' metabasites. P. van Roermund. Two samples from Eocene. Kalan. Jakarta.3 g/t Au and 153 g/t Ag. Petroleum Assoc.1.Early Miocene may have hydrocarbon source potential) Kapid. Eclogites subducted to ~70 km depth at geothermal gradient of ~6 C°/km. Current mineable reserves 4.. while oil/gas field of N Cilamaya is on flank of nose structure of Cilamaya-Karawang High) Kamtono. 06. H. p. NE Java Basin') Kapid.Mineralisasi emas dan mineral ikutannya di daerah Sungai Cijulang. 5-7 Ma. H. G. Jurnal Teknologi Mineral (ITB) 7. 13-43. R. Kariyoso. Same boundary as Van Gorsel and Troelstra (1981) based on appearance of Gr. Suprijanto (1996). 16th Ann. Indon. Kabupaten Ciamis.Pleistocene of exploration wells To.000.('Study of foraminifera and nannofossils in the Pliocene. ('Gold mineralization and associated minerals in the Cijulang River area. 06.C. 55-64.com Sept 2016 .. La Trobe University. E Java. R. Honours Thesis. Conv. quinqueramus zone. Choiriah (2000). Saefudin (1997).05 and To. 3-28. J. p.T. Penosogan and Halang Formations in South-Central Java.The structural development of the Honje High. R. . Keetley.J. Contr. p.Calcareous nannofossils and foraminifera as indices of paleoenvironment (case study on Waturanda. G. Bibliography of Indonesia Geology. Proc. 351-380. & G.C.Structural pattern of South Banten and its relation to the ore-bearing veins. Proc. Congress Pacific Neogene stratigraphy. (Nannoplankton from C Java Karangsambung Fm scaly clays Mid to Late Eocene (NP16-NP21).The structure and geology of the Honje. K. & D. Indonesia. Bandung. Survey Indonesia. Technol. Ngawi. Y.Geologic map of the Majenang Quadrangle. Kapid. R.V. L. Also shoreline displacement of Java Sea toward E since Late Pliocene) Kapid. Bayah and adjacent offshore areas. Uneputty & S. Indon.A. 1. Conv. & S. (Unpublished) Keetley. 26. Buletin Geologi (ITB). Jakarta.l. Kartawa. 6th Ann. (Quantitative analysis of calcareous nannofossils from Solo River. Ledok Fm roughly NN11lower NN12/ D. Ed.A.Batas umur Pliosen/Plistosen berdasarkan analisis nanofosil pada lintasan sungai Bengawan Solo daerah Ngawi Jawa Timur. 8th Ann.Tatanan stratigrafi dan posisi tektonik cekungan Jawa Tengah Utara selama Jaman Tersier. 30-38. p. 1. p. Kartanegara. 99.Early Pliocene in Kali Cilik section.Pliocene sediments. Indonesia. (IAGI). Kusumabrata. scale 1:100. O Sullivan & L. Late Miocene. Comparison between this study and palynology analysis indicates same climatic changes at Plio-Pleistocene boundary. p. (1999). Permana (2003). 1. Melbourne. Kapid. Bayah High and adjacent offshore areas. Hill. West Java. Petroleum Assoc. J. 13-41. Indonesia. Ciamis regency. Cooper. Geology Inst. & P. & A. Petroleum Assoc.E. Indonesia). & S.A contribution to the study of hydrocarbon reservoirs using seismic data in West Java. Chiang Mai 1993.. West Java'. and first appearance of Gephyrocapsa s. suggesting compressional deformation in C Java continued into this time. Geol. 2. (see also Kastowo & Suwarna 1996. Dept. Bandung (ITB) 52.0 57 www. p. R.. J. Pliocene-Pleistocene boundary defined based on top Discoaster s. Buletin Geologi (ITB) 26.l. (1997). Geologi Sumberdaya Mineral 9. 2nd edition. West Java. Effendi & Soegianto (1977). Jakarta.B. (Late Miocene. (IPA).Batas Miosen-Pliosen berdasarkan nannoplankton pada Formasi Ledok dan Mundu di daerah Bukit Kapuan. G. Assoc. P. J. (IPA). Jawa Tengah. Harsolumakso (1996).U. Indon. Purwoko (1979). 8th Int. p. In: J. Jawa Barat.earliest Miocene (NP23-NN2) nannofossils. Underlying Wonocolo Fm is NN10/ Late Miocene. Gold mineralization SE of Ciamis in volcanic breccias of E Miocene Jampang Fm) Kastowo (1975). Geol. 1-116. W. Jawa Timur. Asikin (1987). Overlying Totogan Fm clay breccia with various blocks with Late Eocene (NP 18-20) to Oligocene.Seismic survey in the North East Java Basin. p. 29-42. Koesoemadinata (1962). In: Proc. p. overlying Mundu Fm is upper NN12-NN14/ Early Pliocene) Kariyoso. Bandung. Java. 12 km N of Bojonegoro.Studi nannoplankton pada Formasi Karangsambung dan Totogan di daerah Luk Ulo.vangorselslist.T.T. Proc. 6. Kebumen. truncatulinoides. Pliocene or younger thrusting to N) Katili. Conv. C Java quadrangle with mainly folded Miocene. Southeast Asia (GEOSEA VI).De geologie en geomorphologie van Cheribon. overthrust by sheared.G. Open File Report E35-31. Previously exploited by Chinese for medicinal purposes) Kemmerling. Noble (eds.5 km NW of Rengel cave.Seismic reflection of the Sunda Trench in Eastern Java.C. ('Report on the occurrence of oil shale with therapeutic components (ichthyolt) in the Karangbolong Mountains. Klein. Kertapati. (1987). (W-most Java and Sunda Strait N-S trending half-grabens. Jakarta. granite. 94-100. Sediments possibly large blocks in melange.usgs.) Proc. Banjoemas (Kedu). Douglass). is source of subterranean river. Robinson. W Java'. M-L Miocene and Pliocene) Keil. red radiolarian chert.E. Geol. 305-310. p. p. K. 'lagoonal' fine tuffaceous rocks impregnated with bitumen. Geol. R. pyroxenite. Java). p. (1932). p. chaotic melange. Survey J. 259-269.F. Geol. Indonesia. T. (Earthquakes 1963-1983 show seismic zone dipping to N at 40°. K. K. 7. basalt. Suptandar & Wikarno (1976). also serpentinite and radiolarian chert and reworked Cretaceous Orbitolina limestone in Tertiary conglomerate. Serie 8 (Verbeek Volume). No details on age. gneiss. NW of Bandung. 342-361. 2.. River may be fed by water from sawahs of Grabagan. T.D.. quartzite and marble) and quartz porphyry with fission-track age of 65 Ma. 2. Verslagen Geol. 655-665. between andesite breccias. W. (IAGI). 5. Helvetiae 18. Int. (‘Description of two limestone caves near Bojonegoro. p. Eclogae Geol. U. Kastowo. Indonesia Geol. p. Sands contain no quartz.70°) Ketner.) Kisimoto. In: B.com Sept 2016 . Java’. Java). 305-322. Modjo. (online at: http://pubs.5 km from Nglirip village. Obradovich. Indon. p.L. Geol. with extension phases in Eo-Oligocene.vangorselslist.C. (online at: http://retro. J. Petroleum Assoc. Relatively constant dip of ~40° to S. (IPA). 1-10.B. or from possible absorbtion point 400m E of Manjung. R. 6th Regional Conf.W. E. (1915).Howes & R. BPM survey of thick (>3800m) exposed Tertiary sand-shale section in Ci Kao valley. phyllite with Rb-Sr age 85 Ma. faunas) Koch.Pre-Eocene rocks of Java. Serie 5.pdf) (Pre-Eocene of Lokulo area. G. Y. Verhandelingen Geologisch-Mijnbouwkundig Genootschap Nederland Kol. Res. 605-614. etc.gov/journal/1976/vol4issue5/report. Two large caves in Miocene coral-orbitoid limestone ('zone m3' of Verbeek) in NE Java. Surabaja. Assoc.) Proc. (1925). Indon. all andesite debris. partly of E Cretaceous age (with Late Aptian-Albian Orbitolina. Mineral and Hydrocarbon Res. Survey Bandung. S. Ed. Petroleum Systems of SE Asia and Australasia. gabbro. C Java. p. (1989). Okuda. C.C. ('The Tertiary section of the Tji Kao valley in the Krawang area. Naeser. 19. (1922). Research 4. Pre-Eocene of Jiwo Hills mainly unfossiliferous metamorphics (schist. W.L. p. Rengel (also called Gua Ngerong) just N of Bojonegoro-Tuban road. sedimentary rocks (clastics. Banyumas Residency'.Die jungtertiaren Foraminiferenfauna von Kabu (Res..S. Several localities of (Middle?) Miocene. Melange with metamorphics (schist with K-Ar age 117 Ma. Nglirip multiple cave entrances in teak forest. CCOP Techn. 2.. Situmorang (ed. 19 km to WNW of Rengel) Klein. 23 km apart.A. Both formations unconformably overlain by Eocene conglomerates (with glaucophane schist). amphibolite).K. K. 25-28.Seismotectonics of Java island and adjacent regions.Beschrijving van twee kalkgrotten bij Bodjonegoro (eiland Java).seals. Bull. 6. 5. (1923). Yokokura et al. Jakarta 1987.Verslag over het voorkomen van olieschalie met theraputisch werkzame bestanddelen (ichthyolt) in het Karangbolong Genergte. Verhandelingen Geologisch-Mijnbouwkundig Genootschap Nederland Kol. and serpentinite. limestone).0 58 www. Geology.. Conf. W Java Ciletuh area Letu River with hilltops of peridotite/ gabbro.ch/cntmng?type=pdf&rid=egh-001:1923-1924:18::756&subp=hires) Bibliography of Indonesia Geology. peridotite.Het Tertiairprofiel van het Tjikao dal in het landschap Krawang (W. Sectie Geologisch Mijnbouwkundig Genootschap Nederland Kol. West Java. Possible milliolid limestone facies with isolated patch reefs represents lagoonal back reef) Koesoemadinata. ('Stratigraphy and sedimentation of the Bandung area') Koesoemadinata.5.The utilization of paleo-heatflow to define a source rock maturity: case study at Ngimbang-01. p. K.Jakarta road. A. Quads. Y. Petroleum Assoc..P. associated with 2.8.p.000.vangorselslist.com Sept 2016 . Bali.P. p.) Proc.N. 1-18. E Java.5 Ma). 13.3. R.Middle Miocene submarine fan as a new idea of hydrocarbon stratigraphic trap model in Randublatung Depression Northeast Java Basin. p. Siregar (1984). North-East Java basin. 12. Survey Indonesia. Proc. 318-336. Yuwono (2000).P. 6. 1-11. 10. ~600 m thick. K. 2. Kesumajana & O. Indonesian Assoc. (Short paper describing outcrops SW of Surabaya of Late Pliocene. 28th Ann.P. Sadjati (2000). whereas by using constant heatflow through time. R. Petroleum Assoc. Java)'. (Six sea level falls interpreted during Middle (15. Indon. 1. R. Indon. Graded granular facies represent turbidite toe of slope. North East Java Basin. Koesoemadinata.P. (Abstract only) (In Ngimbang-01 well. Indon.5 Ma) and Late Miocene (6. R. 1. 1-70. (Eocene) source rock would have matured 34 My ago using heatflow history approaching reality. 9/XIVB and 9-XIV-E. p.('The Late Tertiary foraminifera fauna from Kabu (Surabaya residency. Geol.Turbidite Pucangan Formation and petroleum system in the Eastern part of the Kendeng zone. 287-289.. p.P.H.5. (eds.N. NE Java. Noble et al. as evidenced by mounded geometries on seismic.Stratigrafi sikuen Rembang Kendeng kala Miosen Tengah.9 Ma SB) Bibliography of Indonesia Geology. Jakarta. Indonesia. Proc. (IAGI) 2. Ed. Geol.Reef facies model of the Rajamandala Formation. Pulunggono (1975). Petroleum Assoc. Concept of submarine fan new idea for hydrocarbon traps in study area) Koesoemo.0 59 www. (Geologic map of SW Java coastal area) Koesoemadinata. Java.Rajamandala-Tagogapu Area. Geol.boundstones are reef ramparts (quarried as marble). p.P. Post Convention Fieldtrip. R. Bandung. coral-algal bafflestone.Late Miocene sequence stratigraphy of the Rembang and Kendeng zones. 749755. Conv. Tabri & Dardji (1985). R. Rajamandala Area West Java.67. Probably deeper marine faunas. Guide Book. 13th Ann. Seven sequences distinguished) Koesoemo. Some sediments eroded and transported to S and deposited as submarine fans..Carbonate fieldtrip to Tagog Apu. Assoc. (IPA) 14th Annual Conv. & A. Deepwater and Frontier Exploration in Asia and Australasia Symposium. 5.. Y.. Koesoemo.Geology of the southern Sunda shelf in reference to the tectonic framework of the Tertiary sedimentary basins of western Indonesia: J. & S. 1p. Y. Geol.P. Indon.A. Indonesian Assoc. In: R. Conference & Exhibition. Petroleum Assoc. p. foraminiferal algal facies are fore-reef.Geologic map of the Sindangbarang and Bandarwaru quadrangles. 10th Ann. Proc. 1.Early Pliocene age) Koesmono. East Java’. Masters Thesis ITB Bandung. (IAGI). West Java. AAPG Int. M. maturity started at 16 Ma) Koesoemadinata. (1976). scale 1:100. & D. (2004). (1993). Conv. Koesoemadinata.Stratigrafi dan sedimentasi daerah Bandung. of Late Miocene. ENEWSW strike. Bandung. Premonowati & B. (Rajamandala Fm limestone outcrops along Bandung. (2002).P.P. (‘Middle. Jakarta Chapter.Akhir daerah Jawa Timur. Tabri. Indon.Pleistocene turbiditic Pucangan Fm sands. Conv. September 2000. asymmetric folding-thrusting to N. dips 40.60° to S. Hartono (1981). Listing of 107 species of benthic and planktonic foraminifera from foraminiferal marls collected along road Babad-Ngimbamg Kabu-Djombang. Earth Planetary Sci. 163-167. Watanabe.naturalis. muscovite and zoisite (= medium-grade. genesis. Symp. 14.A.000. Int. (1936). (eds. Benschop (1929).) Koolhoven W. HvG)) Kopp. West-Java). Fourth Pacific Science Congress Java 1929. N.) Mineral deposit research: meeting the global challenge 2005. De Mijningenieur 14.Alteration and gold mineralization of the Ciurug vein.repository. p.. 161-164. derived from Ca-rich metasediment?. (Pongkor gold-silver mine ~ 80 km SW of Jakarta. W. 104-109.Over eenige edelmetaal-voorkomens in de omgeving van Poerwakarta (Res. p. 3.nl/document/549446) (Metamorphic rock collected by Harloff from Luk Ulo area. on N slope of Menoreh Mts. Many historic records of gold on Java. 66 p.C. and (4) Selorejo and Lidah Fms (Late Pliocene-Pleistocene). Possible Eocene grey shales with micaceous sandstones and quartz conglomerates.vangorselslist. (4 main depositional cycles: (1) Ngimbang. W. Y.. 6. Overlain by andesitic breccias with intercalations of E-M Miocene limestone with Lepidocyclina. Southeast Asia.Toelichting bij Blad 14 (Bajah). (Critical review of the Java chapter of Badings (1936) paper on Paleogene of Indies Archipelago) Koomans. Yuwono & S.Het Palaeogeen op Java (een kritiek). In: C. 225-235. 9. (2002). Many of precious metal ore occurrences on Sumatra and Java associated with acid liparite/ dacite deposits. Musliki (1996). 995-998.0 60 www. Mao & F.T.B. (1932). Geological map of Java. associated with young basaltic-andesitic volcanics. (2) Prupuh.C. Lcdok and Mundu Fms (M MioceneLate Pliocene). W. Dienst Mijnbouw in Nederlandsch-Indie.Sequence stratigraphy concept applied to the Middle Miocene to Pliocene outcrops in the Northeast Java Basin. p. Letters 197.C. (Gandul hill W of Borobudur and S of Borobudur. p. Carter et al. p. 3. Tuban.C. ('On some precious metal occurrences in the area of Purwakarta (Krawang. etc. 1:100. Indon. (1933). Pongkor Au-Ag deposit. p. De Mijningenieur 13.C.P. Java. Berlin. part 3: vol. (3) Bulu? Wonocolo.. Miogypsina. (1938).A tourmaline-zoisite rock from Loh-Oelo. 26-30. Sequence Strat. (Explanatory notes Geological Map of Java 1:100. Imai and Y. Petroleum Assoc. 1. D.com Sept 2016 . W Java)) Koolhoven. Geologische kaart van Java 1:100.Koesoemo.Toelichting bij Blad 10 (Malingping).000. Y. Four stages of mineral vein formation) Koolhoven. 47-51. W.Salaman road. Timing of ore formation in SW and SE Java in M Miocene. p. C. genese. W. Indonesia. H. map sheet 10 (Malingping') Koolhoven. Krawang. (online at: www. p. p. (Sunda margin BSR occurrences restricted to areas of upward migration conduits for methane-laden fluids) Bibliography of Indonesia Geology.BSR occurrence along the Sunda margin: evidence from seismic data. Jakarta 1995.M.Beschouwingen omtrent voorkomen. Little documentation) Koichiro. p. (Unpublished report E33-73 at Geological Survey. Bandung.) Proc. 14. Excursion Guide D1. but are systematically slightly younger)) Koolhoven.000. De Ingenieur in Nederlandsch-Indie (IV).Geology of Gandoel Hill near Borobudur (Central Java).C. in high-grade epithermal vein-system. 6 p. (1933). Tawun and Ngrayong Fms (Late Oligocene-M Miocene). C Java. Leidsche Geol. In: J.P.B. A. in NW Java in Mio-Pliocene or later. S. (‘Discussion of distribution. Bandung) (Explanatory notes Geological Map of Java 1:100. Caughey. 6-14 (part 2: vol. 2. 329-344.B.B. Indonesia. (1933).000.C. ouderdom en exploratie van goud en edelmetaalhoudende ertsen op Java. with tourmaline. Dienst Mijnbouw Nederlandsch-Indie. age and exploration of gold and precious metal ores on Java’ 3 parts. Kujung Fms (Eocene-Late Oligocene).B. Bierlein (eds. map sheet 14 (Bayah)) Koolhoven. indurated by E Miocene andesite intrusives (4km wide andesite plug). Springer. Motomura (2005). Ed. Mededelingen 10. 1-16. J. E. B. p. Mass balance calculations indicate accretionary processes since late Eocene. H. J. Indonesia. >110 km wide between trench and forearc basin.E.. (Java S margin characterized by distinct variation in lower to upper plate material transfer and recurring catastrophic tsunamogenic earthquakes.Crustal structure of the Java margin from seismic wide-angle and multichannel reflection data. Brotopuspito et al. p. (2007). K.SW Sumatra forearc) Kopp. Singapore 1990. doi:10. p. M.J. Hendrata (1990). Hindle. p. (SEAPEX) Proc. high relief oceanic basement features potentially act as asperities or barriers to seismic rupture) Kopp. H. Klaeschen. 130-142.Backstop geometry and accretionary mechanics of the Sunda margin. Sunda accretionary margin has massive accretionary prism.The Java margin revisited: evidence for subduction erosion off Java.1029/2002TC001420.SW Java allows mapping of backstop regimes. C. A. W.. Geophysical Research 107. Klaeschen.. M. I. Oncken. Cottam & M. Out-of-sequence thrust marks transition from recent active frontal accretionary prism to outer high. Increasing lithification of outer high formed dynamic backstop. Scholl (2009). H. 111-137.) The SE Asian gateway: history and tectonics of the Australia-Asia collision. 6. 399-407. Earth Planetary Sci. Soc. 9.vangorselslist. D. Bialas & C. 1-16. Petersen. E. Bohm. Spec. New seismic reflection data off SE Sumatra. Subducting oceanic slab traced down to almost 30 km underneath accretionary prism. 2034. Moderate seismic velocities indicate sedimentary composition of outer high.. (Seismic data across subduction zone yield used to build cross section of subduction zone. possibly underlain by remnant fragments of oceanic crust) Kopp. Accretion is associated with low values of basal friction) Koswara. M.Anatomy of the western Java plate interface from depth-migrated seismic images.Kopp. linked to subduction of oceanic basement relief and resulting in varying degrees of fore-arc deformation. seismogenesis and subduction processes. which controls accretion today.R. (W Java forearc segmentation into discrete mechanical domains. 100-111. Initially. & N. D. Existence of static and dynamic backstop controls forearc geometry and segmentation of forearc. J.R. (Convergent Sunda margin off Indonesia is accretion-dominated subduction zone. in >500m thick Late Miocene/Tf3 Parigi Fm carbonate buildups) Koulakov.G. Bibliography of Indonesia Geology. W Java margins subducting plate interface shows irregular morphological relief of subducted seamounts and thicker than average patches of underthrust sediment) Kopp. p. Asch. Reichert (2002). geological and petrophysical data: a case study in North West Java. (Evaluation of two onshore NW Java wells ~60km E of Jakarta. (2011)-The Java convergent margin: structure. with examples from S Java. Flueh. Off C Java. Tectonics 22. Luehr. Geophysical Research B08310. Wilson (eds. Hall. 24 p. Manzanares. H. SE Asia Petroleum Expl. B2.. Letters 288. Shallow upper plate crust-mantle transition along Java margin section. (General paper on subduction zones and seismic activity. Kukowski (2003). 19p. H. (High-resolution bathymetry suggests tectonic erosion of frontal accretionary prism by underthrusting of oceanic basement relief such as seamounts and ridges) Kopp.0 61 www. drilled in 1988-1989. Letters 242. O.com Sept 2016 . G. Weinrebe & A. London. J. Adjacent forearc domain with pronounced basin.S. Publ. p. confirmed by supplementary gravity modeling.P. H. C. Wittwer (2006). Reichert & D. Earth Planetary Sci. (2013). 6. D.and Svelocity structure of the crust and the upper mantle beneath Central Java from local tomography inversion. Tectonophysics 589.J.A. Flueh. 355. Society.The control of subduction zone structural complexity and geometry on margin segmentation and seismicity.. In: 8th Offshore South East Asia Conf. Ed. It is composed of frontal wedge and fossil part behind present backstop structure which constitutes outer high. In: R. Shallow subduction processes governed by sediment supply in trench and nature of oceanic lithosphere.The integration of geophysical. Negre & L. outer high evolved as material was pushed against static rigid arc framework backstop underlying forearc basin. Geol. Mededelingen 2. 1927.knaw. 9-16. Early paper on Late Oligocene. C. p. A.id/index. Naucleoxylon spectabile of Crie (1888) re-assigned to Dipterocarpoxylon (Den Berger 1927 re-assigned to Dryobalanoxylon. Geophys.Facies and reservoir characteristics of shallow marine deposit at Cipamingkis River. Conv. a contribution to the knowledge of the fossil flora of Netherlands Indies'. HAGI.K. & V.pdf) (Patterns of seismicity. 12. De Ingenieur in Nederlandsch-Indie (IV).N6) Cekungan Jawa Timur Utara di daerah Tuban.in/jess/apr2011/193.Studi sikuen stratigrafi endapan berumur Oligosen atas. B. explained by complex block structure of crust.Gn Masigit area (N Priangan. (1923). 14p. 120.. 2.Gn. 105-109. 25. Geochem. Double seismic zone in slab between 80-150 km depth. Java). Bolang locality has silicified tree trunks up to 2m long. Java. Specimen from dipterocarp tree family. (online at: www.ac. Leidsche Geol.Bijdrage tot de stratigraphie van het Tagogapoe. Slab dip increases gradually from near-horizontal to ~70°. p. (Online at: www. Earth Syst. HvG).nl/DL/publications/PU00014846. J. 1-8.G. Kon. Java). Bibliography of Indonesia Geology. Bachtiar. E.php/mtg/article/view/194/156) ('Study of sequence stratigraphy of U Oligocene. Age of deposits uncertain. well before collision of Australian continental mass) Kupper. probably caused by regional extension) Krausel.Lower Miocene sediments (P22. Petrified wood from Late Tertiary deposits of Bandung and Batavia belongs to Dipterocarpaceae. East Java'. Inclined low-velocity anomaly in upper mantle links cluster of seismicity at 100 km with MLA and may reflect ascending fluids paths) Koulakov. p. R. Indonesia. Ein Beitrag zur Kenntnis der fossilen flora Niederlandisch-Indiens.dwc. Jakarta. Proc. p. Proc. (1926). A. Geosystems 10.E Miocene Rajamandala Lst W of Bandung) Kurniawan. N to Merapi and Lawu large slow anomaly with E-W zone of fast velocity. Luehr (2009). IAGI and 28th Ann.naturalis.upnyk. MLA). dykes. Prupuh Lst = upper N4. 2. J.Anisotropic structure beneath central Java from local earthquake tomography. (online at: www. This shows probable high content of fluids and partial melts in crust (more likely deep sedimentary basin ?. 8. with 30-36% lower velocities than fore arc at 10 km. Clearly image of shape of subduction zone. HvG) Kundanurdoro. Beneath volcanoes faster velocities in vertical direction. 2. Sci..ac.Uber einige Fossile Holzer aus Java. Interaction of spreading centre with Sunda arc in E Tertiary probably nucleated small horizontal tear on slab and slab detachment process dominated beneath Java arc after 20 Ma (E Miocene) but before 10 Ma (Late Miocene). opima zone (P21) Gr.N6) in NE Java Basin in Tuban area. Ed. Forearc area between S coast and volcanoes heterogeneous.nl/document/549486) ('On some fossil woods from Java'. Ilmiah Magister Teknik Geologi (UPN) 2.Slab detachment of subducted Indo-Australian plate beneath Sunda arc. ('Contribution to the stratigraphy of the Tagogapu.com Sept 2016 .0 62 www. (2009).vangorselslist.pdf) ('On a fossil tree trunk from Bolang. seismic tomography and geochemistry of arc volcanoes reflect horizontal slab tear in subducted Indo-Australian slab beneath Java segment of Sunda arc (105°E -116°E) at depth of 300-500 km. kugleri to above top Ga binaiensis (N6). 32nd Annual Conv. R. Jakovlev & B. Low-velocity anomaly in crust.(Local source tomographic inversion used to obtain 3-D models of crust and mantle wedge beneath C Java. Amsterdam. probably channels. 23p. 6. (online at: http://jurnal. 193-204. Masigit gebied (Noord Priangan. deemed to be new species named Dipterocarpoxylon javanense (= Dryobalanoxylon javanense according to Den Berger. Irawan & D. Apparently good planktonic foram age control from Top Gr. (New tomographic data from local seismicity. Jawa Timur. Apriadi (2003).ias. Crust and upper mantle velocity structure beneath C Java strongly anisotropic. H. (1941). Gahalaut (2011). Akademie Wetenschappen. Six sequences distinguished in open marine marls and limestone (calciturbidites?) in four outcrop sections in Rembang zone E of Tuban. just N of volcanic arc (MerapiLawu anomaly.Miosen bawah (P22.repository. I. p.Uber einen fossilen Baumstammm von Bolang (Java). In crust beneath middle part of C Java. HvG) Krausel. 1-31. P. 60 cm in diameter.lower N5) Kundu. R.Gamping.Gamping Fm. but they relatively common in some samples from Ciletuh Fm.E. 9. C Java’. Kristianto. Paris. Walat and Ciletuh Formations. Y. & H. (‘Nannofossil study of the claystone unit of Wungkal. Assoc. Walat and Ciletuh Fms M Eocene quartz-rich sequences in SWJava Basin.Sedimentary petrographic study of the Bayah. interpreted as lower shoreface to offshore environments. 309. Upward decrease in feldspars and volcanics and increase of polycrystalline quartz in some sequences consistent with uncovering of magmatic arc through erosion) Kusumastuti. Fanani & C. Indon. 1. Indon.edu. volcanic and sedimentary rocks.0 63 www. Indonesia. 1-114. Klaten. Prastistho & S. Porosity 25-35%. Sosromihardjo (2000).. 6.vangorselslist. (SW Java Eocene-Oligocene sandstones ‘recycled orogenic’ (sub-) litharenites. (IAGI). 195215. Bayat. 5p. S. 1. SE of Jakarta. 35th Conv. Discoaster saipanensis. Comptes Rendus Academie Sciences. In: Proc.Studi nanofosil pada satuan Batulempung. 27th Ann. Z. (Lapindo 1994 gas discovery in Pleistocene Pucangan Fm volcanoclastics in E Kendeng zone.uow.Sedimentology and stratigraphy of the Bayah.. Geol. granitic.deltaic.au/theses/1404/) (Bayah. 41-54. Provenance area to N or NE. (IPA). Conv. Twelve facies distinguished.A. Ciletuh Fm submarine fan. (IAGI). 17 gas sands between 500-3000’. Harjono (1989). Ph. based on seismic reflection data (Krakatau campaign)') Lehmann. In Indonesian) Kurniawan. 2012-E13.B. NSW. Boyolali. Reservoir geometries mainly sheet-like. SW Java basin.com Sept 2016 . quartz-rich 'recycled orogen' type) Kusumahbrata. Assoc. Ciletuh submarine fan mainly E to W paleocurrent directions? Provenance analysis suggest rel. 205-212.) Kurniawan.Analisa struktur dan stratigrafi terhadap keterdapatan rembesan minyak dan gas berdasarkan data permukaan di Formasi Kerek.The Wunut Field: Pleistocene volcaniclastic gas sands in East Java. (1994). Volcanic rock fragments rare in most samples from Bayah and Walat Fms.. Yogyakarta. H. Proc. Prasetyadi (2012). in fore-arc region of present Sunda Arc system. 23 rd Ann. Wonosegoro. (On structure. Assoc. B. stratigraphy and oil and gas seeps and outcrop data of Kerek Formation in W Kendeng zone. A. Many of seeps tied to faults) Kusumahbrata. Jakarta.Morphologische Studien auf Java. Bibliography of Indonesia Geology.B. dominated by various types of quartz and chert. barbadiensis. Proc. Murwanto (1994). Petroleum Assoc. Indon. p.Penentuan tektonogenesis komplek bancuh Karangsambung berdasarkan analisis kekar gerus. (online at: http://ro. 41st Ann. p.Extension crustale dans le detroit de la Sonde (Indonesie). Gas charge probably leakage from underlying Miocene Porong Reef) Kusumayudha. Surono. 1-253. 3. R. lintusan Watu Prahu. Proc. most reserves in deepest zone. Pekanbaru 2006. ('Crustal extension in Sunda Straits (Indonesia). O. Sulaeman. Conv. (1994). Cribrocentrum reticulatum. donnees de la sismique reflexion (Campagne Krakatau). Palaeocurrent data of Bayah and Walat Fm suggest sediment mainly derived from NNE. Geol. Formasi Wungkal. Seminar Geologi dan Geotektonik Pulau Jawa sejak Akhir Mesozoik hingga Kuarter.J. Closure formed in Late Pleistocene (gravity-driven detachment related to uplift in volcanic arc?). p. S of Surabaya. Huchon & H. W. Jawa Tengah. some patchy. etc. Conv.P. Proc. Ser. Bayah and Walat Fms fluvial. Suwarlan & S. D. Watuprahu section at Jiwo Hills SE of Yogyakarta contains Late Eocene nannofossil zones NP18-NP19 (incl. (IAGI). (Structural analysis of C Java Karangsambung-Luk Ulo melange and olistostrome complex) Lassal. Stuttgart.. Walat and Ciletuh Formations. Umiyatun (2006).D. p. Darmoyo. mounded geometry. Y. Boyolali area. C Java. 101-120. Ed. Geology Department Gadjah Mada University. A. p. Indon. Geol. Jawa Tengah. P. Thesis University of Wollongong. Geographische Abhandl.C. (1936).(Detailed sedimentological study of M Miocene Cibulakan Fm outcrops of glauconitic sands and shales along riverbed of Cipamingkis River. Southwest Java: its importance for interpreting provenance and petrographic correlation.. p. Analog of age-equivalent hydrocarbon zones in offshore NW Java Basins.I. Yogyakarta. probably derived from mix of metamorphic. Bayat. 11p. R. H. Jakarta. Reservoirs part of NE prograding volcanoclastic wedge from modern arc. Proc. Joint Conv.B. 2. structurally deformed and partly imbricated. In: R. Indonesia. Nanggulan Fm is transgressive sequence) Lelono. Studies in Geology 15. E. 355.E. Mainly on Southern Mountains SE of Yogya and NE Java KendengRembang zones around Cepu.shallow marine. p. (Two profiles across Java Trench P7 and N508 show subduction of Late Jurassic. J.go. Podocarpidites pollen in upper unit indicates cooling. 35. Scientific Contr. associated with substantial crustal thinning. 3. Compressional folding and basin inversion began in Late Miocene and appears to have been continuous into Recent time) Lelgemann.. Oil Gas. 45-80. P. S Sulawesi and Natuna. W. probably triggering submarine slides and turbidity flows. Offshore wells in forearc basin Oligocene volcaniclastics below base Miocene unconformity. G. in Late EoceneOligocene of wells in N Madura. 6. Royal Holloway. E. as these are generally first recorded in Early Miocene of other areas such as NW Java Sea. Generally poor pollen assemblages. Bakker.Active margins 3. Common brackish pollen of Zonocostites ramonae and Spinizonocolpites echinatus indicate mangrove/ back-mangrove environment) Lelono. p.Sea level changes during Middle-Late Eocene in the Nanggulan Formation. 3545-3548. Lemigas Scientific Contr. after collision of Australian plate and Sundaland in latest Oligocene. Spec. p.Transtensional basins in the western Sunda Strait.D. Ed. Gutscher. Reichert (2000).esdm. Bali.B.B. 1-457. 333-345. Uppermost portion of basement. Bibliography of Indonesia Geology. Individual imbrications may bend over toward trench in uppermost part. H.E Java Sea is unusual. (On crustal structure and evolution of Sunda Strait.Recent. Geophysical Res. Cottam & M.Palynological study of the Eocene Nanggulan Formation.E Cretaceous descending Indian Ocean crustt. (2001).) The SE Asian gateway: history and tectonics of Australia-Asia collision.Oligocene palynological succession from the East Java Sea. and 29th IATMI.a picture and work atlas. (2012).lemigas. (Unpublished) (Nanggulan Fm age diagnostic M-L Eocene fauna and palynomorph assemblages. P. Central Java. Weinrebe & C. Neogene transgressive-regressive cycle with basal marine sandstones and limestones. p.vangorselslist. 36th IAGI.B. Wilson (eds. Lelono. In: A. lacustrine elements rare. London. University of London. Many palynomorphs affinity with Indian forms. 14p. American Assoc.J. Thrusts steepening away from trench.. Lemigas.R. Unlike equivalent beds offshore NW Java. Doust. A. H. Introduction of term ‘cone-karst’) Lehner.(‘Geomorphologic studies on Java’. Soc. W Java. Thesis. suggesting plant migration into SE Asia following plate collision in E Tertiary. E. E.A. Bialas. Depositional environment transition non-marine. Ph. Publ. (2000). Guenau (1983). (Appearance of regular Gondwanan/ Australian pollen. (online at: www. Bally (ed. p. including Dacrydium and Casuarina.W. 1. Sediment fill of fore-arc basins Late Oligocene/E Miocene. M.id/ ) (Palynological studies of Oligocene in (unnamed) onshore wells in Ciputat sub-basin.Gondwanan palynomorphs from the Paleogene sediments of East Java?.com Sept 2016 . overlain by imbricated accretionary wedge of sediment. JCB2007-010. Distribution of similar M Eocene palynomorph assemblages suggests Sundaland extended from Java to SW Sulawesi. Transtensional character of the area shown by faulted blocks of arc basement and active normal faults on both sides of large graben at W entrance to Sunda Strait. 32nd HAGI. Morley (2011). E. S part of region 50 km from trench and Moho of downgoing plate is at depth of 28 km) Lelono. (AAPG). This may indicate earlier arrival of Gondwanan/ Australian fragment in East Java area than in other areas of Indonesia) Lelono. p. Flueh. Allenbach & J.) Seismic expression of structural styles. suggesting absence of lake deposit.0 64 www. the evidence of earlier arrival. Letters 27. S Sumatra and C Java. Geol. Petrol.Oligocene palynology of onshore West Java. probably equivalent to M-L Eocene boundary event recorded elsewhere. Geol. Oligocene defined by presence of Oligocene marker Meyeripollis naharkotensis. & R. Central Java. 8-15. M. 67-82. Over 6 km of graben fill sediment. Hall. Java Trench. Doming and fracturing of entire island arc region during Oligocene was followed by Miocene regional subsidence and tectonic quiescence. (2007). based on 1999 seismic survey.J. Reefs on unconformity indicates forearc basin subsided to present depth after Oligocene orogenic pulse. probably pillow basalts.B. E. South Central Java. p.Volcaniclastic controls on carbonate sedimentation within the Gunung Sewu area. Early part of Late Oligocene much reduced rain forest elements with grass pollen. (‘Contribution to the knowledge of Javanese volcanic rocks’) Bibliography of Indonesia Geology.. 70-113.com Sept 2016 .vangorselslist. Rotterdam. with volcaniclastic sedimentation from arc in N and carbonates from shallow platform to S. indicating more seasonal climate.W. suggesting more seasonal climate. 107-132. 1. Thesis Utrecht University.) (E Oligocene characterized by common rain forest elements. Bantam Residency. p. W Java Sea) Lelono. Wyt & Zonen. 34.esdm.Small foraminifera from the Late Tertiary of the Netherlands East Indies.The development of the Miocene Wonosari Formation. & R. 1-648. Sustained periods of volcaniclastic sedimentation resulted in decrease in species but increased numbers of individuals. West Java. 3. Doct. p.Oligocene palynological succession from the East Java Sea. S. Java. Lemigas Scientific Contr. Netherlands East Indies. N of carbonate platform deep (~200-400 m) fore-arc basin. Tectonics and sedimentation of Indonesia and 50th Anniversary Memorial of R. van Bemmelen’s Book. (1999). W Java) Lokier. Thesis. corals and other biota as tertiary elements. Some small foraminifera from the type locality of the Bantamien substage. 27 th Ann. (1941). Indon. p. suggesting everwet rain forest climate at that time. 95-104.J. (1944). (2000). S. rainforest climate. 2. (1879). Quarterly Colorado School Mines 36. L. (online at: www.lemigas.The Geology of Indonesia. whereas for latest Late Oligocene rain forest (and peat swamp) elements return in abundance. 6. Ed. Periodic inputs of marine volcaniclastics in carbonate environment. & R.B.id/id/pdf/scientific_contribution/. LeRoy. 1st FOSI-IAGI Reg. E of Pelabuhan Ratu. suggesting very wet rain forest climate) LEMIGAS/ BEICIP (1974). 3. Morley (2011). University of London. E. p. south area. p. (1999).W. L. Petroleum Assoc. 1-269. p.Miocene foraminifera from Sumatra and Java. p.(Palynomorph assemblages from independently dated marine Oligocene succession from E Java Sea wells here named X and Y. (M Miocene Wonosari/Punung Fm of south C Java active volcanic setting with carbonate development.W. lack of competitors and changes in substrate) Lokier.go. Early part of Late Oligocene much reduced rain forest elements.The Miocene Wonosari Formation. Jakarta.D. 217-222.id/id/pdf/scientific_contribution/…) (same paper as above) Lelono. Palynological succession similar to Sunda Basin. (Unpublished) LeRoy. Indonesia.go. suggesting everwet. Proc. Calcareous algae and larger foraminifera packstone dominate.Geology of the Kendeng zone (Central and East Java). p. Morley (2011). (Unpublished) (Regional study of Middle Miocene Wonosari Limestone in Southern Mountains of C and E Java) Lorie. Small foraminifera from the Miocene of West Java.B.. 50 (Abstract only) Lokier. Lemigas Scientific Contr. Seminar. suggesting superwet climate. Early Oligocene with common rain forest elements. (Descriptions of 107 species of small benthic foraminifera from Miocene marls at Tjijarian bridge. (online at: www. Quarterly Colorado School Mines 39. Bodjong beds. 2. Ph.W. S of E Miocene island-arc a moderate to high-energy carbonate platform developed. and presence of regular Gramineae pollen. Conv. E. 34. Netherlands East Indies.0 65 www. Some interdigitation of sediment types.esdm.lemigas. Indonesia: volcaniclastic influences on carbonate platform development. In latest Late Oligocene rainforest elements return in abundance.W. S.J.Oligocene climate changes of Java.W. 169-176. (IPA). Proc. 3. J. attributed to increase in nutrients.Bijdrage tot de kennis der Javaansche eruptiefgesteenten. South Central Java. (4) Late Oligocene. Survey Indonesia. possible effect of 18 Ma S Central Kalimantan uplift. Conv.. Petroleum Assoc. C. NN4) immature erosional products of metamorphic basement. (3) Early Oligocene half-graben extension. A. P.E.D. 13p. (5) 20-12 Ma tectonically quiescent. (‘The crystalline schists on Java are older than Cretaceous’. In: N. Lunt. not wrench-controlled. 39-72. (IAGI).I.Geology and exploration for low sulfidation epithermal gold-silver mineralization in Kerta. p. (Unpublished Sagaranten sheet of 1:100. P. J. (6) M Miocene/12 Ma fault inversion/ widespread subsidence phase.E Miocene Old Andesite volcanic arc in S Java. through 45° (150. 1340. Indon.com Sept 2016 . (1934). 352). O. simultaneous with widespread carbonates in N Java.000. P. Koulakov. Jakarta. compressional structures with application to Southeast Asia. Sahara (2013). & J. Basuki (ed. Brotopuspito.. S. Publ. 26-36. p. but are in interbedded marl-limestone series ~20m above 'transgressive conglomerate ' with common quartz pebbles on top of chlorite schist. Ratdomopurbo. (Comprehensive book on Java Sedimentary Geology Major tectonic events affecting sedimentation: (1) Late Mesozoic accretion of Paternoster microplate. Detected strong anomaly beneath C Java is unique in size and amplitude. Rabbel. I. P. 15 Ma is max. Geol. Sumbing. so not much left?. W. Ludwig. (2013). Assoc. 2. Herryurianto (2012). Zschau. Econ.P.vangorselslist.000. apparent product of a mid-Early Miocene orogenic event. some unusual aspects of stratigraphy. radiolarian chert and Eo-Oligocene sediments.De kristallijne schisten op Java ouder dan Krijt. Proc. HvG)) Lowell. Beds consistently and steeply S-dipping. probably isoclinally folded. Indonesian Soc. Rembang Line is N edge of accreted ‘Woyla Terranes’. (MGEI) Ann. De Mijningenieur 7.G. 20/21 Ma marks end of ‘Old Andesite’ volcanism. p. p.250 km). (1991). 2012. scale 1:100. Zwierzycki (1926). Toelichting bij blad 30 (Poerwakarta). Conv. Sumatra Pungut and Tandun oil fields do have indications of wrenching) Lubis. Batavia. 6. (7) Late Miocene/ 8 Ma: inversion of ‘Woyla terranes’. 1-45. p. (3D seismic velocity structure of Merapi volcano provided image of lithosphere and subduction zone beneath C Java. p. O. 261.Fluid ascent and magma storage beneath Gunung Merapi revealed by multi-scale seismic imaging.Explanatory notes of Sheet 30. C Java.0 66 www. Dienst Mijnbouw Nederlandsch-Indie. Banten. J. Spec. Singapore. Very different from M Miocene Ngrayong Fm mature quartz sands) Lunt. flood over Sundaland.Geologische kaart van Java 1:100. AAPG Bali 2000 Int.The Neogene geological history of East Java.Wrench vs. (2000). (Example from NE Java basin oil field structures: look compressional. but no clear backarc basins. (limestones being quarried for limestone kilns. Explanatory note to Sheet 26 (Sagaranten). Prihatmoko & Y. Proc. 7-19.A draft review of the Lutut Beds in the type area. and Lawu are located at edge of large low velocity body that extends from upper crust to upper mantle beneath C Java.000 geologic map of Java) Luehr. (Lutut sands from thrust belt SW of Semarang are Early Miocene (N6-N7. (IPA). Geol. to 70° (> 250 km). This segment of arc has high magma flux) Lunt. main phase Rembang-Madura-Kangean zone uplift. Mid-Cretaceous limestones with Orbitolina concavata near village of Karang Tengah in Loh Ulo river area. SEAPEX V. H. Banda and Eastern Sunda arcs. 63-70.S. (1980). Indon.) Proc. ('Geological map of Java 1:100. (2) MidEocene onset of sedimentation.000. Geol. are not intercalated with serpentinite and chlorite schist as argued by Verbeek & Fennema (1896. Ed. p. (8) mid-Pliocene-Pleistocene thrusting episodes) Bibliography of Indonesia Geology. K.The sedimentary geology of Java. 22-25. (1933). p. Conv. Malang. Purwakarta') Ludwig. J. Dip of subducting slab steepens from nearly horizontal (0-150 km from trench).Geological map of Java. 20th Ann.. B. Schists at higher levels and thrusted over Cretaceous sediments (from S to N). J. Fauzi & D. Active volcanoes of Merapi. Volcanology Geothermal Res./ IPA fieldtripappendix.Loth. Burgon & A. J. possibly latest Eocene. Huffman (1998).Indonesian Petroleum Association East Java geological field trip guide book. TD 340m. Kalan (1996). Dev. G. Indonesia. Pseudorotalia indopacifica basal occurrence near base zone N20) Mahfi. Sugiatno (2007). 247-258.Lunt. Sugiatno & T. P.The Pemali Formation of Central Java and equivalents: indicators of sedimentation on an active plate margin. Selorejo and Lidah Fms.F. P. 100-113. Kab. & S.6 ± 4.vangorselslist.Late Eocene clastics overlain by ‘middle’ Oligocene deep marine Tegalsari marls. Ed. (C Java clastics sections near Bumiayu with record of intra-Late Miocene/ ~7 Ma tectonic event) Lunt. (IPA) Fieldtrip Guidebook. Sag phase Oligo-Miocene carbonates show complex distribution. M. Netherwood & O.The Bagelen Beds. Conf. Jawa Tengah. Res. Paleolatitude determinations: Bayat Eocene limestone -22. (IAGI). 12. 11p.com Sept 2016 . H. P. overlain by Late Oligocene-Early Miocene ‘Old Andesites’) Lunt.Biodatum dan zonasi foraminifera bentik kecil serta hubungannya dengan foraminifera planktonik Sumur-95 daerah Cepu.. Central Java. Indon. (1984). Santa Barbara.the role of classic geological skills in 21st century exploration. Asian Earth Sci. 1-186. IPA Field Trip Guidebook. ('Datum levels and zonation of smaller benthic forams and their relations with planktonic foraminifera in well 95. Shallow well W of Cepu. Sumber Daya Geologi 17. M. C. Geol. P.Citarum area. Fuller 1999.From normal to oblique subduction: tectonic relationships between Java and Sumatra. Kalissongo and Karang Sambung show mixture of rotated and unrotated sites.0 67 www. p. 29th Ann. (Examples of application of classic geology in hydrocarbon exploration on Java. very deep marine ‘scaly’ clay olistostrome deposit. Assoc.. Schiller & T. Zen (1995). 1-2. South Central Java. Blora. Petroleum Assoc. Bibliography of Indonesia Geology. Bandung (in press?). 34p. J. 5 (161).A report on fieldwork in the Rajamandala.A paleomagnetic study of Miocene and Eocene rocks from Central Java. (Unpublished Manuscript) (Rajamandala Limestone Late Oligocene age.State of the art or state of decay?.. J. West Java.9 ± 9 °S. (Unpublished report) Maha. Burgon (2003). Yogya Oligo-Miocene basalt -11. 1998. Sanyoto (2000).. Geol. Kulunprogo Oligo-Miocene andesite -8 ± 2 °S)) Malod. 34. Allan (2000).A review of the Lutut Member in the type Area. suggesting local tectonic controls more important than assumed eustatic trends) Lunt. J. Mountains.A. p. Singapore April 2003. 336356. Sugiatno (2003).. P. Cepu area. (Unpublished) (Paleomagnetic results from Bayat. & G. A. (Bagelen Beds of C Java ~10 km N of Lok Ulo are basal Oligocene (~32. Calcarina calcar restricted to Pleistocene (planktonic foram zones N22-N23). & H. 85-93. (Details on Karangsambung. 1-63. Thesis. p. Karta.IPA Field Trip to Central Java. 6. similar to Lok Ulo.5 Ma). SEAPEX Expl. P.. p.A. Java'. p.T. 4.3°S. Southeast Asian Earth Sci. penetrating Late Pliocene. p. & H.O.A review of the Eocene and Oligocene in the Nanggulan area. University of California. Sugiatno (2007). probably with blocks of M Eocene (Ta) nummulitid limestone. Baky (2009). Kendeng zone and Rembang zone outcrops descriptions) Lunt. Underlying quartz-rich clastics are Early Oligocene in age) Lunt. Indon. M. Early Miocene sediments show major tectonic event during quiet sag phase of previous workers.Pleistocene Mundu. Proc. Mix of basement and Eocene boulders in Sangiran Domome possibly from underlying similar E Oligocene olistostrome) Lunt. 1-57.M. P. Baturagung/ Jiwo Hills and Sangiran Dome outcrops) Lunt. p. R. Centre (GRDC). North Central Java. D. Beslier & M. Conv. K. & H. 27p. (S. (Unpublished) (Middle. P. (Oblique subduction beneath Sumatra induces strike-slip faults in Sumatra. Subduction perpendicular to trench SW of Java. Cimandiri FZ of W Java continues out to sea. Sinistral activity on land may be conjugate of dextral strike-slip along NW-SE prolongation of Sumatra strike-slip fault in forearc. Structural transition is S of Pelabuhan Ratu Gulf. To W, oblique subduction induces partitioning into convergent motion and NW strike-slip motion. To E subduction is normal and typical forearc basin develops) Mandang, Y.I. & N. Kagemori (2004)- A fossil wood of Dipterocarpaceae from Pliocene deposit in the West region of Java Island, Indonesia. Biodiversita 5, 1, p. 28-35. (Online at: www.unsjournals.com/D/D0501/D0501pdf/D050106.pdf) (Giant silicified dipterocarp tree trunk 28 m long from Lower Pliocene near Leuwidalang, Banten, W Java, described as Dryobalanoxylon lunaris) Mandang, Y.I. & D. Martono (1996)- Keanekaragaman fosil kayu di bagian barat pulau Jawa. Bul. Penelitian Hasil Hutan 14, 5, p. 192-203. ('Fossil wood diversity in the western part of Java Island'. Of 199 wood fossils, 81% belong to family Dipterocarpaceae (Dryobalanops, Alstonia, Calophyllum, Dillenia, etc.)) Manga, M. (2007)- Did an earthquake trigger the May 2006 eruption of the Lusi mud volcano? EOS 88, 18, p. 1 Mannhardt, F.G. (1920)- Rapport over het voorkomen van asphalt- en phosphaat-afzettingen aan den voet van het Kromong-gebergte, in het District Palimanan der residentie Cheribon. Jaarboek Mijnwezen Nederlandsch Oost-Indie 47 (1918), Verhandelingen 1, p. 9-18. (‘Report on the occurrence of asphalt and phosphate deposits at the base of the Kromong Mountains, Palimanan District, Residency Cirebon’. Four small asphalt deposits/ oil seeps in Miocene limestone ~20 km W of Cirebon, just SW of Palimanan village, known since Verbeek & Fennema 1896. Associated with hot springs and phosphate around Kromong/ Gunung Gundul andesite plug. With 1:20,000 scale map. Stratigraphy description see Harsonon Pringgoprawiro et al (1977)) Mansfeldt, H.A. (1876)- Verslag over een onderzoek naar den stand van de particuliere aardolie-ontgining in de Residentie Cheribon. Jaarboek Mijnwezen Nederlandsch Oost-Indie 1876, 2, p. 183-206. ('Report on an investigation of the private petroleum exploitation in the residency Cirebon'. Report on 1875 government geologist visit to first (minor) Java oil production W of Cirebon. Minor oil encountered here by Reerink in shallow 'Tjibodas' wells near Madja oil seep) Manurung, M. (1988)- Sulphide mineralization in the Gunung Limbung District, West Java, Indonesia. Ph.D. Thesis, University of Wollongong, p. 1-175. (Unpublished) Marcoux, E. & J.P. Milesi (1994)- Epithermal gold deposits in West Java, Indonesia: geology, age and crustal source. In: T.M. van Leeuwen et al. (eds.) Indonesian mineral deposits- discoveries of the past 25 years, J. Geochemical Exploration 50, 1-3, p. 393-408. (Epithermal gold mineralization in SW Java hosted by Miocene and Pliocene intrusions and volcanics. Most ore deposits of Bayah Dome related to extensive Pliocene magmatism dated as 5.7- 2.0 Ma. Mineral deposits localised by structural controls, in particular a strike-slip fault reactivated as normal fault. Lead isotopes suggest existence of underlying Precambrian crust in W Java) Marcoux, E., J.P. Milesi, T. Sitorius & M. Simandjuntak (1996)- The epithermal Au-Ag-(Mn) deposit of Pongkor (West Java, Indonesia). Indonesian Mining J. 2, p. 1-17. Marcoux, E., J.P. Milesi, S. Sohearto & R. Rinawan (1993)- Noteworthy mineralogy of the Au-Ag-W (Bi) epithermal ore deposit of Cirotan, West Java, Indonesia. The Canadian Mineralogist 31, p. 727-744. (Pliocene age (1.7 Ma) Cirotan Au-Ag ore deposit of Cikotok District, SW Java, producing since 1955. Considered as hybrid deposit transitional between low-level adularia-sericite epithermal type and porphyry-tin type of deposit) Bibliography of Indonesia Geology, Ed. 6.0 68 www.vangorselslist.com Sept 2016 Marks, P. (1956)- Smaller foraminifera from well No. 1 (sumur 1) at Kebajoran, Djakarta. Djawatan Geologi, Publ. Keilmuan 30, Seri Paleont., Bandung, p. 25-47. (Study of foraminifera in water well drilled to 255m in 1950 at S side of Jakarta. Mainly barren, non-marine section with 3-4 thin intervals with shallow marine microfauna (Asterorotalia, Pseudorotalia, Elphidium, etc.). Uppermost samples rich in reworked planktonic forams. Age of section latest Pliocene- Pleistocene) Marliyani, G.I. (2016)- Neotectonics of Java, Indonesia: crustal deformation in the overriding plate of an orthogonal subduction system. Ph.D. Thesis Arizona State University, p. 1-392. (online at: https://repository.asu.edu/attachments/170517/content/Marliyani_asu_0010E_16033.pdf) (Analysis of seismicity and active faulting on Java, particularly Cimandiri and Pasuruan Faults and volcano morphology) Martha, A.A., S. Widiyantoro, P. Cummnins, E. Saygin & Masturyono (2016)- Investigation of upper crustal structure beneath eastern Java. Proc. 5th Int. Symposium on earthhazard and disaster mitigation, AIP Conf. 1730, Bandung, 020011, p. 1-7. (Ambient Noise Tomography method used to detect structure under E Java. N Rembang zone, most of S Mountains zone, are areas of high gravity anomaly and high velocity zones. Kendeng zone and most of basin in Rembang zone associated with low velocity zones) Martin, K. (1879-1880)- Die Tertiarschichten auf Java, nach den Entdeckungen von Fr. Junghuhn, Palaeontologischer Teil (1879-1880). E.J. Brill, Leiden, p. 3-164. (‘The Tertiary beds of Java, after the discoveries of Fr. Junghuhn; paleontological part’. First of many Martin publications on Tertiary fossils from Java. With descriptions of many new species, incl. Cycloclypeus annulatus from Citarum valley, W Java. Chapter on corals p. 132-146, mainly from Miocene of Nyalindung area, W Java) Martin, K. (1880)- Revision of the fossil Echini from the Tertiary strata of Java. Notes from the Leyden Museum 2, p. 73-84. (online at: www.repository.naturalis.nl/document/551344) (Brief revisions of 19 species of echinoids originally described by Herklots (1854). Most of these are not new species as proposed by Herklots and many of them are still living today. No figures or locality information) Martin, K. (1880)- Untersuchungen uber die Organisation von Cycloclypeus Carp. und Orbitoides D'Orb.. Niederlandisches Archiv fur Zoologie 5, 2, p. 185-206. ('Investigations on the organization of Cycloclypeus and Orbitoides'. Early descriptions of MiocneJava larger foraminifera Cycloclypeus (C. annulatus, C. communis, C. neglectus) and Lepidocyclina (here still called Orbitoides; including new species radiata, carteri, gigantea)) Martin, K. (1881)- Tertiaerversteinerungen vom ostlichen Java, nach Sammlungen Junghuhn's und der Indischen Bergbeambten. Sammlungen Geol. Reichs-Museums Leiden, Ser. 1, 1, p. 105-130. (online at: www.repository.naturalis.nl/document/552410) ('Tertiary fossils from East Java, from collections of Junghuhn and Indies mining engineers'. Incl. descriptions of Eocene larger foraminifera Nummulites djokjokartae n.sp. and Discocyclina (Orbitoides dispansa) from Yogyakarta area, echinoids (Pleurechinus javanus, etc.), bivalves, gastropods, etc. With 4 plates) Martin, K. (1882)- Tertiaerversteinerungen vom ostlichen Java, nach Sammlungen Junghuhn's und der Indischen Bergbeambten. Jaarboek Mijnwezen Nederlandsch Oost-Indie 1882, Wetenschappelijk Gedeelte p. 253-280. ('Tertiary fossils from East Java, etc', Same as Martin (1881) paper above) Martin, K. (1883)- Nachtrage zu den 'Tertiarschichten auf Java', 1er Nachtrag: Mollusken, nach Sammlungen der Indischen Bergbeambten, Junghuhn's und Reinwardt's. Sammlungen Geol. Reichs-Museums Leiden, Ser. 1, 1, E.J. Brill, p. 194-270. (also in Jaarboek Mijnwezen Nederlandsch Oost-Indie 1883, Wetenschappelijk Gedeelte p. 285-358) (Continuation of ‘The Tertiary beds of Java', part 1, molluscs. Descriptions of 71 species) Bibliography of Indonesia Geology, Ed. 6.0 69 www.vangorselslist.com Sept 2016 Martin, K. (1883-1887)- Palaontologische Ergebnisse von Tiefbohrungen auf Java, nebst allgemeineren Studien uber das Tertiar von Java, Timor und einiger anderer Inseln. Sammlungen Geol. Reichs-Museums Leiden, Ser. 1, 3, p. 1-380. (online at: www.repository.naturalis.nl/document/552425) ('Paleontological results of deep wells on Java, and more general studies on the Tertiary of Java, Timor and some other islands'. Descriptions of Tertiary fossils from outcrops and from water wells on Java (Grissee (=Gresik?)- NE Java, Batavia, Ngembak- W of Purwodadi), mainly collected by Van Dijk of Geological Survey. Mainly on gastropods and bivalves, also fish teeth, crabs. With 15 plates) Martin, K. (1883)- Palaontologische Ergebnisse von Tiefbohrungen auf Java, nebst allgemeineren Studien uber das Tertiar von Java, Timor und einiger anderer Inseln- 1. Jaarboek Mijnwezen Nederlandsch Oost-Indie 12 (1883), Wetenschappelijk Gedeelte, p. 371-412. ('Paleontological results of deep wells on Java, and more general studies on the Tertiary of Java, Timor and some other islands'. Part 1 of Martin (1883) paper above) Martin, K. (1884)- Palaontologische Ergebnisse von Tiefbohrungen auf Java, nebst allgemeineren Studien uber das Tertiar von Java, Timor und einiger anderer Inseln- 2. Jaarboek Mijnwezen Nederlandsch Oost-Indie 13 (1884), Wetenschappelijk Gedeelte, p. 77-216. ('Paleontological results of deep wells on Java, and more general studies on the Tertiary of Java, Timor and some other islands'. Part 2 of Martin (1883) paper above) Martin, K. (1885)- Palaontologische Ergebnisse von Tiefbohrungen auf Java, nebst allgemeineren Studien uber das Tertiar von Java, Timor und einiger anderer Inseln-3. Jaarboek Mijnwezen Nederlandsch Oost-Indie (1885), Wetenschappelijk Gedeelte, p. 5-108. ('Paleontological results of deep wells on Java, and more general studies on the Tertiary of Java, Timor and some other islands'. Part 3 of Martin (1883) paper above) Martin, K. (1887)- Palaontologische Ergebnisse von Tiefbohrungen auf Java, nebst allgemeineren Studien uber das Tertiar von Java, Timor und einiger anderer Inseln-4. Jaarboek Mijnwezen Nederlandsch Oost-Indie (1887), Wetenschappelijk Gedeelte 2, p. 253-342). ('Paleontological results of deep wells on Java, and more general studies on the Tertiary of Java, Timor and some other islands'. Part 4 of Martin (1883) paper above) Martin, K. (1891)- Die Fossilien von Java, auf Grund einer Sammlung von R.D.M. Verbeek und von anderen, Band I, Gasteropoda. Sammlungen Geol. Reichs-Museums Leiden, N.F., 1, 1-2, p. 1-132. (online at: www.repository.naturalis.nl/document/552454) (Reprinted in Jaarboek Mijnwezen Nederlandsch Oost-Indie 1896, Wetenschappelijk Gedeelte, p. 43-328) ('The fossils of Java, based on a collection of R.D.M. Verbeek'. Firsst of series of papers by Martin and collaborators on fossils of Java, published between 1891-1922. Volume 1 mainly extensive taxonomic descriptions of Tertiary gastropods. With 20 plates) Martin, K. (1891)- Die Fossilien von Java, auf Grund einer Sammlung von R.D.M. Verbeek, Mollusken Heft 57. Sammlungen Geol. Reichs-Museums Leiden, N.F., 1, 1-2, p. 133-332 (online at:www.repository.naturalis.nl/document/552458) (Second continuation of Martin (1891) monograph on Tertiary gastropods of Java. Includes 19 species of Turritella, also Purpura, Triton, Acanthina, Ranella, Cassis, Strombus, Potamides, etc.. With 45 plates) Martin, K. (1891)- Die Foraminiferen fuhrenden Gesteine, Studien uber Cycloclypeus und Orbitoides. Appendix in Die Fossilien von Java, auf Grund einer Sammlung von R.D.M. Verbeek, Sammlungen Geol. Reichs-Museums Leiden, N.F., 1, p. 1-12. (online at: www.repository.naturalis.nl/document/552466) ('The foraminifera-bearing rocks- Studies on Cycloclypeus and Orbitoides'. Early summary paper on W, C and E Java larger foraminifera (mainly species of Cycloclypeus)) Bibliography of Indonesia Geology, Ed. 6.0 70 www.vangorselslist.com Sept 2016 Martin, K. (1895)- Neues uber das Tertiar von Java und die mesozoischen Schichten von West-Borneo. Sammlungen Geol. Reichs-Museums Leiden, E.J. Brill, ser. 1, 5, 2, p. 23-51. (online at: www.repository.naturalis.nl/document/552400) ('News on the Tertiary of Java and the Mesozoic beds of West Borneo'. Mainly listings of Tertiary gastropods from various localities of Java. No maps, no illustrations) Martin, K. (1900)- Die Eintheilung der Versteinerungs-fuhrenden Sedimente von Java. Jaarboek Mijnwezen Nederlandsch Oost-Indie (1900), 108 p. ('The classification of the fossiliferous rocks of Java' Overview of fossils and discussion of probable ages of formations from various parts of Java and Madura. Very 'wordy'; no maps, tables or other illustrations) Martin, K. (1900)- Die Eintheilung der Versteinerungs-fuhrenden Sedimente von Java. Sammlungen Geol. Reichs-Museums Leiden, Ser. 1, 6, p. 135-244. (online at: www.repository.naturalis.nl/document/552390) ('The classification of the fossiliferous rocks of Java' Same paper as Martin (1900)) Martin, K. (1907)- Eine Altmiocane Gastropodenfauna von Rembang, nebst Bemerkungen uber den stratigraphischen Wert der Nummuliden. Sammlungen Geol. Reichs-Museums Leiden, Ser. 1, 8, p. 145-152. (online at: www.repository.naturalis.nl/document/552421) (‘An Early Miocene gastropod fauna from Rembang, with comments on stratigraphic value of nummulitids’. Listing of 40 gastropod species from Sedan and Gunung Butak, Rembang District, NE Java, only 6 species still known from recent faunas. Fauna held for Early Miocene (but associated with Cycloclypeus annulatus, so more likely Middle Miocene age, probably Bulu Limestone; HvG). No figures) Martin, K. (1907)- Systematische Ubersicht uber die Gastropoden aus Tertiaren und jungeren Ablagerungen von Java. Neues Jahrbuch Mineral. Geol. Palaont. 1907, 2, p. 151-162. ('Systematic overview of Tertiary and younger gastropods from Java'. Listing of 648 gastropod species names. No illustrations, ranges, descriptions, etc.) Martin, K. (1908)- Das Alter der Schichten von Sonde und Trinil auf Java. Verslagen Kon. Nederl. Akademie Wetenschappen Amsterdam, Afd. Wis. Natuurk., 17. p. 7-16. ('The age of the Sonde and Trinil beds on Java') Martin, K. (1909)- Die Fossilien von Java, auf Grund einer Sammlung von R.D.M. Verbeek, Lamellibranchiata. Sammlungen Geol. Reichs-Museums Leiden, N.F., 1, 2, p. 333-386. (online at: www.repository.naturalis.nl/document/552467) (Second continuation of Martin (1891) monograph on Java Tertiary fossils:. Tertiary bivalves, incl. Ostrea, Placuna, Pecten, Arca, etc. With 12 plates) Martin, K. (1911)- Enkele beschouwingen over de geologie van Java. Verslagen Vergadering Kon. Nederl. Akademie Wetenschappen, Amsterdam, Afd. Wis. Natuurkunde, p. 19-23. ('Some considerations on the geology of Java'. Observations from Martin's 1910 travels in Priangan and Yogyakarta area) Martin, K. (1911)- Vorlaufiger Bericht uber geologische Forschungen auf Java- 1 Teil. Sammlungen Geol. Reichs-Museums Leiden, E.J. Brill, Ser. 1, 9, 1, p. 1-76. (online at: www.repository.naturalis.nl/document/552384) (‘Preliminary report on geological investigations on Java- part 1’. Includes chapters on geology and fossils of Preanger (1: Nyalindung (p. 5-24), 2. Kalksteine von Radjamandala: ‘Old Miocene’ Rajamandala limestone with Alveolina, Heterostegina many Lepidocyclina (p. 24-29), and Yogyakarta areas (p. 56-76)) Martin, K. (1912)- Vorlaufiger Bericht uber geologische Forschungen auf Java- 2 Teil. Sammlungen Geol. Reichs-Museums Leiden, Ser. 1, 9, 1, p. 108-200. Bibliography of Indonesia Geology, Ed. 6.0 71 www.vangorselslist.com Sept 2016 with some gastropods of Eocene affinity. Mitra. (1916).Scaphopoda. 103 species.1158. General part. B. Flosculinella globulosa. B. 2. 3. one near Nanggulan with E Miocene Miogypsina and Lepidocyclina and one just W of Yogyakarta. Geol.Die Fauna des Obereocans von Nanggulan auf Java. Gastropods’. K. 7. Scaphopoda.nl/document/552451) (‘The Early Miocene fauna of the West Progo Mountains on Java. Reichs-Museums Leiden. p. ('Further considerations on the geology of Java' Mainly on Eocene. (1912). N.naturalis. Ed.naturalis.naturalis.Die Altmiocane Fauna des West-Progogebirges auf Java. Lamellibranchiata. 6.Verdere beschouwingen over de geologie van Java. No illustrations)) Martin. Akademie Wetenschappen Amsterdam. with introductory remarks on the geology of the island'. K. Descriptions of very well. 4-5.naturalis. A. Lamellibranchiata. D.(online at: www..nl/DL/publications/PU00012270. with descriptions of shallow marine fossil assemblages of E-M Miocene of S Mountains. Natuurk. 161173. Lamellibranchiata.. with Nummulites. Orthophragmina (= Discocyclina). Reichs-Museums Leiden. Wis. 20. ('Some general considerations on the Tertiary of Java'.Ngampel. p. 6. Includes chapters on (1) folded Eocene beds of Kali Puru nearNanggulan.knaw. Afd.pdf) (Rich Miocene macrofossils from right bank of Progo River. etc. Scaphopoda (Dentalium). Sammlungen Geol. only 7% still alive today. D.dwc. Early overview of Cretaceous. Brill. p. (1919). still some shine and color). Sammlungen Geol. (online at: www. Rundschau 4. ser. (1914). p. Akademie Wetenschappen. (online at: www. (online at: www. Early overview of Java stratigraphy. Proc. Continuation of Martin (1916). Scaphopoda. 1-158. C.Einige allgemeinere Betrachtungen uber das Tertiar von Java. 108 species of gastropods and molluscs and overlain by andesites.. K. Kon. 1151. K. Rhizopoda (larger forams Miogypsina thecidaeformis.).repository.(2) two 'Gunung Gamping' limestone hills.Die Altmiocane Fauna des West-Progogebirges auf Java. K.F.repository. Cycloclypeus. Verslagen Kon.repository. A. (1913).preserved fossils from classic U Eocene locality of Nanggulan.0 72 www. Cardium. D. Leiden. K. Foraminifera'.Unsere palaeozoologische Kenntnis von Java mit einleitenden Bemerkungen uber die Geologie der Insel. Orbiculina)) Martin. p.F. ('Our paleozoological knowledge of Java. 800-804. D. C. Nummulites djokdjokartae. Gastropoda. 261-296. Shallow marine Indo-Pacific mollusc assemblage.(3) localities in Rembang zone Ngandang.vangorselslist. Amsterdam.nl/document/552451) (‘The Early Miocene fauna of the West Progo Mountains on Java. N.com Sept 2016 .On the Miocene fauna of the West Progo Mountains in Java. Chapters A. etc. (online at: www. p. from E Miocene SW of Yogyakarta) Martin. C Java’. 223-261. Reichs-Museums Leiden. fritschi) and E. Rhizopoda.repository. Most likely age Early Miocene) Martin. 107-222. 6.Recent fossils of Java and introduction to Java geology.nl/document/552391) (‘Preliminary report on geological investigations on Java. Potamides. Tertiary mollusc species in Bibliography of Indonesia Geology. Nederl. Conus. 2. with widespread M Miocene Cycloclypeus annulatus limestones and 72 species of gastropods. Discocyclina dispansa. W of Yogyakarta.nl/document/552460) (‘The fauna of the Upper Eocene of Nanggulan. pengaronensis. Main localities: marls at Gunung Spolong and clay Kembang Sokkoh (well preserved. N. 2. Lamellibranchiata (Arca. SW of Yogyakarta:B.part 2’. Gastropoda. W of Yogyakarta. with ages of formations dated by percentages of Recent mollusc species) Martin. of possible Miocene age. Sammlungen Geol.Miocene rocks and fossils around Yogyakarta. p. C. With 8 plates) Martin. (1918). Rhizopoda (foraminifera incl. (1917). Associated with Miogypsina thecidaeformis. Lepidocyclina. (4) Pliocene beds of Candi near Semarang) Martin. K. J. (‘The molluscs of the Nyalindung Beds. 4 p. Gasteropoda. (1931). J. ('Pliocene fossils from Cirebon in Java'. Descriptions of molluscs from fossil-rich claystones of M -L Miocene Nyalindung Beds of Priangan. suggesting absence of open-sea connection between Far East and Europe as far back as Late Eocene) Martin. K. locality descriptions) Martin. Van der Vlerk and Gerth. K. p.F.The age of the Tertiary sediments of Java.M.Die Mollusken der Njalindungschichten. (1926). 3. Additions to Martin (1919) paper. Scaphopoda. Lamellibranchiata. ('Molluscs from the Upper Eocene of Nanggulan'. Verhandelingen 3. Leidsche Geol. Follow-up of Martin 1915 paper.repository. Sammlungen Geol. 754-765. General Part') Martin. K.D. SW Java. Brill. p. 3. Leiden.Eine Nachlese zu den neogenen Mollusken von Java. C Java.Indonesia different from Paris Basin and other European localities. p. No maps or stratigraphy info) Martin. 2. 471-496. 1. Sammlungen Geol.naturalis.naturalis. Lamellibranchiata. Geol. Serie9. Gastropods'. (online at: www.) Bibliography of Indonesia Geology.nl/document/552465) (‘The molluscs of the Nyalindung Beds. Leiden. part 1. Cosijn opgenomen antiklinaal in de residentie Surabaja. Mededelingen 3. Wetenschappelijke Mededeelingen Dienst Mijnbouw Nederlandsch-Indie 20. 162 species of gastropods and bivalves with living species ~15%. collected by Zwierzycki. Nyalindung Beds (W Java) and Tjilanang Beds. (1932). Scaphopoda. suggesting age no older than Late Pliocene. Proc. (1922). Ed. Cosijn'.. (N. 1-56. First Pan-Pacific Science Congress. surveyed by J. 72 new species. suggesting E Miocene age) Martin. No stratigraphy. 149-151. based on new MiocenePliocene mollusc material collected by Geological Survey in W Progo Mts (C Java). ('An Eocene nautilus from Java'. Gastropoda (continuation). Bishop Museum. K.com Sept 2016 . K. (online at: www. p. K. New Nautilus species from Eocene of Kali Puru.. SW of Karang Suwung) Martin. 4. p.Die Mollusken der Njalindungschichten erster Teil. Martin. p. Allgemeiner Theil. Wetenschappelijke Mededeelingen Dienst Mijnbouw Nederlandsch-Indie 18. of which 68% still extant. 1-24. 105-129. Verhandelingen Geologisch-Mijnbouwkundig Genootschap Nederland Kol. (1928).vangorselslist. 7. Wetenschappelijke Mededeelingen Dienst Mijnbouw Nederlandsch-Indie 4.Ein eocaner Nautilus von Java. In: Die Fossilien von Java auf Grund einer Sammlung von Dr. R. 2. p. (1932). Brill.nl/document/549774) ('Supplement to the Neogene molluscs from Java'.) 1. Shallow marine and brackish water molluscs from Pliocene of Tji Doerei.De ouderdom der sedimenten van den door Dr. Nanggulan.F.Bericht over fossielen van Kedoengwaroe in Soerabaja. C Java. 128 species of molluscs at Kedungwaru.J. Bernice P. Reichs-Museums Leiden. Jaarboek Mijnwezen NederlandschIndie 59 (1930). ('Report on fossils from Kedung Waru in Surabaya'. 6. ('The age of the sediments of the anticline S of Surabaya. Verbeek und von anderen bearbeitet durch Dr. Spec. E. E.repository. 113-121. K.Mollusken aus dem Obereocaen von Nanggulan. K. Martin's final paper?) Martin. 446-496. Shallow marine Pliocene molluscs from Kedung Waru anticline along road Jetis-Sidoteko) Martin. K. Honolulu 1920. Reichs-Museums Leiden.0 73 www. Gasteropoda (Fortsetzung). Publ. p. Martin. (1932). K. 3. (1921).Plioceene versteeningen van Cheribon in Java. Taxonomic descriptions of molluscs (mainly gastropods) from the shallow marine Upper Eocene of Nanggulan. N. (1921). 21st Ann. (Unpublished) (3-day fieldtrip to Eocene-Oligocene outcrops at Bayah. (IAGI). Geol. W Java. 29-38. Assoc.. Engelmann. IAGI Conv. & Y. 15th Ann. 362369. (1989). (Eocene. W Java'. incl. W Java. West Java. Indon. Doct. Petroleum Assoc. 2.Oligocene Ciletuh Fm of SW Java has lower slope characteristics and conformably overlies melange complex) Martono. In: L. S. Martodjojo.. Blanckenhorn (eds. S. In: Proc. Located N of S Serayu Mts with famous Luk Ulo melange.P. S. Publ. Res.Paleogene sequence stratigraphy South West Java.Die fossilen Gastropoden. Teknologi Bandung. Bandung 2003. Indon. Workshop Stratigrafi Pulau Jawa. Bandung. Hadiwisastra (1978). 6th Regional Conf. p. 30.) Die Pithecantropus-Schichten auf Java. 1-238. Indon. Geologi Indonesia (J. p. Jawa Barat. (1911). Geol. 46-51. SW of Bandung. Geol. Bull.-IAGI) 12. (1995). M Miocene tuffs) Martodjojo.Geologi struktur pegunungan Serayu Utara. 229-244. IAGI. p. p. Conv. p. Martodjojo. (2003). S. Jawa Barat. S. Geologi Indonesia 5. H. & Djuhaeni (1989).Martin-Icke. (2004). (Eocene-Recent stratigraphy and tectonic evolution of the Bogor Basin. p. Martodjojo. the Bogor Basin. Ed.0 74 www.H.Darmawisata IAGI 1981 ke daerah proyek Saguling. Shifing of arc from N to S left all of Java as basin. 1. Martodjojo.com Sept 2016 . ('Geologic structure of the North Serayu Mountains'. ITB Press. June 1987. Dev.Evolusi Cekungan Bogor. Koesoemo (1993). 31 p. Centre (GRDC).E Miocene in S (Indian Ocean) and modern arc along axis of Java. see also Martodjojo 2003) Martodjojo. Geology Mineral Hydrocarbon Resources of Southeast Asia (GEOSEA VI). 1-30. Selenka & M. Suparka & S. (1986).Early Pleistocene fossil gastropods from Trinil. S. (Three magmatic arcs in Java: Cretaceous. Conv. Cibadak) Martodjojo. Thesis Inst.Stratigrafi daerah Majalengka dan hubungannya dengan tatanama satuan lithostratigrafi di Cekungan Bogor.Sea level changes and tectonism causes and responses between stable Rembang and active Kendeng Zones. Jakarta 1987. Petroleum Assoc. In: B. (IPA). Jakarta. Situmorang (ed. (Fieldtrip guide with geologic summary Saguling Dam area. Res.Stratigrafi Pulau Jawa “state of the art”. Spec.PT Stanvac Indonesia West Java field trip. 1-55. 6. Episodic basin subsidence related to periodic loading by thrust sheets) Martodjojo.Cibinong and Gunung Walat. Bandung. Geol. p.) Proc. Bogor Trough. (1984). Assoc.Status Formasi Ciletuh dalam evolusi Jawa Barat.Evolusi Cekungan Bogor. (1987). Unrevised printed edition of 1984 thesis by Penerbit ITB Bandung) Martodjojo. p. S. Pre-Symposium Fieldtrip. (1992).Eocene in N (Java Sea). S. Dev. M Oligocene.vangorselslist. p. p. fieldtrip. Proc. Miocene turbidite fans in Bogor Basin progressively younger to N. S. 9-19.Recent geological events) Bibliography of Indonesia Geology. collected by Selenka expedition) Martodjojo. Central Java. 15. Centre. (Late Pliocene . N Serayu mountains nearly complete record of Eocene. S. Leipzig. U. (Stratigraphy Majalengka area. Gunung Walat. underlain by Cretaceous-Eocene accretionary crust and backarc basin during most of Tertiary. W Java) Martodjojo. 227-252. Bandung.Stratigraphic and tectonic behaviour of a back arc basin in West Java. ('Evolution of the Bogor basin. 396 p. Geologische und palaontologische Ergebnisse der Trinil-Expedition (1907 und 1908). Sujono (1981). S. Indone. Ciletuh. Post-Convention Fieldtrip. Sreymean. W of Wates.bgl.bgl. (online at: http://ijog. (2015).forereef slope facies. Milsom.Mineralization environment of the metamorphic rock-hosted Au prospect at Kebutuhjurang.com Sept 2016 . S. Petrography of Miocene limestone in Ngrijang Sengon section in Gunungsewu geopark region) Masson. ('Limestone sedimentology of the Jonggrangan Formations along the Kiskendo Cave section. J.G. K. Citatah. p. Dwiyanto & H.Sedimentologi dan diagenesis batugamping Formasi Wonosari di Ngrijang Sengon.reef flank facies with several reef core facies) Maryanto. Lunt 2013) Maryanto.vangorselslist. Geologi Sumberdaya Mineral 16. Boyce (2011). Jawa Timur. 6.Perkembangan sedimentologi batugamping berdasarkan data petrografi padi Formasi Sentolo di sepanjang lintasan Pengasih.E Miocene Rajamandala Lst in Sanghyang section 180m thick.id/artikel/pdf/perkembangan-sedimentologi-batugamping. Yonezu. 4. Measured section of M Miocene-Pliocene Sentolo Fm at 4km long Pengasih section.go. Eastern Java') Maryanto.0 75 www.Maryanto.Sedimentologi batugamping Formasi Rajamandala di lintasan Sanghyang. (online at: www. 3. ('Diagenetic processes in Lower Miocene limestone of Campurdarat. S. J. 113-122. 105-120. Watanabe. Kulonprogo.esdm. ('Sedimentology of the Rajamandala Limestone Formation in the Sanghyang section. Pacitan. Girimulyo. 2. Geologi Indonesia 4. changing upward to interbedded forereef slope. West Bandung'. S. Sub-circular seamounts are seen. 115-127.Sedimentologi batugamping Formasi Jonggrangan di sepanjang lintasan Gua Kiskendo. S. S. 2. on SE side of Kulunprogo High) Maryanto.php/IJOG/article/view/81/81) ('Dolomitization in the Rajamandala Lst Formation in the Gua Pawon section. Ocean crust shows pattern of normal faults typical of outer wall of trenches.W. (online at: http://kiosk. Petrography and depositional environment interpretations of ~150m thick E Miocene reefal limestone in Kulun Progo area of S C Java (=equivalent of Wonosari Lst farther E. (2012).geology. Citatah. Ed. 3.. (2013). Regressive sequence from deeper shelf margin. Bibliography of Indonesia Geology.M Miocene. 73-87. Inthavongsa & A..M. J. Nichols. Basal part in reef core.id/index. fore slope talus. J. N. East Java'. Kokap. Kulonprogo.go. ~30km WSW of Yogyakarta. J. Sumber Daya Geologi 22. B. Jawa Timur. Kulonprogo'. Bandung Barat. Geologi Sumberdaya Mineral 4.) (Sedimentological development of limestone based on petrographic data of the Sentolo Formation along the Pengasih section.php/dir/article_detail/402) (On diagenesis of M-L Miocene Sentolo Fm limestones. Sumber Daya Geologi 23. Kulon Progo'. (2009). J. 2. latest E. Kulunprogo.Pendolomitan batu gamping Formasi Rajamandala di lintasan Gua Pawon. Geologi Sumberdaya Mineral 16.esdm. (Sidescan sonar bathymetry of E Java Trench between 108° and 120° E shows volcanic seamounts in process of collision with accretionary wedge. Pacitan. A. 203-213. J. (Sedimentology and diagenesis of limestone of the Wonosari Formation in Ngrijang Sengon. Kallagher (1990)Subduction of seamounts at the Java Trench: a view with long-range sidescan sonar. Geologi Indonesia 7. K. (2015). Parson. S. Late Oligicene. Imai. p. J. p. platform to back reef) Maryanto. age probably Tf 1.id/publication/index. J.esdm. 5165. L. p. I. Middle part of latest Oligocene Rajamandala Fm commonly affected by dolomitization. G. Tectonophysics 185.J. 36. W Bandung'. Warmada.Limestone diagenetic records based on petrographic data of Sentolo Formation at Hargorejo Traverse. large crescentic areas of very high backscattering correlate with re-entrants in deformation front and large indentations in wedge) Matsuda. S Mountains.Proses diagenesis batugamping Miosen awal di Campurdarat. S. p. generally associated with meteoric water dissolution creating several caves) Maryanto. I..go. S. D. p. Bandung Barat. Sikumbang. 213-229. p. Where subducting seamounts are colliding with accretionary wedge. reef flank. Girimulyo. 2-8. (2012).. (1994). p. some currently being subducted. Y. Indonesia. D.jp/download/TPPSJ/TPPSJ_NS134. Fukuoka 2011. Kimata & Y.pdf) (Dinoflagellate cysts from Eocene Nanggulan Fm at Kali Puru section. Krotkiewski. A.palaeo-soc-japan. Abidin. Thermally altered Ngimbang Fm source rocks (>4400m depth) could generate erupted gas.A new hydrothermal scenario for the 2006 Lusi eruption. King. Letters 261.. 3. 20km W of Yogyakarta.com Sept 2016 . W of Yogyakarta. Indonesia. 134. (1981). Palaeobotany Palynology 40. incl. Conv. Glaphyrocysta circularis and G.. Podladchikov. P. H. & S. 1-2. p.Strike-slip faulting as a trigger mechanism for overpressure release through piercement structures. (Gas from Lusi eruption shows CO2 and CH4 have deep thermogenic origin. Palaeont. p. 2. I. I. N. 1751-1765. Indonesia. Disaster Res. G. Not much regional info) Milesi. Japan. F.Banjarnegara Regency. 2005 (Mw = 8. Akhmanov. In: Proc.388. Economic Geology 89. In: T. Bowman. Implications for the Lusi mud volcano. Indonesia.. E. Indon.Dinoflagellate cysts and Pediastrum from the Nanggulan and Sentolo formations in the middle Java Island. (New gonyaulacacean dinoflagellate species Danea heterospinosa from Nanggulan Fm of Kali Puri. Indonesia. Etiope & H. p. S. Petroleum Assoc. Hanifa. I. Svensen. P-05. 305-318. (E Java Sidoarjo mud volcano triggered by Yogyakarta earthquake. p. Marcoux. 26.5 km NW of Nanggulan village. 13 species of Paleogene dinoflagellate cysts belonging to nine genera of Gonyaulacales group. Earth Planetary Sci. C Java. D.) Micropaleontology. Proc. K. H. Mantle He from Lusi suggests deep magmatic intrusions from Arjuno-Welirang volcano.. Indonesia. Letters 317-318. Svensen (2012).3) and March 28. T.A new dinoflagellate cyst (Danea heterospinosa) from the Eocene of Central Java. 48-52.. Sukandar & J. A.Triggering and dynamic evolution of the LUSI mud volcano. (online at: www. Nehlig. 39th Ann.Seismic activity in the Sumatra-Java region prior to the December 26. Harjono. R. Soc.. Earth Planetary Sci. J. 115-126. Bibliography of Indonesia Geology. Yamagata. Jakarta.P. J. Ed. A.7 Ma hybrid epithermal Au-Ag-Sn-W deposit. mostly off Sumatra. (Seismic hazard prediction paper. K. 2004 (Mw = 9. 9. Lusi is not mud volcano but sediment-hosted hydrothermal system) Mazzini. Matsuoka. (1984). 15p. G. M. Mazzini. petrology and lithostratigraphy of Cenozoic rocks of the Yogyakarta region. 7. p. Marine Petroleum Geol. Lusi hydrocarbons derive from Ngimbang-–Kujung petroleum system. Indonesia.Z.vangorselslist. p. Saito (ed. Proc. 1st Asia Africa Mineral Resources Conf. Felenc (1994). (2007). 6. 1. Kato. (1983). Aloisi et al. K. H. A. West Java. 12-18. 374-387. Letters 244. (GPS measurements suggest E-W trending Lembang fault N of Bandung has shallow creeping portion at 6 mm/yr and deeper locking portion below 3-15 km) Mignan.G. Earth Planetary Sci. p. 375. & R. dentata of Ceratioid Lineage and Exochosphaeridium reticulatum and E. Rino. Trans. Cepu Block.A. H.Formation evaluation lessons learned from Banyu Urip Field. IPA15-G-227. Associated with M Eocene calcareous nannoplankton assemblage of zones CP 13-CP14) Matsuoka.0 76 www. 227-245. Wertanen (2015). R.Cirotan. G. Four new species.0-9. Svensen (2009).S. Sarsito. Indonesia. 639-654. Lacassin. Y. Nermoen. p. Gumilar. Japan.Some dinoflagellate cysts from the Nanggulan Formation in Central Java. Fukuda (2012). Planke & H. Dmowska (2006). (IPA). Andreas. p. Matsuoka. G. p. Sunarya. Central Java.7) earthquakes. Insights from gas geochemistry. Central Java. a 1.. (Strike-slip movement of Watukosek fault triggered Lusi eruption and synchronous seep activity witnessed at other mud volcanoes along same fault.Slip rate estimation of the Lembang Fault West Java from geodetic observation. Rev.. A. brevispinosum of Gonyaulacoid Lineage) Maura. A. not nearby drilling) Meilano. Possibility that drilling contributed to trigger eruption) Mazzini. Geol. Suggests Aquitanian age for Spiroclypeus limestone and Burdigalian age for Flosculinella-bearing limestones) Mohler. close to internal rim of caldera. East Java Sea. (AAPG). Pelitic schists dominate and have late Early Cretaceous K-Ar ages.A jadeite-quartz-glaucophane rock from Karangsambung. rather than Lower Eocene and represents reef deposit formed at same time as Nanggulan limestones farther W (already identified as Late Eocene Pellatispira limestone by Gerth 1930. K. 111-137. T. 4-6. is mineralized right-lateral strike-slip fault in Late Miocene volcano-sedimentary series (9. 519-521. (Pongkor large 1988 gold-silver discovery. Eclogae Geol. Central Java. south of west Java. 2.. Shaw et al. Exhumation from upper mantle to lower-middle crustal depths by buoyancy. 329-332. Helvetiae 42. p. American Assoc. I. W. p.T.Optimizing appraisal via a fit-for-purpose seismic inversion conditioned geologic model: a case study from "J" Field. (Reservoir model of Jambaran gas field. T. 6. Island Arc 7.wolframite (Sn-W-Bi) enrichment in late stage of mineralization indicate remobilization of Precambrian continental basement) Milesi.. IPA08-G-116. Bibliography of Indonesia Geology.7 Ma. 32 nd Ann.) Seismic interpretation of contractional fault-related folds. CCOP Techn. East Java. Anwar Maruyani (2008). E. Wakita (1998). Lead isotopes suggest common origin for gold deposit and Pliocene andesiticdacitic magmas to which gold is related. Jakarta. K-Ar (exhumation?) ages of micas in associated quartz-mica schist all between 110-117 Ma= Aptian-Albian) Mohammad. Petrol. LeRoy & L. Cepu Block. Ohtsuka. Four main mineralized quartz veins.vangorselslist. Marcoux. K. Bailly (1999). 223-230. basalt.Pongkor (West Java. Indonesia. 100-102. Ed. Java. 80km SW of Jakarta. p. limestone and ultrabasic rocks. SW Java. dated at 1. Rahardjo & K. S. sandstone.A. steeply dipping. glaucophane rock. Minor eclogite.Dinoflagellate cysts from Miocene outcrops on Java island. creating syn-extensional Prupuh structure) Miyazaki. E Java. chert. (High-P metamorphic rocks in Karangsambung part of Cretaceous Luk-Ulo subduction complex.P. A. Limestone of Gamping outcrop W of Yogya is Upper. Indonesia): a Pliocene supergene-enriched epithermal Au-Ag-(Mn) deposit. SE Java' Southern Mountains.com Sept 2016 . Morgenroth. Bull. with faultbounded slices of shale.5 Ma).Das Alter des Eozan-Kalkes von Gunung Gamping westlich Djokjakarta.0°C/ km. 89-105. Lead isotopes suggests source of mineralization and associated volcanics is underlying ancient continental crust that melted and remobilized in Pliocene (as applicable to entire Bayah Dome)) Mitra. p. Java’. Indon. Unusual cassiterite. W.. (Sakala structure E of Kangean Island is E Miocene compressional inversion of Late Eocene-Oligocene extensional zone.(Cirotan is main gold mine in Cikotok District.A. (2005). 19. (1949). Bayah Dome. (‘The age of the Eocene limestone of Gunung Gamping W of Yogyakarta. Rock formed by metamorphism of cold oceanic lithosphere subducted to upper mantle depths. HvG)) Momma. In: J. Simandjuntak. Helvetiae 41. M. Sitorius. Conv. Lyttle (2008). with 2. (1949). Eclogae Geol. (IPA). Mineralium Deposita 34. p.05 Ma 40Ar/39Ar age of adularia samples.5 Ma) intruded by Pliocene microdiorite (4. Proc. garnet-amphibolite and jadeitequartz-glaucophane rock as tectonic blocks in sheared serpentinite. 10p. Sony R. B 278. H. an AAPG seismic atlas.. J. (Spiroclypeus and Flosculinella in limestones of the coastal ranges between Pacitan and Blitar. Studies in Geology 53. Ohara (1987). Palaeontographica. p. Indonesia.Deep-towed sonar and camera observations at the Sunda forearc region. Low-sulfidation epithermal deposit.0 77 www. Zulkarnain & K.Spiroclypeus und Flosculinella in Kalken aus dem Kustengebirge zwischen Patjitan und Blitar (Java). J. Petroleum Assoc. J. Sopaheluwakan. Indonesia. Oligo-Miocene carbonate buildup with >1400' gas column and thin oil column) Mohler. & C.Structural inversion along the Sakala Fault. P-T conditions indicate rock subducted to ~80 km with T gradient 7. 131149. Tanaka & T. P. Gold deposit. (eds.H. p. 350m thick. Paleocurrents showing bimodal dispersal pattern (no data. 10. B. H. p. Geol. Thesis. Rahardjo & S. Budiyani. also around Early. Jakarta. A. Indon.Micropaleontological examination of samples from the geological survey in Tuban. Principal paleocurrent direction of Ngrayong Sst from N to S and NE to SW. Geol. Ed. M. Sedimentological studies of turbiditic facies of Kerek Fm in Kendeng zone and Ngrayong Fm in Rembang zones (Ngepon. from genera Achomosphaera.com Sept 2016 . 1-335. Muhaimin. Indon. M Miocene Air Benakat Fm) Muchsin. 7p. Armandita. Gegunung. Hystrichosphaeropsis. C Java. (Unpublished) (online at: https://tel.W. (Study of outcrop sections of E Oligocene (?) Walat Fm quartz sandstone in Cibadak. Alam (2012). Geol.) Morgenroth.Dinoflagellate cysts from two Oligocene surface sections on Java island. 4-6. each starting with transgressive.J. tied to plate motions.SE) Bibliography of Indonesia Geology. Indonesie: sedimentologie d’un bassin d’arriere arc. M. Res. B 284. (Summary of palynology work in Java (Eocene of Nanggulan and Bayah).LEMIGAS Tertiary palynology project: aims. (IAGI). HvG). p.Pelabuhan Ratu road (M Miocene Cimandiri Fm). Lelono. Yulihanto et al. 37th Ann. Prantakan. Petrographic analysis shows arkosic arenite with quartz 69%. Javadinium. Bandung. Palaeontographica. influenced by tides. Proc. 15 new. T.With Scoyenia and Skolithos ichnofacies. (Unpublished) (English translation of BPM report on NE Java basin stratigraphy and foraminiferal zonation) Muin. p. Dinoflagellate cysts in phosphatic nodules heavily affected by thermal metamorphism.B.. (1957). p.W of Sukabumi. Lejeunecysta. Assoc. Doct. Universite de Grenoble. C. 1. P.B. 58-67. (Two Oligocene surface sections studied in W Java. 29 species. N.0 78 www. Padalarang section planktonic foraminifera indicative of zones P20-P21. Late Oligocene Talang Akar Fm. R. Dinoflagellate cysts may indicate slightly younger age than Batuasih. Ryacudu. E. ending with regressive phase. Twenty-six dinoflagellate species found. BPM Report SB1770.archives-ouvertes. 14 p.. Husen & W. Bogor Trough. Batuasih Fm near Cibadak and equivalent section near Padalarang.fr/tel-00711880/document) (NE Java backarc basin mobile zones of both great subsidence and lateral displacements. Foraminifera and nannoplankton date Batuasih section around Early-Late Oligocene boundary. Proc.vangorselslist. Nugrahaningsih & Nur Hasjim (2000). Indon. Bandung. E Miocene Gumai Fm. Yogyakarta. Dev. Proc. Ito (2008). Tertiary basin evolution placed in paleogeographic context. Spiniferites. Conv. L. including three new species) Morley. paleocurrents downslope from W to E.. Anwar Maruyani (2011).. Indon. M Miocene Kerek Fm derived from mainly volcanic source in S) Mukti. Operculodinium. (2002). feldspar 21 % and rock fragments ~10 %) Muhar.Contribution a la geologie du basin nord-oriental de l’ile de Java.Late Oligocene boundary. Most samples common dinoflagellate cysts. Conv. Sumatra (E Oligocene Pematang Fm. 27-47.(Dinoflagellate cysts in three Miocene surface sections in West and C Java: Cipimangkis River near Jatiluhur (Late Miocene Cisubuh Fm). characterized by 5 megasequences. Musliki (1993). R. S. Kali Jaya NNE of Kebumen (around E-M Miocene boundary) and Cijarian River along Bogor. A. 2012-SS-18. etc. Kunto.Miocene hydrocarbon system of the Southern Central Java region. 1-39. (M-Late Miocene Halang Fm volcanoclastics in W part North Serayu Basin. 31st Ann. Assoc. both marine claystones overlain by Rajamandala Fm limestones. Geol. Ser. p. (IAGI).Post-convention field trip 1993.Turbidites depositional systems of the lower part of Halang Formation. A. (IAGI)..125-157. Petroleum Assoc. 162-176. Indonesia. Maulin & M. 41st Ann. progress and preliminary results from the Middle Eocene to Pliocene of Sumatra and Java. stratal architecture of slope to basin floor succession. (1985). Assoc. Conv. (IPA). etc. & S.T. Paleontol. Rahardjo & K.The tide-influenced fluvial facies architecture analysis of the Walat Formation. Interpreted as multistory high-sinousity fluvial channels in lower coastal-plain. R. 6. Edwardsiella. p.).Central and East Java. Centre. Dilabidinium.M. Mudjito. Jakarta. Most prospective interval deemed to be M-L Miocene turbiditic reservoirs) Muljana. p. larger foram packstone.M. p. M. IPA09-G-168. B. In: Proc. Indonesia. Muljana. (online at: http://lib. Armandita (2009). Hendrizan Praptisih & M. an upper Miocene submarine-fan succession in West Java. (eds. Kyushu University.. 427-428. Jakarta.Late Miocene Wonosari Fm in E Pacitan. 55-62. Pasiran Fm and Pamekasan Fm. & Darji Noeradi (2009).org/journal/index. Ito (2010). p. with slope environments to the North of the reef zone and back reef.Int. E-M Miocene Penanjung ‘flysch’. M. 6. 33rd Ann. M.) Proc. Indon. 11. Watanabe (2011).vangorselslist.Tinjauan stratigrafi dan tataan tektonik di Pulau Madura. No evidence for source from continental terrain.. Conv. Praptisih & N. Symp. Tuban Fm. 2. 231.Discovery of outcrop-scale fine-grained sediment waves in the Lower Halang Formation. Siregar. (M-U Miocene Wonosari Fm carbonates represent reefal or outer shelf facies. 253-258. Earth Science and Technology. Conf. Earth Science Technology. S. West Java. and algal-foram packstone facies. 2nd Ann. M. M. 1. (Pertamina work in S part of C Java with oil seeps and hydrocarbon shows in shallow BPM wells.Petroleum possibilities of the Banyumas area. West Java.121000006-mmmukti.inner shelf environment to S and W) Mulhadiono.0 79 www.Mukti.Carbonate depositional environment in the East Pacitan area. Pasean Fm. foraminifera packstone-wackestone.id/digitasi/upload/2994_MU. Kyushu University.S. from lowest up: Ngimbang Fm. (On fine-grained sand waves in muddy overbank deposits of channel deposits in lower Halang Fm turbidite system in Late Miocene Bogor Trough back-arc basin. M. 121-129. Indon. Fukuoka 2011. M. Tawun Fm. Jawa Timur. Sukendar (1986). (online at: www. 1-8.M.Modal and sandstone composition of the representative turbidite from the Majalengka Sub-Basin. 29-38. Geologi Indonesia (IAGI). J. & A. West Jawa. Sedimentary Geol.ugm.ac. Include coral boundstone facies. p. W Java) Mukti. Ed. 65-68. Setijadji et al. Watanabe (2012). W Java re-interpreted as longitudinal turbidite system downsloping in E along axis of Bogor Trough) Mukti. p. Harsono P. Symposium on Earth Science and Technology.Sandstone composition and provenance of the Cinambo and Halang Formations in Majalengka. overlain by earliest Miocene Gabon volcanics (= 'Old Andesites'). representing reef-associated carbonate platform.php/jgg/article/view/14122) (Majalengka subbasin with ~4 km thick M-L Miocene turbidite-sequence. Int. p. M Miocene Kalipucang Limestone. Siregar (2009)..larger foram rudstone. coral. Fukuoka 2009. Int. Petroleum Assoc. Muljana. p. Lithic fragments mainly andesitic grains) Bibliography of Indonesia Geology.D. Petroleum Assoc.pdf) (Carbonate sedimentological study of M . Sedimentation and tectonics closely interrelated) Mulhadiyono (1973). No geology map. (Revised nomenclature for Madura Tertiary rocks proposed. Stratigraphic column showing oldest rocks Late Oligocene marls. Seminar on Geology of Southern Mountains. Sandstones mainly recycled orogen (from developing thrust-fault belts) and magmatic arc provenance from Oligocene magmatic arc at S Mountains. 3-17. Indonesia. Conv. & K. SE Java. B. In: L.M. Int.Provenance of volcanogenic turbidite in Majalengka. Proc. West Java. 14p.ccsenet. Yogyakarta 2009. Ito & C. B. Kujung Fm. (IPA). Proc. J. & K. (IPA). (Lower part of volcanogenic U Miocene Halang Fm S of Kuningan. Quartz mainly from recycled sediment.Carbonate depositional environment and platform morphology of the Wonosari Formation in the area East of Pacitan. Back reef-inner shelf environment interpreted to S of Pacitan area) Mukti. Proc. Geography Geology 4. p.M. & M. Riset Geologi Pertambangan (LIPI) 16.Architectural elements of a longitudinal turbidite system: the upper Miocene Halang Formation submarine-fan system in the Bogor Trough. Supriatna (2005).com Sept 2016 . Indonesia. S.ac. 4. p. Kuala Lumpur 2013. Fukuoka 2011.Banyu Urip. (1988). S.The Pliocene Selorejo Formation and its hydrocarbon prospect in Cepu. River originates on S slope of Lawu volcano. (PGCE 2013). Indonesia. 3-4. & M. Subang Regency. Sydney. Indon. 138.W.pdf) (Hydrocarbon source potential in M-L Miocene turbiditic series in Majalengka Basindominated by immature to mature gas-prone terrestrial Type III kerogen) Mulyana. S. M-L Miocene Parigi Fm reefal limestone buildups in NW Java basin with 3 electro-lithofacies) Mulyaningsih. Volcanology Geothermal Res. Geologists (IAGI). and was forced to find northern outlet after uplift of S Mountains) Musgrove. Black pumice and tuff contain clinopyroxene. Ed.Muljana. Petroleum Assoc. induction vectors and the effects of steep topography. B. Rosana (2011). (online at: http://ncrs. Geol. Edges of platform heavily cemented) Musgrove. 6.F. J.geologi. IPA12-G-035.php/mtg/article/view/271/234) (Sequence stratigraphy study of the Parigi Formation in Field C. Geoscience 3. Proc. clinopyroxene and volcanic glass. West Java'. J.id/index. (IPA). Sun (2012). H. Watanabe & M.Studi sekuen stratigrafi Formasi Parigi Lapangan C. High relief Oligo-Miocene isolated carbonate buildup.jp/assets/files/JNCRS/JNCRS_Vol6_15-23. (1989). Central Java Province and Yogyakarta Special Province. Proc. Sun (2013). (Unpublished) Musliki. 150' thick cycles of shallow water carbonate.Study of the trace of ancient Solo River in the South Wonogiri.Seismic stratigraphy applied to the Northeast Java Basin. Yogyakarta. M. 2. Cepu Block. 1-12. (Canyon crossing S Mountains limestone terrane to Sadeng Bay. Kabupaten Subang. In: Petroleum Geoscience Conf.. 29th Ann. with basalt. Zeolite and chlorite alteration. K. A. is ancient course of Solo River. Indonesia: related to magmatism and tectonism. quartz and amphibole than glass. Subandrio & A. Symposium on Earth Science and Technology. Rosana (2012). Conv. Cepu Block. Basalt composed of labradorite. Assoc. Conv. Indon. Thesis. p. 77-94 (online at: https://ijog.0 80 www. Novel Carbon Resource Science (Kyushu University) 6. Rianto & Suharsono (2000). 36th Ann.Banyu Urip. Indon. Muljana. North East Java. Haak (2004). Bibliography of Indonesia Geology. K. 429-434. A. SE of Yogya. A. & M. olivine. and volcanic glass. Indonesia. pumice tuff and shale. West Java.. (Banyu Urip Field >1 Billion BBL oil in place. p. Ilmiah Magister Teknik Geologi (UPN) 7.Volcanostratigraphic sequences of Kebo-Butak Formation at Bayat Geological Field Complex. (2016).com Sept 2016 . 18th Ann. p. Int. indicative of volcanic arc complex.F.kyushu-u. Proc. Indonesian J. (IAGI). J. Two deep submarine paleovolcanoes: Tegalrejo (basaltic) and Baturagung (mainly pyroclastic material)) Muller.Sc.Developing the largest carbonate oil field in SE Asia. p. Conv. (online at: http://jurnal. 1. rising ~3000' above surrounding carbonate platform. exposed to fresh water leaching to form high quality reservoir rock with average 26% porosity and 100 mD permeability in interior.ac. University of New South Wales. p. (2014). p.3-D modeling of the deep electrical conductivity of Merapi volcano (Central Java): integrating magnetotellurics. West Java. Feldspathic tuff and pumice tuff are crystal vitric tuffs with more feldspar. Jakarta.Sandstone composition of the turbidite series of the Middle to Late Miocene of Majalengka sub-basin. 265-271. Exhib.cm. NW Java Basin. Jawa Barat. B. Indonesia. O22. olivine. 15-23. 18p.esdm. Murwanto. 205-222. F.Developing a large carbonate buildup field.id/index. F. 4p..go. Assoc. & V. Watanabe & M.php/IJOG/article/view/236/207) (Bayat Complex in C Java with Late Oligocene Kebo-Butak Fm. p. Proc. (Extended Abstract) (Short version of paper above) Musliki.upnyk.Source rock potential of the Middle to Late Miocene turbidite in Majalengka sub-basin. Cekungan Jawa Barat Utara.vangorselslist. . Depositional cycles of the Northeast Java Basin and their relation to the hydrocarbon potential. I Gede Made Suasta & N. Kruka. Assoc. Assoc.Oligocene Ngimbang Fm clastics should have hydrocarbon potential. (2000).P. Northeast Java basin.Mundu Fm followed by Globigerina Marl. Limestone Debris and Mollusc Limestone facies. (1997). (Proposing new names for groups of existing NE Java basin formations. Conv. JS14-A1. Indon. Musliki. S. p. S. Indon. Koesoemo (2003).id/publication/index. (1999). 19-22. Ed. with outcrops mainly in Kendeng. Proc. Petroleum Assoc.0 81 www. Jakarta. Musliki. 151-159. but still stratigraphic traps potential) Musliki. Reefal Limestone.The Pliocene Selorejo Formation and its hydrocarbon prospects in Cepu and surrounding areas. Proc. Musliki. Bandung. 55-66.bgl. covered by Lidah Fm clays.com Sept 2016 . 3.Possible hydrocarbon accumulation within Eocene coarse clastic reservoir in the Northeast Java Basin. S. (1996). Marls of Kalibeng.Palaeogeographic interpretation based on lithostratigraphic units and relative sea level changes during the Plio-Pleistocene period in the Northeast Java Basin. Musliki. Conv. Globigerina Lst. Offshore NE Java good quality basal clastics in KE6. S. S.A geological trip to Cepu area for non-geoscientist personnel. Assoc.size planktonic foraminifera.Kembang zones.php/dir/article_detail/717) (Randu Kuning gold-copper porphyry prospect in Wonogiri/ Selogiri property with sheeted Cu-Au bearing quartz veins.esdm.Y. p. p. Bogomiring fields) produced from this facies) Muthi. (Very basic write-up of NE Java basin geology) Bibliography of Indonesia Geology. S. Proc. Chiang Mai. Indon. Ngrayong Fm unconformably overlain by different Late Miocene. Assoc. (1994).9 Ma. Assoc. International Symposium on Neogene. Proc. sedimentary processes and hydrocarbon prospect in the Northeast Java basin.The effect of Middle Miocene tectonic phase to the paleogeography. S. 43-54. All structural closures probably drilled. T. (IAGI).Musliki.The effect of structural style to the hydrocarbon accumulation in the Northeast Java Basin. Int. Symposium Geology and Environment. Geol.Characteristics of alteration and mineralization at Randu Kuning. Proc. Thailand. Best reservoirs Globigerina Lst facies: high porosity. p. (1992).Miocene volcanic arc) Nachrowi. (Comparison of NE Java with S Sumatra and E Kalimantan suggests Eocene. (online at: www. & Y. 379. p. 23rd Ann.E. Bandung. I Gde Basten. & Suratman (1996). A. Late Pliocene carbonates interpreted as shallowing. 26th Ann. Indon. Northeast Pacific Area. ~2. (IAGI). composed of sand. October.upward sequence starting in Late Pliocene. 1. 22-35. (1990). Conv. 6. Jakarta. (Abstract only) Musliki. (M Miocene N11-N12 Ngrayong Fm sandstone main reservoir in NE Java. Conv.Wonogiri Project. 19th Ann. Conv. p. Mineralization in quartz veins in and adjacent to microdiorite intrusion tied to large eroded volcanic centre in N-migrating Oligocene. S. 29th Ann. Pagerungan 2. Petroleum Assoc.vangorselslist. Significant gas (Balun field) and oil (Lidah. p. Indon. Kalinges and Kanopu Formations in the Northeast Java basin. p. Proc. Musliki. (IAGI). 28th Ann. JS5-1 and some had hydrocarbons).A Late Pliocene shallowing upward carbonate sequence and its reservoir potential. Litaay (2013). 86-96. 1. Indon. p. Geol.. 1. 20th Ann. Field Trip Guidebook. 1.Pliocene formations. Geol.permeability. not sure why) Musliki. Metatu. 131-138.The development of stratigraphic interpretation and its implication to the success of hydrocarbon exploration in the Northeast Java Basin. (IAGI). 25th Ann. Clastics in exploration wells in NE Java generally poor reservoir quality and no hydrocarbons. Conv.W. Conv. Indon. Majalah Geologi Indonesia 28. (1991). (IAGI). Geol. 1. (Late Pliocene Klitik-Ngepung-Selorejo Fms carbonate facies widely distributed in NE Java. Geol. Main lithologies diorites and breccias.The Neogene Kalimu. Bandung. Kuti. supposedly reflecting end-M Miocene orogeny/ global sea level drop. Indon.go. (IPA). Geol. p. (IAGI). S. Proc. Proc. 1-51. p. 15-28. Assoc. (IPA). Sasoni. sedimentology and petrography of turbidite deposits (study of Kerek Formation and Banyak member in the Kedungjati area.vangorselslist.A. Kon. West Java. In: J. 295-315. Masters Thesis. Indonesia.C. 19th Ann. shows six thrusts and four anticlines and synclines. corresponding to areas of lesser Eocene-Oligocene subsidence) Bibliography of Indonesia Geology. Petroleum Systems of SE Asia and Australasia. on NE-SW basement highs. Proc. H.. Nederl.V.A. p. H. Mitterer & J.Geological field mapping: to identify a structural pattern in Talagadatar as a thrust fold belt based on surface data and tectonic setting into Sumedang.M.Tertiary basin initiation and sedimentation. continuing into Kujung time (OligoceneMiocene).A. AAPG 2007 Ann. 1-250. p. Heavy oils (API <22°) are biodegraded in shallow reservoirs. Indonesia. Howes & R.C. (NW Java Basin on-and offshore oils mainly derived from Oligocene fluvial-deltaic Talangakar Fm. Isotope and biomarker data identified two oil families: (1) marine influenced delta front-prodelta settings and (2) from higher plant-rich delta plain.E. R. and (3) two oils with intermediate-high sulfur content suggestive of marine carbonate depositional setting. p. Napitupulu.Tertiary basin initiation and sedimentation. p. (IAGI). p. Mounded geometries of shallow-water carbonates. not tectonic or fault-initiated. Dragan & A. (2007). Ph. NE of Bandung. although high pristane/phytane. (1998).Organic geochemistry and thermal maturity modeling of hydrocarbon generation in the NW Java Basin. Rumende (2012). Geol.0 82 www. (Three source rock facies in NW Java Basin based on biomarker composition of oil: (1) deltaic withtypically high concentration of oleanane. Indon.H. Carroll (2007). H. J. Conv. Indon. 1. 149-174.Nahrowi. 2012-GD-11. Simo. A. Indon. Assoc. Prolific carbonate accumulations formed in areas with ~500 m or less Oligocene-M Miocene subsidence. L. etc. East Java Basin. p. Proc. Mild initial subsidence during Eocene increases with time) Naranjo. ('Aspects of stratigraphy.A. 339-361. Napitupulu. Major carbonate platform formed in N part of basin. Indonesia.E Pliocene and Late PlioceneE Pleistocene) Naizheng Du (1988). East Java Basin. Oligocene-Miocene isochron map shows change to WNW-ESE orientation. Madison. Noble (eds. (2) probably lacustrine with abundant botryococcane. etc. N. with API gravities 17°-53°. Assoc. 41st Ann. Post-generative alteration processes widespread..M. Ed. Proc. Conf.Post-generative alteration effects on petroleum in the onshore Northwest Java basin. Thesis University of Texas at Dallas. 31. inconsistent with rift origin for earlier basin history. Putra. may be mixed with oil from a non-carbonate source) Naranjo. & Suratman (1990). etc. (IAGI). Passive basin fill of initial Eocene-Oligocene Ngimbang Fm clastic-dominated sedimentation suggesst pronounced paleo-basement topography. Jakarta 1997.. conflict with this interpretation. Yogyakarta. p. 667-679.com Sept 2016 . but onshore part of basin appears to be constructed on pre-existing basement structural grain.D.C. Geol.V. 1-70. (Fieldwork in Sumedang area at Talagadatar. N.T. Late Miocene. 6. forming fold-thrust system with two periods of activity.delta front environment) Napitupulu. E. C Java') Naibaho. R.Differentiation of oils from the NW Java Basin into three oil types based on biomarker composition. sedimentologi dan petrografi endapan turbidit (studi kasus: Formasi Kerek & Anggota Banyak daerah Kedungjati. (Unpublished) (Majority of proposed E Java Basin formation mechanisms back-arc related. Two SW-trending projections from platform represent buildups formed on paleohighs.Aspek stratigrafi. Kristiono & I. Conv. Int.R. Organic Geochem.On some silicified woods from the Quaternary of Indonesia. Jawa Tengah). areas with greater subsidence (up to 900 m) became sediment-starved deeps. Mitterer (2000). Morelos-Garcia (1997). Subsidence rates increased at this time.A. University of Wisconsin. Akademie Wetenschappen B 91. Conv..Y. Ellis & R.) Proc.R. Petroleum Assoc. J. Pristane to phytane biomarker ratios severely affected by evaporative fractionation. Indonesia. (Abstract only) (Seismic isochron mapping shows axis of Eocene-Oligocene E Java basin trended NE-SW. J. 2. Petroleum Assoc. 6. ('The epithermal god deposit of Cirotan. Untung & Y. Latest deformation is N-S compression) Natori. 6. Proc. 81-89. intrusive in rhyolitic ignimbrites dated as 9. p. Res. Centre (GRDC). II.Enige voorlopige opmerkingen omtrent de hydrogeologie de Brantasvlakte. p. Thesis Sarjana. (Unpublished) ('Geology of coal deposits in the Cibobos-Cimandiri area.com Sept 2016 . (1993). W Java. high salinities. Abdullah & T.5 Ma.Foraminifera from Central Jawa. C. Dev.S. H. In: M. (Microtectonic analysis of NE-SW directed M Miocene syndepositional slump structures in deep-water deposits.H. ('Some preliminary remarks on the hydrogeology of the Brantas plain'. Sect. 89-101. 680-689. (IAGI). Proc 22nd Ann.W. P. (1978). Comptes Rendus Academie Sciences. 137146. Assoc. Marcoux (1992). Sato (eds. Dev. Bandung. and Exhib. SOT-11. Natori.. Mud volcanoes may have been active in area during Majapahit empire (see also Satyana 2008)) Natawidjaja.) Gravity and geological studies in Jawa. Jakarta 2006 Int.East Java Basins. Bandung.Japan Joint Research Program on Regional Tectonics of Southeast Asia. (1972).O.0 83 www. H.Paleomagnetic and geochronological constraints on the Cretaceous. Abdullah (2006). Indonesia. A.Correlation of the Tertiary lithostratigraphic units in the Java Sea and adjacent areas. (IPA). SW Java. 1-238. D.Magnetic properties of igneous rocks from Banyuwangi. 33-41. Geol. Bijaksana & C. A.Foraminifera from West Jawa. L. Bandung. Indonesia. (Extended Abstract) (Paleomagnetic study of area of ‘Old Andesites’ near Yogyakarta suggest paleolatitudes of C Java moved from 16-20°S in Cretaceous-Eocene (~76-47 Ma) to between 12-13°S in Oligocene (~30-25 Ma). Spec.-Indisch Natuurwetenschappelijk Congres.. Siregar & F.Japan Joint Research Program on Regional Tectonics of Southeast Asia. Sato (eds. Sudiyono. with correlation of stratigraphic successions) Nehlig. West Java') Nash. First Ann.Geological structures of Penosogan area Kebumen. G. post M Miocene extensional structures E of Karangsambung. Publ.A. Indonesia. p. P. Physics 16. Geol. 6.Le gisement d’or epithermal de Cirotan (Ouest Java. Jawa Barat. S. Indonesian J. (1931).Nas. Geosciences Conf. Centre (GRDC) Spec. Banten Selatan. Geologie-geografie. Conv. 10-11° S in Miocene (6-11 Ma). Nawawi. Publ. Ed. to 7°-8° S today. D. Proc. Indonesia. Res.. 11-30.Miocene tectonic evolution of Java. Hasibuan (1978).. Handelingen 6e Nederl. microthermometric constraints'. Mahrizal & C. Pertamina BPPKA.5 Ma). L. Liong (2005).M. 1. Paris 315. well S of present position) Bibliography of Indonesia Geology. Bijaksana. Indon. (Paleomagnetic investigation of two igneous intrusions (no absolute age known) in Gunung Nangkajajar at E tip of Java near Banyuwangi. S. Kadar. p. (1986).I. Conv. Nayoan.. Ser.I. 821-827. Microthermometric study of fluid inclusions from Cirotan epithermal gold deposit in Citotok Mining District.) Gravity and geological studies in Jawa. Paleolatitude of these intrusions was~30° S. supporting hypothesis that C and E parts of Java formed microcontinent that collided with Sundaland in Late Cretaceous-Eocene (but: collision should be younger if continued to move N after Eocene?.vangorselslist. M. p. p. 4 p. Absence of phase separation suggests minimal erosion of 410m since mineralization) Ngkoimani. South Banten. p. HvG)) Ngkoimani. suggest mineralization under rel. Indon. (Brief overview of principal basins of Java Sea from S Sumatra to N Madura/ Barito. p.O. East Java and their reliability for paleomagnetic study. Seven E-W trending anticlines in Brantas River flood plain/ delta in E Java. 1-107. & E. Institut Teknologi Bandung.Geologi endapan batubara daerah Cibobos-Cimandiri. Untung & Y. In: M. J. Mineralized fractures tied to Pliocene quartz-microdiorite (4. Geol.H. Jakarta. Indonesie): contraintes microthermometriques. Suseno & A. p. Central Java: the significance of slump structures and extensional faults. Heriyanto (1996). still growing today. S. ('The volcanic rocks from Loh Ulo on Java'. (Unpublished) (Lunt 2007. H. p. indicating existence of low gravity caldera. C. Hehuwat (1980).) Physical geology of Indonesian island arcs. 72-80. Central Java. Atkinson (1991). Kyoto. Sunda Strait under tensional regime as result of clockwise rotation along continental margin and Nward movement of Sumatra sliver plate along Semangko fault zone) Nishimura. Wu & C.vangorselslist. W Java and Sumatra geologically continuous.. so opening of Sunda Strait may have started before 2 Ma. Bibliography of Indonesia Geology. 6. GeoJournal 28. Thio & F.Summary report on outcrop geology and general setting of the Banyumas Block. W Sumatra has been moving N along Semangko fault and S part Sunda Strait pulled apart. T. Hehuwat (1986). S. Includes discussions of Cretaceous Orbitolina limestone folded within serpentinite.) Nilsen. Ibrahim. with thick U Pliocene. Onshore sub-basins Ciputat.Petroleum systems of Northwest Java. and (2) area of Kotaagung. Yani/N Seribu Trough and Asri systems.C. In: J. Dardji (1994). Hehuwat (1980). Noble (eds. deep water facies with slope channel sands and slumped Nummulites limestone blocks) Nishimura.A. R.Niethammer. Nugrahanto. Difference in strike of Java and Sumatra exceeds 20 °. Pasir Bungur. 3. where graben structure was observed and ignimbrite eruption occurred at 1 Ma. In: S. K. Sebuku and Krakatau).H. C Ardjuna. Indon. p.D. etc. SouthCentral Java. so rotation of Sumatra and opening of Strait Sunda might have started before 2 Ma) Nishimura. Mitteilungen 28. p.Fission-track ages of the tuffs of the Pucangan and Kabuh Formations and the tektite at Sangiran. J. G.A. Offshore petroleum systems S Ardjuna.H. A. Gravity anomalies in (1) N of Ujung Kulon. subduction started at 710 Ma. S.com Sept 2016 . Suparka (1992). p.Neotectonics of the Strait of Sunda. collected by Tobler in 1902. Krakatau at intersection of two graben zones and N-S active. Sunda. migration/ carrier bed system. first record of quartzose glaucophane schist. Krakatau complex at intersection of two graben zones and N-S active seismic belt.1 Ma ago. 3. I. shallow seismic belt ( fracture zone with fissure extrusion of alkali basaltic rocks commencing at Sukadana and continuing S as far as Panaitan island through Rajabasa.Petroleum generation and migration from Talang Akar coals and shales offshore N. p.T. and style of entrapment) Noble.The Krakatau islands: the geotectonic setting. Yokoyama & F. Asian Earth Sci. 1. 17. Assuming perpendicular component (58 mm/y) of oblique subduction has not changed.V. 2. Indonesia. Central Jawa. et etude quantitative de la subsidence des bassins sedimentaires Tertiaires. Nishimura..0 Ma.Quaternary clastics from Lampung to Krakatau fracture zone. Organic Geochem. K. Paleomagnetic studies suggest Sumatra rotated clockwise relative to Java from 2.0 84 www.H. 31 p. Pratomo.Fission-track ages of tephras and tuffs from Bayat and Karansambung. T. p.. Indonesia. p.present at 5-10°/ My.A. Kepuh.147: M-L Eocene in Banyumas area rel.Contribution a l'etude geologique d'une partie occidentale de l'Ile de Java. Kyoto University Press. 585-600. from which Malingping and Banten tufts were ejected 0. Petrographic descriptions of Cretaceous and Tertiary volcanic and metamorphic rocks. Stratigraphie. Howes & R. (NW Java at least ten active petroleum systems and 150 oil and gas fields. analyse structurale.M. Report for Coparex Banyumas... Petrogr. Indonesie. Cipunegara/E15 and Jatibarang. 81-87. Paleomagnetic studies suggest Sumatra rotated CW relative to Java from at least 2. Ed. Jakarta. 363-374. 87-98. Harjono & S. Conf.. Tchermaks Miner. Oil and gas originating here migrated through structural high in N direction towards offshore. Java. (1997).W. J. Nishida. Indonesia. major reservoir and seal. Physical Geology of Indonesian Island Arcs.H.0 Ma to present at 5-10h/ Ma. Indonesia. Kyoto University. (2002). (IPA). Ten systems characterized in terms of source rock type. Noeradi. Nishimura (ed. (1909).H. p. Jakarta. Noble. 81-91. Petroleum Assoc.) Proc. (Sunda Strait transitional zone between Java frontal and Sumatra oblique subduction modes.Die Eruptivgesteine von Loh Oelo auf Java. S. Petroleum Systems of SE Asia and Australasia. Thio & F. K. Expected EUR >4 BBOE from ~14 BBOE in-place. (Sunda Strait rapidly subsiding trough. K. 205-273. R. Prasetya et al. p.Cenozoic fault systems and paleostress along the Cimandiri Fault Zone. 351-358. C Java) Noujaim. Indon.D. Formation T over 450° F at TD 9860’) Novian.pdf) (‘Contribution to the geological study of a western part of Java island: stratigraphy. ITC Journal 1986. 62. Inst. Dardji. & C. 2. p. In: Proc. Villemin & J. Remote sensing for resources development and environmental management. Subroto. Kecamatan Gedang Sari. Husein & W. diy: pertimbangan untuk penamaan anggote Buyutan. AAPG Int. In: G. Doct.. Sunda Straits. Creation of pull-apart basin in Gulf of Pelabuhan Ratu in Late Miocene (10 Ma) with rapid subsidence) Noeradi. Desa Ngalang. E.253.. 5 th Ann. Exhib. Sciences (LIPI). Regional compression N25°-30°E reactivates old N70°-80°E faults. September 1991. 280-289. 38. (1977). Mineral and Energy Resources of SE Asia (GEOSEA ’98). Volcanism continues until end M Miocene (14 Ma). p. (Two comparable M Eocene marine fish otoliths associations from India and Java. 4. Belgique. causing N-ward movement of volcanic arc axis to present-day position and deformation in CimandiriBayah and NW Java basin.K.wordpress. Closure coincides with start of pivoting of SE Asian continent to SW after India collision.. Indonesia) in an archaeological and historical context. Conf. New species Apogon townsendoides. 2.E Miocene in S part of island. Bibliography of Indonesia Geology. In: Proc. Conv.Notes on the geomorphology of the Borobudur Plain (central Java. Notosiswoyo.com/2014/09/bgsm1999035. & S. Pusat Survei Geologi. S. structural analysis and quantitative subsidence modeling. Yogyakarta 2007.pdf) (Hydrogeologic models for karst terrane of M Miocene Gunung Sewu Gp carbonates. Bandung.000’ Upper Pliocene clastics. Publ. 195-208. Bull.Drilling in a high temperature and overpressured area. & C.Basin evolution and hydrocarbon potential of Majalengka-Bumiayu transpression basin. D. Late Cretaceous. Voute (1986). Bajpai (1992).0 85 www.fr/archives/lgham/dardji/Dardji-Noeradi-these-1994+. Indonesia.H.Stratigrafi Formasi Semilir bagian atas di Dusun Boyo. Yogyakarta.A. 857-863.com Sept 2016 . Enschede 1986. 195-221.J. West Java. 6.Paleocene oblique subduction. 9th Reg. E. P. Silver Jubilee symposium on the dynamics of subduction and its products. Symp. Kuala Lumpur 1998. Associated nannofossils upper Zone NP16. (1973 Aminoil C-1SX well a few km from Krakatau volcano very high temperature. p. Proc.I. Ed. J. with ultrabasic basement uplift and block melange deposition of Ciletuh Fm. Voute (1986). Congress Geology. In NW Java rapid subsidence started in Late Oligocene (23 Ma). Thesis Universite de Chambery. Proc. with Indo-Australian plate moving N-S.Marine Middle Eocene fish otoliths from India and Java. Hermanto & Y. etc.The geomorphology of the Borobudur plain. Well TD still in Upper Pliocene after penetrating over 8. 245-270. New E-W trending volcanic arc forms in Late Oligocene. p. its archaeology and history (Central Java. Perth. etc. Petroleum Assoc. Lactarius nonfungus. Dardji. Sciences de la Terre.K. Rahardjo (2009). Spec. (Abstract only) Nolf. Indonesian Inst. Royal Sci. Rampnoux (1991). H. 1. (online at: http://edytem. (Borobudur Plain was a lake in second half of Quaternay. p.. Geol. with 24 neritic teleost species. M. 7th Int. Nat. Indonesia: In: Proc. with formation of horsts and grabens. dominated by apogonids. Wahono. Indonesia. Nine clayey glauconitic sand samples from Nanggulan area. Noeradi. (IPA). p. Java. p. Jakarta.files. C.J. Java Island. Soc.vangorselslist. Zaim (2006). Setiawan. (online at: https://gsmpubl. Creation of NE-SW oriented volcanic arc and intra-arc basin with sinistral faults trending N30°-40°E. Central Java. S Mountains.univ-savoie. Kabupaten Gunung Kidul.B. Percoideorum sciaenoides. & S.) Proc. In Late Miocene speed of Indo-Australian Plate increases from 4 to 7 cm/yr. Bull. 211-214. A. J. T.P. Indonesia). Malaysia 43. Kusumayuda (1999).’. Early Bartonian age) Nossin.E. S. Teh (ed. with deposits up to 10m thick) Nossin. Indonesia: a conceptual model.Approche de la geodynamique d'une marge continentale active au droit d'une zone de subduction. p. This marginal basin closes in Mid Eocene (43 Ma).Hydrogeology of the Gunung Sewu karstic area. Workshop Geologi Pegununungan Selatan. Butak Mojosari area and Kalinampu.id/ojs/index. intruded by M Miocene(?) granodiorite and andesitic dykes) Noya.e.Biozonasi Formasi Kebo bagian bawah jalur KalinampuSendangrejo. Indon.wordpress.iagi. ~ 200 km SW of Jakarta. T. J. Res. Novian (2013). D. Utama & S. forming part of Bayah Dome Complex. Geol. 307-319. C Java'.Petrology of gold and silver-bearing volcanic rocks from Cikotok area. but includes rocks of younger formations (Ngrayong. Bandung. Centre (GRDC).Geology of the Mojokerto Quadrangle. Depositional environment bathyal) Novita. Bayat.php/geo/article/view/20) ('Biozonation of the lower part of the Kebo Formation near Kalinampu-Sendangrejo. P. Conv. Outcrop sections of Eocene at Mojosari and Kalinampu show Kalinampu with rel.E Miocene (N5) planktonic foraminifera zones in Kebo Butak Fm of S Mountains of C Java. basaltic and rhyo-dacite lavas of Oligocene. (IAGI). etc. Mojosari more common volcanic quartz and no or rare feldspar. ('Determination of source rock of the mud mounds near Purwodadi from fossil foraminifera content'. all typical of low salinity epithermal gold deposits) Bibliography of Indonesia Geology. Pros. Kalinampu-Sendangrejo section 13 M Eocene to E Miocene foraminifera biozones (P11-N5). Gunung Kidul. Seminar Nasional Kebumian ke-6. Area contains Oligocene Nampurejo pillow lava. Husein (2013).H. Y. Dev. 41st Ann. ('Origin of Kebo Formation volcanoclastic sandstones. M.files.000.. 6. Depositional environments bathyal marine) Noya. D. 2012-SS-06. Assoc. 5p.('Stratigraphy of the Upper Semilir Formation in Hamlet Boyo. Berita Sedimentologi 31. 9th Reg. Bayat Jawa Tengah. (online at: http://lib. Three measured sections with nine facies. Ngalang Village.P. In: G.H. with considerations for naming the Buyutan Member'. Y.A. Samples from Kesongo and Crewek 'mud volcanoes' in Randublatung zone of NE Java basin with planktonic foraminifera of zones N18-19. are Pliocene mineralization hosted in OligoMiocene 'Old Andesite' volcanics.I.306°C. Ledok.I. (online at: https://gsmpubl. District Gedang Sari.. N14/N12 and N7-N9 and E Miocene large foraminifera. Barianto & M.Penentuan batuan sumber Gununglumpur di sekitar Purwodadi berdasarkan kandungan fosil foraminifera..I.com Sept 2016 . D. Geol.id/fosi/berita-sedimentologi) (Identification of 12 M Eocene (P11). Suwarna (1999). Interpreted as marine slope deposits) Novita. Mineral and Energy Resources of SE Asia (GEOSEA ’98). Teknik Geologi (UGM) 2. 1:100. Suwarti. Jurusan Teknik Geologi FT UGM.Asalmuda jadi batupasir vulkaniklastik Formasi Kebo-Butak daerah Mojosari dan Kalinampu. Ed.) Proc.A Mangga & D. T. J.or.. Barianto & M. Congress Geology. Klaten. Yogyakarta. Bayat.C. 70-81. Jawa (1508-6). Amin & N. Geol.ugm. in hydrothermally altered andesitic. 12 p. mean 245°C. Fluid inclusions homogenisation temperatures between 184 . S.geologi. Bayat. S. Bull.0 86 www. i. (Eastern Kendeng and Rembang zones) Noya. 16-26. Yogyakarta. 1. Bayat Jawa Tengah. (2012). Mud volcanoes probably sourced from oldest material.)) Novita. D. Kalinampu area.H. Sarmili (1992). Suharsono & L. p.pdf) (Cikotok gold-silver deposits of SW Java. Wilde. Proc.com/2014/09/bgsm1999030. Sumberan-Mojosari section 7 Late EoceneOligocene biozones (P14-N2). Malaysia 43. (Gold-bearing host rocks of Cikotok Gold Mine area. Wonocolo.ac. Sukarna (1999). high feldspar content and with polycrystalline and volcanic quartz. Semilir Fm dominated by tuffs. West Java. West Java. Geologi Sumberdaya Mineral 9. 519-534.. Teh (ed.. SW Java. Soc. Kuala Lumpur 1998. p. trapping pressure equivalent to depth of 210m. 95.A study of fluid inclusions at the Cikotok Gold Mine. Y. Central Java. p. (online at: www.Planktonic foraminifera biozonation of the Middle EoceneOligocene Kebo Formation. Novian (2014). 3p. C Java'. late E Miocene bathyal marine Tawun Fm. D. + map. volcanic breccias and volcanic sandstones.vangorselslist.E Miocene 'Old Andesites/ Cikotok Fm. p. Measured sectons and facies analysis (mainly deltaic environments)) Novian. A. Proc. (Rajamandala Limestone Chattian carbonate platform. Foraminifera and nannofossils listings from several classic Tertiary outcrop sections in NE Java) Nursecha. biostratigraphic study'. Deformation at S side of forearc after deposition of U Miocene. Mulyono.P. offshore northwest Java.) Proc. Petroleum Assoc. p. 23rd Ann. Conf. Three sub-basins. Pekacangan river section with Sijenggung gas seep in deep marine E-M Miocene Rambatan Fm. S. Indon. Indon. Padalarang. offshore Northwest Java.A. 28th Ann. Jakarta.S. prograding to NE. Suracman. Asmarahadi (2016). Kaczmarek. 36th Ann.E. Liu. Widowati. K.K. Kurniadi. Susilowati. Central Java.Structural control on source rock development and thermal maturity in the Ardjuna Basin. Nugrahanto. N of Karangsambung in C Java has number of hydrocarbon (mainly gas?)seepages. Howes & R. (IAGI).R. D.C. 631-653. (N Serayu Basin. Hall (2013). 1.0 87 www. 1-21.. Hutagaol & Kusnadi (1999)Oblique subduction zone in the Southern West Java Offshore. Proc. Proc. 5-40. Lesanpura. Fatiah & M. (E Java forearc stratigraphy 6 tectono-stratigraphic units with 3 major unconformities.A.Reservoir characterization in a channel sand utilizing transgressive events: an example from the Talang Akar formation. p. p. Assoc. 1-129. Assoc. Conv. 73-82. (2009). Petroleum Assoc. Van Gorsel et al.A. S sub-basin thickest sediments (~14. North Serayu Basin. B.M. (IPA).. A. 33rd Ann.M.. M. 11-24.com Sept 2016 . followed by C (~10. Incorporates major source kitchen for hydrocarbons with at least 2. S. S. Indon. p. followed by U OligoceneLw Miocene deposition with arc volcanism.Integrated subsurface Temperature modeling: case study of East Java Basin.R. Conv.Tectonic control on hydrocarbon seepages of Sijenggung. interpreted to be caused by arrival of buoyant plateau at subduction margin) Nugraha. D.Significance of the sedimentology and stratigraphy for the evolution and demise of the Oligocene Rajamandala Limestone. 1. (online at: www. Petroleum Assoc. Lowest unit with continuous strong reflectors may be Paleogene or Mesozoic and is absent under C and W Java. 1. Martha.Cenozoic history of the East Java forearc. Indon.8 BB Oil and 5 TCF Gas discovered to date. Geomedia Mem. Husein (2014). IPA09-G-161.E Pliocene with Halang Fm volcanic arc deposits in Late Miocene. Indonesie.000') and N (~9000') sub-basins) Nugroho. Geol. p. Conv. Jakarta. Int. Conv. Berita Sedimentologi 26. C. (Ardjuna Basin originated during Eocene-Oligocene period of extension. Petroleum Assoc. Proc. T.M. IPA14-SG021.T. M. J. Y. Jakarta. Abda.id/fosi/files/2013/05/BS26-Java. R. Jakarta. & R.vangorselslist. etude biostratigraphique (foraminiferes et nannoplancton). (Subsurface temperatures along N-S profile in E part of East Java basin) Nur Hasjim (1988). A. 6. Significant subsidence began in Late Miocene. J. M. Proc. Hicks. Extensive carbonate deposition above E-M Miocene unconformity during quiet period with reduced volcanism. (‘The marine Neogene of NE Java.iagi. Petroleum Assoc.B. Noble (1997). K. Indon. 40th Ann. Hutabarat (1994).S. Indon.pdf) (similar to paper above) Nugrahadi. West Java. (IAGI). Indonesia. Jyalita & S. p. Conv.. intense N-S compressional folding in (Late?) Pliocene and reactivation of volcanism in Pleistocene. R. & R. Indon. J. Noeradi. Multiple thrust faults/ folds with >200% shortening believed to be responsible for hydrocarbon seepage) Bibliography of Indonesia Geology. 38th Ann. Muljawan. North Serayu Basin back-arc basin with major subsidence in M Miocene. Proc. 88-103. drowned at end-Chattian) Nurhandoko. (Reservoir characterizion study of Late Oligocene Talang Akar sandstone in BZZ field in Arjuna Basin) Nugrahanto. (IPA).D.Le Neogene marin du Nord-Est de Java. Localized contraction of Lower Miocene and older units prior to termination of arc activity.. & R. Geol. & M. Conv. A. 9p.Q. Indonesia. S. p. Purnama. E.E. Ed. M EoceneLower Oligocene deposited above M Eocene unconformity during extensional phase.000' in axis). Hall (2012). (IPA). In: J. IPA16-723-G. Simo. Jakarta.Nugraha. Petroleum Systems of SE Asia & Australasia. A. Fullmer. Noble (eds. (IPA). 13p. IPA12-G-028.or.V. D.Cenozoic history of the East Java forearc. 14th Ann.Campanian (Upper Cretaceous) radiolarians from a shale clast in the Paleogene of central Java. (1934).com Sept 2016 . 28-30. including a Laevicardium described here for first time from Indonesia) Oostingh. First of series of 10 papers) Oostingh.Einige neue Gastropoden aus dem Miocan von Mittel-Bantam (Java). 'Old Andesites' underlain by mid Oligocene Sphenolithus distentus.H. (‘Molluscs from the Pliocene of South Bantam.vangorselslist. 35-47. C. De Ingenieur in Nederlandsch-Indie (IV) 5.H. West Java. p. 1-247. S of Bantam. Proc. 45-50. Java’. C.Die Mollusken des Pliozaens von Boemiajoe (Java).) Micropaleontology. (Brown shale clast in Paleogene breccia in Karangsambung with Campanian tropical radiolarians not seen in coeval Campanian assemblages from blocks in Luk-Ulo melange. (1934). but juxtaposed before deposition of Paleogene) Oostingh. (‘The molluscs from the Pliocene of Bumi Ayu. Dept. Three species of Cardium-type molluscs from Pliocene of Bentarsari basin. 17-33. etc.part 1. Yamagata University. De Ingenieur in Nederlandsch-Indie (IV). II (1. 2. Upper part of Sentolo Fm may be E Pliocene age) Okamoto. C Java. collected by Ziegler and Koolhoven) Oostingh. (1938). part 2'. ('New molluscs from the Pliocene of Java'. E Miocene Sentolo Fm. Java’) Oostingh. Supriyanto (1994). Petroleum Assoc.L. Fortsetzung). Suparka & J. Saito (ed. (‘The molluscs from the Pliocene of South Bantam. 2. S. 1. 212-215.Aanteekeningen over eenige bivalven uit het Neogeen van Java. (1933).Die Cardiiden aus dem Cheribonien von Bentasari in Tegal. Jakarta. overlain by middle E Miocene S.H. De Ingenieur in Nederlandsch-Indie (IV) 1. 6. New bivalve and gastropod species from Cimanceuri area. C.Die Purpurinen aus dem Pliocan des Tjidjoerej in Cheribon. 9.. Wetenschappelijke Mededeelingen Dienst Mijnbouw Nederlandsch-Indie 26. Conv. belemnos zone CN2. De Ingenieur in Nederlandsch-Indie (IV) 5. (On species of Pliocene gastropod genus Thais. C. C. Sirait (1985). p. & J. (IPA). (Stramonita) martini n. Indonesia. 192-197 and 14. ('Some new gastropods from the Miocene of Middle Banten (Java)'. 19-22. 1-2. p. p. incl. p. p. Java. W Java) Oostingh. Java. In: T. (Nannofossils from M Eocene-M Oligocene Nanggulan Fm. Japan. 9. 25-34. 12. De Mijningenieur 14. Descriptions of species of gastropod Clathrodrillia group) Bibliography of Indonesia Geology. De Ingenieur in Nederlandsch-Indie (IV) 1. T. collcted by Oppenoorth in 1925) Oostingh. Spec. C.Nutt. from Bumiayu. p. 385-398. Earth Sci.H.Application of offset seismic profiles in the Jatibarang volcanic reservoir. New species from coal-bearing Middle Bojongmanik beds. 2. Publ.0 88 www. W.Die Mollusken des Pliocaens von Sud-Bantam in Java.sp. C. J. 4. (1935). p. 2. (1938). p. S. p. On Mio-Pliocene Metis and Cardilia from various localities on Java) Oostingh. p. 11.H. Southeast Asian Earth Sci. 5. G. Kojima. De Ingenieur in Nederlandsch-Indie (IV).H.H. (1935). Central Java. (1981). 76-78. ('The cardiids from the Cheribonian of Bentasari in Tegal.Neue Mollusken aus dem Pliozan von Java. Okada. (1934). 3.Die Mollusken des Pliocaens von Sud-Bantam in Java. petrology and lithostratigraphy of Cenozoic rocks of the Yogyakarta region. 79-83. ('Notes on some bivalves from the Neogene of Java'. Java’. suggesting juxtaposition of material from different paleolatitudes in Late Cretaceous. S. Java'.Calcareous nannofossils of Cenozoic formations in Central Java.H. Indon. p. Ed. H. Die Mollusken des Pliocaens von Sud-Bantam in Java. Fourth Pacific Science Congress Java 1929. Alg. C. X. (On correlations of Pliocene formations in Cirebon.) Oostingh.H.F. (1939).vangorselslist. (1939). V (4. De Ingenieur in Nederlandsch-Indie (IV) 7. (1939). 6.The Upper Eocene Nanggoelan Beds near Djogjakarta.Die Mollusken des Pliocaens von Sud-Bantam in Java. Java’.Oostingh. Descriptions of species of gastropod family Nassariidae. 6. part 8'. 103-119. part 4'. 9.) Oostingh. part 3'. p. (1939). p. part 5'. p. 105-115.com Sept 2016 . p. (1939). part 7'.H.Java kaartering. De Ingenieur in Nederlandsch-Indie (IV) 6. Descriptions of species of gastropod family Fasciolariidae. De Ingenieur in Nederlandsch-Indie (IV) 6. Java’.H. C. Last of series of 10 papers. Java’.. (1938). Java’. 8.F. 4. p. p. part 9'. Bibliography of Indonesia Geology. (1931). W.0 89 www. Java’. (‘Molluscs from the Pliocene of South Bantam. De Ingenieur in Nederlandsch-Indie (IV) 8. Descriptions of species of gastropod family Marginellidae) Oostingh.H. 43-51. (‘Molluscs from the Pliocene of South Bantam. 4.Note on the stratigraphical relations between some Pliocene deposits in Java. part 6'.H. III (2.Die Mollusken des Pliocaens von Sud-Bantam in Java. Buccinidae. De Ingenieur in Nederlandsch-Indie (IV) 5. Jaarboek Mijnwezen Nederlandsch-Indie 59 (1930). C. (‘Molluscs from the Pliocene of South Bantam. W.F. Descriptions of species of gastropod families Pyrenidae and Muricidae) Oostingh.part VIII. 1. 45-60. C. (‘Molluscs from the Pliocene of South Bantam. 4. Fortsetzung). p.F. C. IV (3.Die Mollusken des Pliocaens von Sud-Bantam in Java. De Ingenieur in Nederlandsch-Indie (IV).H. C. Descriptions of species of gastropod family Mitridae) Oostingh.Three new species of gastropods from the Pliocene of Semarang (Central Java). Olividae. Melongenidae. Java’. Java’.Die Mollusken des Pliocaens von Sud-Bantam in Java. 7. VI. Fortsetzung).H. & H.H. 20p.Die Mollusken des Pliocaens von Sud-Bantam in Java. 8. p. (‘Molluscs from the Pliocene of South Bantam. De Ingenieur in Nederlandsch-Indie (IV) 5. Gerth (1929). Excursion Guide D1. Java’.H. (1941). Descriptions of species of gastropod group Mitra) Oostingh. Fortsetzung). 7. C. Oppenoorth. VII.H. Descriptions of species of gastropod families Volutacea. (‘Java mapping program'. C. Ged. 119-129. C. (1940). De Ingenieur in Nederlandsch-Indie (IV) 5. p. 12. 63-64.Die Mollusken des Pliocaens von Sud-Bantam in Java. Descriptions of species of gastropod family Terebridae) Oostingh. 7-16. De Ingenieur in Nederlandsch-Indie (IV) 6. (‘Molluscs from the Pliocene of South Bantam. (‘Molluscs from the Pliocene of South Bantam. De Ingenieur in Nederlandsch-Indie (IV) 6. 163-187. IX. Harpidae) Oostingh. Bumiayu and Kendeng regions) Oostingh. With summary of provisional Eocene. etc. p.Die Mollusken des Pliocaens von Sud-Bantam in Java.Pleistocene stratigraphic subdivision of Java’) Oppenoorth. C. (1938). 140-141. (1938). p. 38-48. (‘Molluscs from the Pliocene of South Bantam. etc. 49-60. Bandung. Ed. early M Miocene. Pliocene reef). Abhandl. 36th IAGI. Sajekti & Suminta (1976). Scalariogyra escharoides. Paper 10. M-U Miocene).. also with Discocyclina. Djunggrangan (E Miocene) and Punung (Southern Mountains. Proc. (’Late Tertiary corals from Java. Madrepora duncani and Alveopora polyacantha from the upper M Miocene near Cimerang) Osberger. p. Neues Jahrbuch Geol. S.. Festschrift Kober. (Jatibungkus section (Karangsambung Fm) with continuous M Eocene (P 14). Indonesian J. Abhandl. Eocene intruded and overlain by by E Miocene 'Old Andesites') Osberger. & S. Seriatopora ornata.Jungtertiare Korallen von Java..com Sept 2016 . Vienna. SW Java. Saint-Marc & B. 252-256. Monatshefte. SE of Tegal. etc. 1.Die Manganerz Lagerstatte Burahol bei Karangnunggal auf Java. Axinea= Glycymeris Beds) with a 1m thick coal bed and layers rich in Nummulites (Djokdjokartae Beds). in andesitic breccias and tuffs in sequence of E Miocene deposits. 336-353. Pamitran (SW of Nyalindung. Plio-Pleistocene) Paltrinieri. F. (IPA). H. Singapore 1976. S of Tasikmalaya. R.Jungtertiare Korallen von Java. von Krauss (1953). 1. Late Eocene faulting/ uplift event. 39-74. Indon. part 2’. SW Java. 201-207. 6. 32nd HAGI. (Overview of W Indonesia Cenozoic stratigraphy and paleogeography. 195-204.to early M Miocene and late M Miocene.. R.(Overview of geology and fauna of ~200m thick Middle Eocene section of Nanggulan. Ed. In: Skizzen zum Antlitz der Erde. p. F. and 29th IATMI. p. 100. ~20 km W of Yogyakarta. p. Favites virens. JCB2007-014. 119-158. Echinopora gracilis. ('The Burahol manganes ore deposits near Karangnunggal on Java'. and kaolin beds in beginning stages of laterization provided alkaline environment needed to promote precipitation) Paltrinieri. This is relatively coherent package in overall chaotic olistostrome area.Research on fossil corals from Java.. (1954). SEAPEX Offshore SE Asia Conf. overlain by andesitic sandstone. part 1’) Osberger. (1955). & E.vangorselslist... with sedimentation resuming in Late Oligocene (zone N2) clay-breccia formation. Bali. 9p. bantamensis. (1955). Ceratophyllia javana. Jakarta.earliest Oligocene (P 17) marine section with planktonic foraminifera. Neues Jahrbuch Mineral. p. 1955. Teil I. although probably part of Eocene olistostrome complex) Pandita. marine transgression. overlain by marls with Discocyclina and tuffs (Discocyclina Beds). Petroleum Assoc. Eocene. Palaont. Pambudi (2007). Jatibungkus Mb ~80m thick reefal limestone in middle of section between pF zones P14-P15. and with Late Eocene larger foraminifera Discocyclina and Pellatispira (LBF zone Tb). 5th Ann.Late Pliocene. Stylophora spp. Goniopora affinis Dictyaraea. tied to S-ward shift of subduction zone. Natural Science (Majalah Ilmu Alam untuk Indonesia) 110. caused period of non-deposition. Joint Conv. Situmorang (1976). Three major orogenic events: early Tertiary. ('Description of some Tertiary corals of Java') Osberger. P. Coelocoenia spp. Palaont. Proc. On manganese oxide ores of Burahol hill near Karangnunggal. R. R. NW of Pacitan. p. p.Biostratigraphy of the Jatibungkus section (Lokulo area) in Central Java. Palaont.Study trace fossil at Sambipitu Formation in Nglipar Area.Beschreibung einiger tertiarer Korallen von Java. Conv. 1-29. (Work on corals from Bandung survey collections from four localities on Java: Geger Tjabe (C Java. 101. from Lower Miocene at Punung. Descriptions of Indosmilia cf. M Miocene) Osberger. C Java. In W Indonesia two phases of sedimentation.0 90 www. (1954). Succession almost normal. R. Favia speciosa. (’Late Tertiary corals from Java. Petrophylliella spp. Bibliography of Indonesia Geology. Orbicella borradailei. and Anisocoenia crassisepta.Stratigraphic and paleogeographic evolution during Cenozoic time in Western Indonesia. Neues Jahrbuch Geol. 6. Weathering of basic volcanic rocks supplied manganese. Teil II. Geol. Three levels: basal quartz sandstone (>80m. esdm. (online at: http://retii. Two consistent groups: small size in U Miocene.Porosity development and diagenetic study at Parigi Formation. including Central-East Java Southern Mountains) Bibliography of Indonesia Geology. p. Tijdschrift Kon. Rhizocorallium and Thalassinoides. Teknologi Bandung. High Gravity anomaly formed by limestone high.scirp.sttnas. p. including Chondrites. Tijdschrift Kon. & B. IPA07-SG-020. (Characterization of porosity and diagenesis of Parigi Fm carbonate in JPP-14 well. Zaim. Uplift and tilting of Jampang region in M Pleistocene) Pannekoek. West Java') Panjaitan. 66. Jakarta. & Y. H. (Unpublished) ('Geology and ophiolite association of the Ciletuh area.Lower Pliocene and large shells in Pliocene-Pleistocene) Panigoro. 777-784. Jawa Barat. Geosciences 4.org/journal/PaperInformation.(Study of trace fossils of M Miocene (N12-N13) turbiditic Sambipitu Fm in two sections in Nglipar Area.pdf) ('Palaeoecology of the Pucangan Formation in the Kabuh area based on fossil molluscs content'. S. A. Indon. Ph. H.Geologi dan asosiasi ofiolit daerah Ciletuh..Enige karstterreinen in Indonesie. 6 p. Low Gravity anomaly formed by Kendeng Zone) Pannekoek. Little or no stratigraphy) Pannekoek. p. 6. H. Sugihartoko (2007). Thesis University of Amsterdam. 340-367.php/dir/article_detail/480) ('Oil and gas prospects in the East Java Basin using gravity data'. (‘The geomorphology of the W Progo Mountains'. Sumber Daya Geologi 5. J. 1-80. (1948). Nederlands Aardrijkskundig Gen. (1936). 4. 'Karina Field'.ac.P. A. p. Nederlands Aardrijkskundig Gen. p.aspx?paperID=33473.J.bgl. S Mountains. p. Y. Descriptions of Early Miocene molluscs. strongly folded before deposition of widespread Miocene volcanoclastic sediments.vangorselslist.Ostrea (marine lower delta plain)) Pandita. Rizal (2013). 209-214. 31 st Ann. Cruziana facies present in Kedungkeris section in E.Beitrage zur Kenntnis der Altmiocenen Molluskenfauna von Rembang (Java).go. Aswan & Y. p. suggesting deeper paleoenvironment of lower part of Sambipitu Fm in West) Pandita.Prospek migas pada Cekungan Jawa Timur dengan pengamatan metode gayaberat.Geomorfologische waarnemingen op het Djampang-Plateau in West Java. A. 3. Sukabumi. p. (online at: www. but not in Ngalang section in W. Inst. Yogyakarta. Petroleum Assoc. onshore NW Java basin) Panjaitan. NE Java. (2010). Zaim (2009).id/wp-content/uploads/2015/08/RETII2009. Int. Jaarverslag Topogr.Relationship of biometrical aspect of Turritellidae with geochronological aspect in West Java.Indie 34. Dienst Nederl. C Java) Pannekoek. (Geomorphology of Jampang Plateau.D. Thesis. (‘Some karst terrains in Indonesia’.com Sept 2016 . mainly from Sedang oil concession. Eocene with quartz sandstones but no volcanics. E Java with two paleoecologically significant mollusc assemblages: CorbulaOstrea (brackish-marine lower delta plain) and Arca. E Pleistocene deposits of E Kendeng zone. Prosiding 4th Seminar Sekolah Tinggi Teknologi Nasional. 63.J. Ed. 168-181. Rembang zone. SW Java. 3. J. Proc. Well JPP-14 “Karina Field” North West Java Basin based on wireline log and petrography data. Three facies: Cruziana. ('Contributions to the knowledge of the Early Miocene mollusc fauna of Rembang (Java)'.De geomorphologie van het West-Progo gebergte. Zoophycos and Cruziana-Skolithos facies. Kabupaten Sukabumi. (online at: www.D. (1981).id/publication/index. 1-132. Bouguer Anomalies in E Java basin three typess: a. Medium Gravity anomaly formed by sedimentory rock basin and c.U2QRPfldWpA) (Turritellidae gastropods studied in 5 localities in W Java (type localities of Martin 1919 and Oostingh 1938). Conv. b. 1-30.0 91 www. 172-180. (1946). Folded E-M Miocene (E Miocene Jampang series andesitic breccias and tuffs and M Miocene Cimandiri series) unconformably overlain by Late Miocene volcanoclastics). (1938).J. Common trace fossils. Bul. (IPA). A.Paleoekologi Formasi Pucangan di daerah Kabuh ditinjau dari kandungan fosil moluska. D. F.J. Overall cementation limited.permeabilities very high in relatively unaltered Holocene carbonate sediment. K. Siemers & A. 6. R.the third dimension. Many of the metamorphic rocks recrystallized in N-dipping subduction zone at margin of Sundaland craton in Early Cretaceous.Holocene carbonate sedimentation. Petroleum Assoc. Brown (1992). Effendi (1977). Jakarta. Banten Province'. Sulawesi and Kalimantan. with K-Ar ages 94 Ma.K. Indon.Basement komplek Bayah. Indon. A. Predominantly low-intermediate metamorphic grade and 110-120 Ma K-Ar radiometric ages. A. (IPA). 270-326. Siemers.500 yrs BP. Porosities. A. formed mainly between 10. p. & I..id/bsc/article/view/8270) (Petrology/ geochemistry of partly metamorphosed ophiolite sequence in Ciletuh melange complex.An overview and tectonic synthesis of the pre-Tertiary very-high-pressure metamorphic and associated rocks of Java. Helmi. C and E Java) Panuju & R. In: C. Barber & D. 3rd Ann.Production of Jatibarang volcanic rock. The Island Arc 7. Widiaputra (2015). p. Longman et al.vangorselslist. 377-384. Java Sea. Petroleum Assoc.. Petroleum Assoc. p. Scientific Contr. A. extensive discussion of geomorphologic zones and features of W.Lingkungan tektonik ofiolit komplek melange Ciletuh Jawa Barat berdasarkan pendekatan petrologi. P. Ed. Jakarta. Propinsi Banten. (UNPAD) 13. 3. Metamorphic rocks exhumed from greater depths include eclogite and jadeite-glaucophane-quartz rock in Luk Ulo. 1-12. A. Bull.Pannekoek. (IPA). Metamorphic rocks believed to be basement of Bayah complex in SW Java exposed at reverse fault. Pulau Seribu. Conv. ('Revision of the basal Early Miocene nannoplankton zonation (zones NN1-NN2) in the NE Java Basin') Park. 182-191. Petroleum Assoc. Park. Jakarta. Wakita. (2011). Sulawesi and SE Kalimantan.Outline of the geomorphology of Java. First Asean Conference. p. S. hartzburgite. (High-P metamorphic rocks in Cretaceous accretionary complexes of Java. (2003).4.A. (Much of E Miocene Batu Raja carbonate porosity of meteoric freshwater leaching origin. Prakoso & T. Proc. Scientific Contr. p. Miyazaki. (IPA).The basement configuration of the Northwest Java area. 139-151. p. 66.. 2-1 to 2-39. p. Bull. Proc. SW Java. 1-2. Matter.K. Indonesia. (UNPAD) 9. (Shallow core holes on Thousand Islands off Jakarta show ~30m of coral-dominated carbonate. C Java. 3. Kabupaten Lebak.A modern carbonate environment and model for hydrocarbon exploration and development: Pulau Seribu Field Trip. Bali 2007. (Rel. Proc. Jakarta. (1949).K. ('Bayah basement complex.Revisi biostratigrafi nanoplangton Miosen Awal bagian bawah (Zona NN1-NN2) di Cekungan Jawa Timur Utara. Nederlands Aardrijkskundig Gen.T.C.. A. assssociated with 4 th and 5th order cycles of sea level change. p. Composite LBR facies map Krisna-Yvonne area) Park.com Sept 2016 . 129-152. May 17-20. R. (online at: http://journals. Tonkin (1995). especially in coral-rudstone rampart deposits) Parkinson. Composed of serpentinite. (Onshore NW Java basin basement penetration in wells include granitoids. p. Conv.T. C. together with younger rocks (Eocene Bayah Fm and Bibliography of Indonesia Geology. Proc. 24th Ann. Carswell (1998). gabbro and pillow basalt) Patonah. Lebak District. Patmosukismo. p. 65 Ma (Jatibarang) and 58 Ma (Tangerang). Also metamorphic argillite at Pamanukan dated as ~213 Ma (Late Triassic)) Patonah. C. 32nd HAGI. J.) Carbonate rocks and reservoirs of Indonesia: a Core workshop. M. 184-200. Tijdschrift Kon. 1. & M. Kapid (2007). JCB2007097.W.000.Porosity evolution in the Batu Raja carbonates of the Sunda Basin windows of opportunity..J.163-184. (eds. Joint Conv. Indon. 36th IAGI and 29th IATMI.A.unpad. Indon.ac. K.0 92 www. 2003. dunite. R. Yahya (1974). Exhumation may have been facilitated by collision of Gondwanan continental fragment with Sundaland margin at ~120-115 Ma) Partakusuma. Haikal. (Second edition of 1991 map in E Java. Provinsi Banten. Metamorphic rocks in Bayah Complex dominated by biotite schist.Petrologi amfibolit komplek melange Ciletuh. E-W trending thrust faults of M Miocene.The geology of the Besuki quadrangle.Karakteristik batuan metamorf Bayah di Desa Cigaber.14. 69-77. and schists and gneisses as tectonic slabs in black-shale matrix. Indon. sedimentary rocks. & H. Centre (GRDC). Sundari (2016). Syafri (2014). Provinsi D. Assoc. Proc. Bandung. (online at: http://jurnal. (Structural interpretation of area S of Kedungjati. Kebumen. albite. 2. Indon.3D strike-slip Fault model in Kendeng Zone using data combination of structural geological mapping and analogue sandbox modeling: a case study of the Kedungjati Fault. Proc.I. rare lawsonite.5 kbar. C Java. ('Characteristics of Bayah metamorphic rocks in Cigaber village. E-M Miocene Wonosari Fm limestones at Baron Beach and Serpeng area of S Mountains. Old Ijen. Hidajat & Fahrudin (2016).. Also Lepidocyclina and Miogypsina) Pendowo. W Kendeng zone. (UNPAD) 12. With some retrograde metamorphism. 1. amphibolite schist) low-high grade metamorphism and different protoliths. Late Pliocene (2 Ma) leucite-bearing volcanics of G. Cekungan Banyumas. (2)overlain by foreslope. Regional metamorphism with retrograde metamorphism. (IPA). Multiple types of metamorphic rocks (mica schist. Scientific Contr. (Lok Ulo Cretaceous tectonic melange complex consists of dismembered ophiolites.id/bsc/article/view/8245) (Amphibolite in Ciletuh melange complex associated with serpentinite.. with Cycloclypeus. Conv. GOA and Kalimuncar with glaucophane. 43rd Ann. Permana (2010).Petrology of high pressure metamorphic rocks from Luk Ulo Melange Complex. & H. Amphibolites result of ophiolite obduction.Y.The P-T path of metamorphic rocks from Karangsambung area. gabro and basalt. Yogyakarta Province'. R. W. Proc. Central Java. 2nd Ed. (UNPAD) 8. Geol. interpreted as result of intermediate pressure metamorphism) Patonah. Saputra (2014). (IAGI).younger sediments and younger N-S trending dextral strike-slip faults) Permadi. Karangsambung. with planktonic foraminifera and Textulariina. (IAGI).) Perdana. Res. Geol.. Rijani & D. Amrizal & I.unpad. Grobogan District. Conv. A. Yogyakarta. Assoc. IPA16-288-SG. & U. 92-98. & I. With foliation. Ringgit unconformably overlain by Pleistocene volcanics of Ringgit. Samodra (1997). 2. Banten Province'. Petroleum Assoc. ('Foraminifera biofacies change in the limestone at Baron Beach and Serpenge. Lebak. T 640-660°C. 2.000.vangorselslist.Oligocene Cihara granodiorite). Late Pliocene..G.Studi palinologi untuk sikuenstratigrafi di lintasan A Formasi Tapak. Bull. probably during Eocene. p. A. Geologi Sumberdaya Mineral 17. L. p.Recent volcanics. Bibliography of Indonesia Geology. J. 17p.M. B. Geol. East Java (Quadrangle 1600-3). Dominated by amphibole. Formed at 500-580 °C and 4. Kabupaten Lebak. p. 37th Ann.ac. Bull.B. Jakarta. 61-71. (UNPAD) 7. Sukabumi. High pressure metamorphism in Karangsambung area produced metamorphic rock between glaucophane blueschist and eclogite.Perubahan biofasies foraminifera pada batugamping di Pantai Baron dan Serpeng. scale 1: 100. 1-6. Central Java-Indonesia. p. Conv. Two groups of carbonate facies: (1) at base basinal. Ed.Pliocene sediments with zircon-bearing tuff of 7. 139-147. some actinolite schist. Indon.Oligocene uplift) Patriani. dunite. 6. Jawa Barat. Eclogites were subducted to ~70 km depth at geothermal gradient of ~6 C°/km) Perdana.0 93 www. Bandung. Folded Late Miocene. andesine and rare quartz. 5p. Central Java Province. Dev. (Glaucophane schist from Luk Ulo melange complex at Lamuk. Sucipta (2008). quartz.26 Ma. Bull. Jakarta.A. p.. boudinage and crenulation structures. 40th Ann. Katacycloclypeus annulatus and Amphistegina. harzburgite. etc. E. M. R. in lower interval of subduction zone. formed at depth of ~35-50 km. hornblende schist and chlorite schist. crossite. S. Priadi (2009).com Sept 2016 . A. Radiometric age of mica schist ~85-102 Ma (Suparka 1987)) Patonah.K. with retrograde metamorphism to amphibolites epidote during accretion and uplift in Late Oligocene) Patonah. Haryadi & B. 1. 10p. Scientific Contr.6 kbar. Formed at P 5. Scientific Contr. Argopuro.E. PIT IAGI 2014-279. Mukti (2010).. Memorie Scienze Geol. methods and application. p. Central Java'. Hendrizan & M. & Premonowati (2001). 219-231. 2. A. Bull. Lombok. especially feldspatthic and arkosic greywackes) Pertamina BPPKA (A. 53.. p. Symposium Geologic evolution of East and Southeast Asia. 6. Publ.Sc.Podocarpus imbricatus palynozone. 15-65.M.A.. E.S. (Nanggulan exceptionally rich Eocene mollusc faunas. Thesis. Padova. Hardjadinata (1992). Proc. G. No samples location map) Permana. (Nummulites) Djokjokartae Beds in middle and Discocyclina Beds at top. H. Nurwibowo. 15. Ismayanto. M.com Sept 2016 . Padova. p.0 94 www. G. P. 2. Setiawan.Banyumas: sejarah tektonik kompleks di wilayah batas konvergensi. Dev. (Same paper as above) Permanadewi. Mukti (2011). methods and application.Petroleum geology of Indonesian basins. known since Verbeek & Fennema 1896. East Java basins. Hendrizan & M. Indonesia.Interactive digital field mapping and Neogene tectono-stratigraphic evolution of the Kendeng and Rembang deformed zones East-Central Java.('Palynology study for sequence stratigraphy of track A. p. subdivided into Axinea Beds at base.K. (ed.Perkembangan cekungan antar-busur di daerah Majalengka. All with Stenochlaeniidites papuanus and within Late Pliocene Dacrycarpidites australiensis. Banyumas Basin'. Bangkok 2004.. M. Geol. Centre (GRDC).S.F. C Java: Kedung Randu. Bandung.H. p.Perkembangan cekungan antar-busur di daerah Majalengka. M. M. Bandung. 77-91. Tapak Formation. 8p. Vol. which could be responsible for development of sub-basins and volcanic products through splay or duplex fault or pull apart related to oblique subduction. Middle-Late Miocene submarine-fan complex.F. PIT-IAGI-2010-232. P.Paleogeographic evolution of the North-West Kebumen sub-basin. In: Geologi Indonesia: dinamika dan produknya. (Unpublished) Piccoli. (2007).Studi sikuen stratigrafi anggota atas formasi Cibulakan. & K.. Res. Memorie Scienze Geol.) (1996). Sumber Daya Geologi 21. Putra. 20km W of Yogyakarta) Piccoli. 107 p. principles.L Miocene intra-arc basin with E-W and NW-SE structural grains parallel to postulated intra-arc basin.M. p.New studies on the Cenozoic fossil fauna of Nanggulan (Java Indonesia). A. Three sequences identified. ('Metasedimentary rocks of the Banjarnegara area. Rocks in Luk Ulo melange commonly affected by low grade metamorphism. 53.Banyumas: sejarah tektonik kompleks di wilayah batas konvergensi. (2006). G.Banyumas area M.Petroleum geology of Indonesian basins. Peterson. H. Putra. 17-22.A.New studies about molluscs from Eocene of Nanggulan (Java Indonesia). Pertamina BPPKA (C.vangorselslist. Harsolumakso (2004). Indonesia. Jawa Tengah. A. Conv. Ed. Jakarta. (Sequence stratigraphy study of short cored interval in Cibulakan Fm of well 'M-13'. Permana. (Collection of ten short papers by Italian students on Middle Eocene stratigraphy and molluscs of Nanggulan section. Dev. Geol. p. Depositional environments from back-mangrove to mangrove. S. Res. Ponto et al. 45-57. 39th Ann. 3. West Java Sea Basins. (IAGI).Batuan metasedimen daerah Banjarnegara. Assoc. NW Java Basin) Permana. Kapid & A. 33. Geol.) (2001). J. Centre (GRDC). Setiawan. Central Java. Palynology of 166 samples from 3 areas in Banyumas basin. In: Int. Basin now inverted and forms mountain range) Permana. Majalengka . R. I. Ismayanto. 132 p. Indon. ('Intra-arc basin development in the region of Majalengka-Banyumas: complex tectonic history in convergent margin'. Cekungan Jawa Barat Utara. 1-82. Spec. Vol 4. I. 300m thick mudstone-dominated section. Mount Tugel and Bunkanel. Kohar et al.V.principles.) (1996). and mainly of Middle Eocene age) Bibliography of Indonesia Geology. San Diego State University. Proc. & E.The palynological study of ancient lake Bandung. 17. Bull. Central Java'.Neogen dari daerah Nanggulan dan Karangsambung.A brief outline of the stratigraphic occurrence of oil in the Tertiary basins of West Indonesia. Indonesia). S. Kabuh and Setri Formations.. Study of pollen from Nanggulan area suggest Eocene. Dev. 1338. Wahyudiono & A. K. Bull. Prajatna. Nanggulan molluscs equatorial assemblages) Poedjopradjitno. Padova. Geol. Nanggulan in C Java. Centre (GRDC). (Listings of mollusces from M Eocene of lower Nanggulan Fm at Kalisonggo (14 gastropod species. Bandung.. M. (1963). 21% in common with Tethys) and from Early Miocene 'back-reef' limestones of lower Wonosari Fm at Panggang.go.Neogene pollen from the Nanggulan and Karangsambung areas. 325-332. Paleont. (online at: http://kiosk.A. 14 bivalve species. Boll.id/publikasi/jurnal-sumber-daya-geologi/jsdg-vol-19-no-5-oktober-2009/pdf) ('Paleogene. Contrib.Late Cenozoic palynological studies on Java. 5. Thesis University of Padova.A. Res. but many are synonyms of S European species of same age. 19-23. A. & Sudijono (1985).Peran morfologi struktur kaitannya dengan deformasi landform daerah Semarang Selatan. Centre (GRDC). Jawa Tengah. Indonesia). Takashima). Spec. K. 109-117. Karangsambung pollen from M Eocene (Karangsambung Fm). inquadrate nelle fauna della Tetide. Dev. Spec. Thesis University of Hull.0 95 www.Pliocene age (Halang Fm). (1981). Predominance of Graminae pollen suggest widespread grass-dominated swamp and possibly savannah in all formations.Five shallow benthic faunas from the Upper Eocene (Baron. (Pollen analyses of Pucangan. 5th Geology Workshop. Nanggulan. A. 33.Quaternary vegetational history of Batujaya. 1-2. (Comparison of five shallow marine benthic mollusc faunas from U Eocene of Tethys domain.D. 6.geology.A. Geology Inst.esdm. Pollen deposited in littoral environments (?)) Polhaupessy. Res. Sumber Daya Geologi 19.Piccoli. 49-59. Ph. p.A. (1990). p. p. G. p. Dev. (1980). Teknologi Bandung (ITB) 53. Bandung. 3. Publ. Polhaupessy. (1992). Centre (GRDC). Martin (1914-1931) created many new species names for molluscs from Nanggulan. incl. p. Indonesia)') Pozzobon. (2001).Climatic changes based on palynological studies with special example of ancient Bandung Lake samples. Bandung 1991. J. (2009). A. Geol. Bandung. A. Cita (2007).A. (Unpublished) Polhaupessy. In: Global environmental changes with special reference to the Quaternary and Recent time. no Tethyan connections. p. Res. 30-36. 53. GRDC-JICA. J. considering them as endemic. 1-32. M. p.Oligocene age.a preliminary report. all Indo-West Pacific)) Prajatna.A.. 5. 1-151. Geol. p. Dept. 36-40. 37-55. Italiana 22. p. (Landforms of South Semarang area strongly effected by Quaternary tectonic activity) Polhaupessy. p. A. p. Soc. Contrib. p. Dev. Memorie Scienze Geol. 1.vangorselslist. Publ. Priabona.Some Eocene molluscs from Nanggulan and a new species of Cyclina (Bivalvia) in the Miocene mollusc assemblage from Panggang (Java. Ed. Geol.com Sept 2016 . Garoowe. Res. 69-76. (1997)-Le malacofaune Cenozoiche di Nanggulan e di Panggang Presso Yogyakarta (Giava. (1964). Savazzi (1984). ('The Cenozoic mollusc faunas of Nanggulan and Panggang near Yogyakarta (Java. Teknologi Bandung (ITB) 56. Dept. Polhaupessy. Geology Inst. Bibliography of Indonesia Geology. Centre (GRDC). 31-47. suggesting Late PliocenePleistocene climates more seasonal than today) Pozzobon.Palynological study of Quaternary formations in the Solo and Madiun areas.The geology and oil possibilities of northern West Java.Polen Paleogen. A. Bandung. Polhaupessy. 21 km SSW of Yogyakarta (17 gastropod. Conv. pristane/phytane ratio >1. Indon.bgl. 6. (Oil seeps in Bantal area. (online at: http://ijog.Neogene and Quaternary fault kinematics around the Sunda Strait area.. p. 5p. 34th Ann. Indonesia. Clays of Late Miocene Cinambo Fm S of Majalengka E of Bandung mainly Type III kerogen.Fasies turbidit Formasi Halang di daerah Ajibarang. ('Hydrocarbon source rock potential of the Cinambo Formation in the Majalengka area. 41st Ann. Petroleum Assoc.php/dir/article_detail/250) Bibliography of Indonesia Geology. W Java. 3. 37th Ann. I.Utilizing image log to generate fracture density map in the Pangkah Field. 6p. Geol. Carbonates in four facies (1) reef front to reef crest boundstone.id/index. 137-145. J. 2012-E-03. at W end of Kendeng zone.0 96 www. Possible source rock is shale below Pelang Fm) Pramumijoyo. A. Indonesia. Sutiyono (2010). Jawa Barat.id/publication/index. Dextral slip on SFS began during M Miocene and normal faulting prevailed in Sunda Strait since 5 Ma.esdm. Geochemical analysis shows nalkane high in C8-C15 and C25-C28. Hendrizan (2009). 1.vangorselslist. Geologi Indonesia 4. Conv. Fracture density decays quickly in about 200' from main faulting zone. N of Solo River delta. p.H. Proc.A new oil kitchen and petroleum bearing subbasin in the Offshore Northwest Java Area.go. (IPA). Indon.esdm. oil and gas prone) Praptisih.com Sept 2016 . Jakarta. C Java'. Geoscience 1. 167-175.esdm. Jawa Barat. (2) slope.A. p. Firdaus & S. Assoc. 3. Proc.S. Clastic source from SSW) Praptisih & Kamtono (2012). Noble (1990). Geol. Ed. Proc.C. Geologi Indonesia 6.id/publication/index. 1-11.go. 1. Jawa Tengah. Jakarta. (Study of source rock potential of Miocene Jatiluhur Fm in Bogor area suggest only minor gas potential) Praptisih & Kamtono (2014). Bandung. Petroleum Assoc. p. Strike-slip deformations in Miocene or older rocks. Conv.E Pliocene Halang Fm turbidites N of Cilacap deposited in middle fan setting of submarine fan system. deposited in lacustrine environment. IPA10-G010. Proc. Opening of Sunda Strait consequence of right lateral movement of Sumatran Fault System-SFS. (IAGI). Conv.php/dir/article_detail/299) ('Turbidite Facies of the Halang Fm in the Ajibarang area. & H. (Ujung Pangkah Field 1998 oil-gas discovery off NE Java. Indon.php/IJOG/article/view/198/185) (Miocene Klapanunggal Fm (=Parigi Fm) limestone well exposed in and near Cibinong. 13-27. Semarang. Reservoir Early Miocene platform margin carbonate reef build-up with complex reservoir properties and common faulting/ fractures. Kamtono. Amijaya (2008).bgl. Pliocene and younger formations only normal faulting. 1. 2. Oil degraded. (North Seribu Trough.Potensi batuan indik hidrokarbon pada Formasi Cinambo di daerah Majalengka. 35 km SE of Semarang. (3) reef front rudstone and (4) lower slope limestone breccia. (IAGI). Two main kinematics on faults around Sunda Strait area: dextral strike-slip and normal. 1. C. & M.bgl. East Java. J. Putra & M. and back-reef lagoon packstones. P. W. J. Reef front and slope facies in N-NE.Carbonate facies and sedimentation of the Klapanunggal Formation in Cibinong. Geologi Sumber Daya Mineral 17. p.go. p. Indonesian J. S. J. M Miocene. West Java. Sebrier (1991).Geochemical characteristic of oil seepage in Bantal area. p. (IPA). NST oils differ from established oil families of Ardjuna Subbasin and S Seribu Trough and probably generated from lacustrine facies of Talang Akar Fm in central NST depocenter) Pramono.. 691-704. (online at: www. 6. West Java'. etc. 253-278. (Sunda Strait transition zone from orthogonal subduction off Java to oblique subduction off Sumatra. Oil from mixed algal and higher plant kerogens.F. Southeast Asian Earth Sci. Wu & R.. controlling bathymetry of Sunda Strait) Praptisih & Kamtono (2011). (online at: www. 19th Ann. Assoc. Central Java. reef crest and back reef lagoon to S-SW) Praptisih & Kamtono (2016). 175-183.Studi potensi batuan induk Formasi Jatiluhur di daerah Bogor. offshore NW Java. Yogyakarta.Prakoso. Jawa Barat. Indon. is hydrocarbon generative center.Karakteristik batuan sumber (source rock) hidrokarbon pada Formasi Batuasih di daerah Sukabumi. prevailing fracture direction NE-SW) Pramono H. Fasies dan lingkungan batuan karbonat Formasi Parigi di daerah Palimanan. Proc. p. p. Kamtono. Central Java. Foraminifera believed to indicate Early Miocene age (but faunal list includes mixture of E Miocene (Te5. E Java'.S. Miogypsinoides) and M Miocene (Tf1-2.geotek. 39th Ann. S. Tmax 405-489°C. Tmax: 435-458°C and HI 47-163 mg HC/TOC.17 %. Indon. M. Proc.go. Depositional environment reef and associated facies. p. Proc. HvG) Bibliography of Indonesia Geology. 1-6. IAGI (Ikatan Ahli Geologi Indonesia). resin)) Praptisih. Siregar (2011). Bandung. (LIPI). Jawa Timur. Rambatan Fm up to 1. show minor oil and gas potential. In: Proc. p.S.Studi batuan induk pada sub cekungan Serayu Utara.S. including boundstones. S. etc. Cirebon. Siregar & Kamtono (2008).1. ('Study of Eocene limestone facies in the Banjarnegara area. Assoc. Geol. Jawa Tengah.50. p. Assoc.. Denpasar. T max 422. Interpreted as E Miocene barrier reef system) Praptisih & M. 9p. (eds. Indon. Jawa Barat. Siregar & Kamtono (2004). M. Indon. Most organic material land-derived (oleanane. ('Petrography and limestone facies of the Wonosari Fm in the Bayat area. Conv. Kamtono. red algae. 1.Study fasies batugamping Eosen di daerah Banjarnegara. deposited in fore-reef facies) Praptisih. Riset Geologi Pertambangan (LIPI) 22. Banjarnegara dan sekitarnya. Pellatispira. Conv. Jawa Timur.Fasies carbonat Formasi Campurdarat di daerah Tulungagung.S. etc. Palimanan area. Rock Eval analysis shows HI values from 63. Oligocene claystone Member of Rajamandala Fm shows TOC value 0. (online at: www. Jawa Barat. p. Sulastya & M.113 mg HC/g) Praptisih & M. Indon. Late Eocene limestone at Gunung Karang in Wora-Wari area >10m thick olistolith in Oligocene Totogan Fm. with reef front in NE and back reef in SW. indicating one sample is mature and 10 immature. not much stratigraphic detail) Praptisih. Hendrizan (2010). (IAGI). P.php/2016/01/20/prosiding-2007/) ('Study of source rock in the North Serayu sub-basin. 208-211. Putra (2012). Conv. ('Study of source rocks in the Padalarang area'. M. 33rd Ann. Foraminiferal packstone-grainstone and boundstone facies with Nummulites.Petrografi dan fasies batugamping Formasi Wonosari di daerah Bayat. Assoc. 8p. Hendrizan & P. Puslitbang Geotekn. Jawa Tengah.go. Central Java'. Hydrogen Index (HI) 16-86 mg HC/TOC . 2. (Same paper as above) Praptisih. Conv. (IAGI). (IAGI). Siregar (2002). 32-40.6% TOC.S. Proc. Banjarnegara and surroundings.('Characteristics of hydrocarbon source rocks of the Batuasih Formation in the Sukabumi area. (online at: http://pustaka. 65-72. JCM2011-236. Sumber Daya Geologi 22. J. 37th Ann. Outcrop of Parigi Fm in the anticlinal structure of Kromong carbonate complex.geotek. Siregar & E. Totogan Fm TOC up to 2. (M and Late Miocene reefal limestone in Tasikmalaya area. Ed. ('Carbonate facies of the Campurdarat Formation in the Tulungagung area.Studi batuan induk di daerah Padalarang dan sekitarnya. Facies of E-M Miocene limestone in S Mountains. Siregar (2011).vangorselslist. Praptisih & M. Cycloclypeus annulatus). Tohari et al.The hydrocarbon source rock potential of the Rambatan Formation in the Banjarnegara area. Bandung. Kamtono. Seven facies. (IAGI).0 97 www.com Sept 2016 . Geol. Siregar. Cirebon'.lipi.A. Conv. 36th Ann. Geol. In: A. p.id/index. Geol. Siregar (2007). Discocyclina. Larger forams suggestive of Zone Te. Spiroclypeus.S. Jawa Tengah. Pengda DIY-Jateng.Studi fasies batugamping di daerah Tasikmalaya dan sekitarnya. 6.) Pros.id/riset/index. C Java'. Proc.524 °C. foraminiferal packstones. Lombok. Joint 36th HAGI and 40th IAGI Ann.S.good for hydrocarbons. Makassar. J. fair.lipi.1%. 52-59.Fasies karbonat Formasi Campurdarat di daerah Tulungagung. Spiroclypeus. Sumberdaya geologi daerah istimewa Yogyakarta dan Jawa Tengah. PIT-IAGI-2010-325. 1.. indicating minor gas potential. West Java'. Oligocene Batu Asih Fm marine claystone in Sukabumi area poor to fair organic richness and gas prone) Praptisih. Seminar Geoteknologi Kontribusi ilmu kebumian dalam pembangunan berkelanjutan. Assoc. Subroto (2007). C Java') Praptisih & M. 33-43.php/jurnal/article/viewFile/44/6) ('Facies and environment of Parigi Fm carbonates in the Palimanan area. Asterocyclina. J. (IAGI). Surabaya.R.R. 680-700. 37 outcrop samples range from arkosic to arenitic sst. C. Thesis Inst. C. E.H. Int. Bayat-Klaten: a possible Eocene-origin paleohigh. 35th Conv. C. Sapiie & J. Assoc. Bayat basement mostly phyllite and schists of unknown age. Melange overlain by Eocene clastics. 37th Conv. Geol. 2. ('The pattern and genesis of geological structure of the Southern Mountains. 31st Ann. Indon. Nanggulan. I. Metamorphic rock grains dominate in most samples. Others oriented NW-SE (3) and E-W (3) and mainly dextral and normal faults) Prasetyadi. 17. Petroleum Assoc. Geol. Setiawan (2002). Pekanbaru. E Eocene metasedimentary unit generally dips to S) Prasetyadi. Harsolumakso & B. 6. unconformably overlain by Eocene and M Miocene sediments) Prasetyadi. some reactivated as normal faults. (IAGI). Maha (2004). Assoc. characterized by tectonic block-in matrix structure. opposite of expected for NW-dipping subduction zone. Data suggest two different provenance areas: recycled orogen in Karangsambung and craton interior in Nanggulan.Evolusi tektonik Paleogen Jawa Bagian Timur. 91107. 4p. Luk Ulo melange complex of latest Cretaceous. Bandung. Conf. (2008). mainly oriented NE-SW (16) and N-S (14) and mainly sinistral. C.vangorselslist. Melange structural dip mostly to S-SE. Indon.. Harsolumakso & B.R. Karangsambung lies in accretionary basement area. S Mountains structures dominated by faults. C. 16p. C. B. (First record of Early Eocene larger forams and M-L Eocene limestone blocks in metamorphosed tectonic melange Larangan area in N part of Luk Ulo melange complex. (IAGI). Central Java. C. p. lithics 2-45%. Proc.B. With M Cretaceous limestone blocks with Orbitolina. Indon. with quartz as dominant component (av. V. 1-323.Tectonic significance of pre-Tertiary rocks of Jiwo Hill. 1. A. (IAGI). (2007). provinsi daerah Istimewa Yogyakarta dan provinsi Jawa Tengah. Suparka. provincial areas of Yogyakarta and Central Java province'. Doct. feldspar 2-27%. E. Teknologi Bandung (ITB). Ed. p.. 65% range 35-98%). 2. 2. Luk Ulo Pretertiary structural grain NE-SW or NNE-SSW. Suparka. p.H.Paleocene subduction complex.An overview of Paleogene stratigraphy of the Karangsambung area. A.Jiwo Hills. Assoc. Indon. p. 61-64.. K-Ar ages of ophiolite-associated schist 110-125 Ma (block).Provenan batupasir Eosen Jawa bagian Timur. Assoc.H. Shifting of NE-SW Cretaceous subduction trend to Oligocene E-W trend due to collision of Bibliography of Indonesia Geology. Bayat and E Java basin.0 98 www. 06-PG-09. Central Java: discovery of new type of Eocene rock.Paleocene subduction-related deformation. Sudarno. Geosci. 34th Conv. Proc. Sumber Daya Geologi 21..com Sept 2016 . Harsolumakso & B. Jakarta 2006. Suparka. Conv. & M.Paleocene age.H. A. Yogyakarta) V. Sapiie (2006).. 80-97. Prasetyadi. 310-321. Karangsambung areas in Central Java: a comparative review. Geol. Indrnadi & Surono (2011). siliceous shale 90-115 Ma) Prasetyadi. ('Eocene sandstone provenance in East Java'. (Unpublished) (‘Paleogene tectonic evolution of East Java’. Eocene sediments in E half of Java at Luk Ulo-Karangsambung. Geol. Jurnal Ilmu Kebumian Teknologi Mineral (UPN. Bayat and Luk Ulo. (Discovery of M Eocene Asterocyclina-bearing limestone blocks in polymict Larangan Complex at N side of Luk Ulo Melange complex indicates age of tectonic melange not only Cretaceous-Paleocene. Sapiie (2005). Bayat and in E Java basin. Sapiie (2006). suggesting Late Eocene (collisional?) deformation after Cretaceous. Indon.Eastern Java basement rock study: preliminary results of recent field study in Karangsambung and Bayat areas. but also M-L Eocene. Proc. p. C. p. Harsolumakso. Proc. (IPA). Jakarta. Exhib.Prasetyadi. (Karangsambung basement mid-Cretaceous.Pola dan genesa struktur geologi Pegunungan Selatan.. Proc. therefore interpreted as overturned.The occurrence of a newly found Eocene tectonic melange in Karangsambung area. E. Prasetyadi. Nanggulan-Bayat in continental basement area (E margin of E Java microcontinent?) Prasetyadi. A. Conv. Semarang. Widodo & D. Sudjai.9 indicate rhytmic rel. Armon & S. Conv. (IPA). Narendra et al. Conv. Conv.R.microcontinent. but no comercial hydrocarbons. Tuban area.Identifikasi perubahan terumbu terhadap fluktuasi muka laut Formasi Paciran daerah Tuban. 40th Ann. (2009). 27th Ann.. Facies study of Paciran Fm reefal limestone along N coast of NE Java shows 5 eustatic cycles. p. W. K.gas show. Indonesia. Late Oligocene.W..R. Two deformation phases prior to onset of ‘Old Andesite’ subduction-related volcanism: Cretaceous-Paleocene subduction-related and Late Eocene post subduction (collisonal?) deformation) Prasetyadi. geophysics and geochemistry.H. 37-49. P. F. 2. Conf. shallow and inadequate hydrocarbon kitchens. 1. Geological Congress. Petroleum Assoc. Indon.. p. 1-291. (IPA). Indon. each 25.12 indicate sea level drop. ('Coral biostratigraphy of the Rajamandala Formation'. offshore southeast Sumatra. (Unpublished) ('Reef stratigraphy of the Paciran Formation in the Tuban area’. E Java) Premonowati (2001).H. Proc. 1-14. 27p. (in Indonesian) Pratomo. I. (IAGI). Majalah Geologi Indonesia 16. 379-416. Indon. Bandung. 1p. Assoc. Syaiful. (On identification of sea level fluctuations in Paciran Fm reefal limestones. A.D. (IAGI). Re-mapping of Tuban and Camar kitchen area better understanding of development of Pre-CD lacustrine-fluvial-deltaic source rock in these lows) Prayitno. p. Reefs 9. 38th Ann.A. Reef 7 is maximum flooding surface. Buletin Geologi (ITB) 20.. Harsolumakso & B.. Proc. Rambatan and Halang Fms potential reservoirs of magmatic arc provenance. Sapiie (2006). J.Pliocene mollusca from Kalibiuk and Damar Formations in Semarang area of Central Jawa. Haryono (1992). B. ('Geology of the Paciran Formation in the area of the East Java north coast'. Central Java (Indonesia). Prawiranegara. p. (Review of N Serayu basin NE of Slamet volcano in C Java. Bachtiar.The Larangan Complex: a newly found Eocene tectonic melange rock in Karangsambung area. Sani & A.Gold mineralization in Selogiri-Wonogiri.Sunda Basin case history. 6. Suparka. Central Java. (Abstract only) (Karangsambung melange complex does not only include Cretaceous-Paleocene Luk Ulo Complex.Stratigrafi terumbu Formasi Paciran daerah Tuban. PITIAGI2009-189.Holocene) Premonowati (2005). 31-51.H. Wahid (2016). Geol. D. A. 17th Int.0 99 www.W. Indon.vangorselslist. C. Indon. (1990). Petroleum Assoc. p. Teknologi Bandung (ITB). p. sea level changes. Proc. Recent well post-mortem re-evaluation and remapping of kitchens modifies understanding of petroleum system. but also Eocene Larangan complex with M Eocene Asterocyclina-bearing limestone in melange) Prasetyanto. Indonesia.com Sept 2016 . Wintolo (1997). Volcanic gravity tectonics in Pleistocene considerable influence on petroleum play) Premonowati. Proc. I. E. Proc.Jatim.Tuban and Camar troughs (East Java basin) revival: new insight. Jakarta. Assoc. M. Conv. Jakarta. Plio-Pleistocene Paciran carbonate platform formed since 4 Ma (N19). Premonowati (1996). Proc. (Tuban and Camar Troughs in Offshore NE Java Basin surrounded by dry holes and generally condemned as lean. Geol. Rahayu. Age here shown as Late Miocene. D. Fukuoka. Jakarta. 37-47. (IAGI). Saputra. Jawa Barat. Geol.The implications of basin modeling for exploration. p. W Java) Premonowati (1998).daerah pantai utara Jawa Timur.E. Reef 1 deposited in Zone Bibliography of Indonesia Geology. Raseno. Geol.Biostratigrafi dan spesiesasi koral Formasi Rajamandala. Assoc. 25 th Ann. 17th Ann. (IAGI). Assoc. 4p.Understanding the petroleum system of North Serayu Basin: an integrated approach from geology. 21st Ann. Reefs 1. Many oil seeps and all elements of viable petroleum system.Geologi Formasi Paciran. F. IPA16-63-SG. Ed. Thesis Inst. Twelve reefal units.50 m thick. A. A. Indon.H. Ph. Oil shows present in Tuban-1 and other dry-holes may also have oil. Utomo. Proc. Y. B. Reef 2 at 5 Ma (Zone N19). p. ('Ecological stratification in the Holocene reef of Paciran Formation. Proc. NE Java) Premonowati. Hantoro (2004). p.M.. Lamongan. Hantoro (2006). J.N18. 35 th Ann. Geol. R.now. UPN ‘Veteran’. Indon. 28 th Ann. based on accumulative induction methods approach. Koesoemadinata. Rukmana (2007). Pekanbaru 2006.Stratigrafi terumbu Formasi Paciran daerah Tuban. Cepu Block. Dominated by red algae and seven phases in paleoreef complex) Bibliography of Indonesia Geology. Conv.S. ('Oxygen and Carbon isotope stratigraphy of Paciran Fm. E Java.id/publication/index.Paciran reef stratigraphy. Warmer conditions at reef 8-Reef 10 formation (0. 61-68.id/uploads/IATMI_2007-TS-01_Premonowati.Reef 3 (4. Harsono Pringgoprawiro & W.php/dir/article_detail/405) (Same paper as above on Punung/Wonosari Fm reefal limestones in Jlubang area in Pacitan Regency. 7p.88 Ma) temperatures warmer. Indon.S. Jakarta.P. PITIAGI2006-039. (Large Paciran reef complex of NE Java 5 phases of growth in Pliocene. Conv. Bandung. Proc. (online at: http://elib. Jakarta 2004. From reef 4 . Joint.M. Geol. to determine paleotemperature fluctuations and to validate sea level changes of Reef 1 to Reef 17 units from 4 Ma. Koesoemadinata. (Summary of Premonowati thesis work on Pleistocene Paciran limestone.P. After that drastic rise in paleotemperature) Premonowati. East Java. Proc.9 Ma. 57-74. Sulistiyana & D. 1. (Oxygen and carbon isotope analysis from Paciran limestone Fm to validate sea level changes during Reef 1Reef 12 formation between 4 Ma. Ed. Lamongan. Simposium Nas. Pacitan Region-East Java. Proc. Tectonic uplift caused Paciran Fm outcrops at 335m above sea level now) Premonowati. Prastistho & I. Early reef formtion (reef 1 to reef 3 between 4. Assoc. Harsono Pringgoprawiro & W. 2. 4.) Proc.0 100 www.iatmi. Modeled as transgressive-aggradational shallow marine sheet sands) Premonowati. R. Tuban area.Allostratigraphy of Punung paleoreef based on lithofacies distributions.pdf) (Semanggi field 1900 BPM discovery. Harsono Pringgoprawiro & W. Jlubang Area. still producing 250 BOD from M Miocene Wonocolo IIIB (zone N8-N9) and Ngrayong VII-VIII sandstones in anticlinal structure. Jawa Timur. East Java. East Java. Geol. East Java') Premonowati. JCM2011-055. R. and Reef 12 (youngest) 6000 years ago in last interglacial. Koesoemadinata. etc. H. Ten sequences in EM Miocene U Tawun-Bulu interval. In: I. R. Proc. 6p. Indon. East Java'. Conv. 113-122. paleosoil distribution. Java. Yogyakarta 2007. Oxygen and carbon isotopes analyzed from 25 samples of unaltered calcite.Stratifikasi ekologi terumbu Holosen Formasi Paciran: kasus di Tanjung Kodok. Dominated by red algae.S. 3.Recent. Pacitan region. 36th HAGI and 40th IAGI Ann. Geologi Indonesia 7. C.. 8p.2. S Mountains of E Java.6. 29 th Ann.com Sept 2016 . Prasetyadi. Jlubang Area.2. Koesoemadinata. Tuban area.Subsurface geological models of Semanggi brownfield. 6. Reef 4 (2.Allostratigraphy of Punung paleoreef based on lithofacies distributions. J. Jurnal Teknologi Mineral (ITB) 12. Assoc. a case study from Tanjung Kodok.S. Makassar.P. (online at: www. Rahardjo. p. (IAGI). Hantoro (2005). p. Temperatures fluctuating until Reef 12 (E Holocene)) Premonowati..vangorselslist._UPNVY. Assoc. Pringgoprawiro & W. IATMI. p.4 Ma) stagnant temperature and almost warmer. based on terrace morphology. S. Harsono Pringgoprawiro & W.esdm. R. Sinulingga. Conv.bgl.Model of reef development in response to sea level fluctuation and isotope stratigraphy of Paciran Formation. Indonesia. Zulkarnain et al. Reef 1.P.1.Recent. Seminar on Nuclear Geology and Mining Resources.4 Ma) stagnant temperatures and almost warmer condition.Reef 8 (2.Stratigrafi isotop oksigen dan karbon dari Formasi Paciran Jawa Timur. (eds. TS01.P. Hantoro (1999).59 Ma)Reef 8 (1.or. Prastistho & I.S.) Premonowati. 208-219. (IAGI). (On M Miocene Punung Fm reefal limestone in S Mountains. B. W block more productive than E. Firdaus (2011). Not much detail) Premonowati.go. Hantoro (2000). (IAGI). Koesoemadinata. Firdaus (2012).7 Ma). 1 p. Mubandi. B. Conv.Prospectivity analysis of Java island for porphyry and epithermal deposits. p. p.Geochemistry of the Tertiary low potassium volcanics in East Java. (IAGI).The occurrence of plagiogranite in East Java. Joint Session 30th HAGI.Miocene carbonate mound of Gunung Maindu. Geoph.S.e. Indon. Mardani & V. East Java. Buletin Geologi (ITB) 37. (IAGI). Tuban: an analogue model for prospective carbonate mound hydrocarbon reservoirs in the East Java basin. 40 km N of Boyolali. Geol. Assoc.. Indonesia. A. E Java. 3p. Indon. Not much detail) Priyantoro. p. B. Wiyono (2005). showing N part of Seribu Mts uplifted higher than S part. A. 28th Ann. Multiple coarsening-upward packages.Premonowati & W.Genesa bentonit di kecamatan Wonosegoro Kabupaten Boyolalai. Selogiri in N and Wediombo at S coast.S. C Java. both hosted by old volcanics and intrusives. p.' Bentonite layer in turbiditic clastics series in W Kendeng Zone fold belt.Genesa deposit mangaan daerah Kliripan dan sekitarnya kecamatan kokap kabupaten Kulon Progo DIY. (Extended Abstract) Prihatmoko (1998). p. 30th Indon. 47-56. Geol.14th PERHAPI Ann.com Sept 2016 . Sukandarrumicli & S. PITIAGI2009-046. M. Surabaya. Proc. Semarang. represents regional influx of quartz sandstones in region. Assoc. NE Java. (Two as yet non-commercial mineralization/ alteration systems identified around C Java Southern Mountains... probably related to development of Quaternary magmatic arc to N) Priyanto.5 km deeper than high-sulfidation system of Wediombo. Assoc. Setyawan (1999). 11p. East Java basin. p. ('The genesis of bentonite at Wonosegoro district. Geol. (IAGI). Priangga Utama.Fasies and diagenesa batugamping Formasi Rajamandala. D. Jakarta.B. Geol. Assoc. Montong. Conv. Proc. (1997). 15-28. 1. (Abstract only) (M Miocene Ngrayong sandstone studied in 50m section at Prantakan River. i. Jakarta06-SPG-03. (Brief discussion of E-M Miocene up to 300m (?) thick reefal carbonate mound (below Ngrayong Sandstone) at Gunung Maindu (Mahindu).. Joint 34th Ann. Geol.0 101 www. Ramdhani. Ed.A. (IAGI). Proc. 27th Ann. A. Surabaya. Teknik Geologi UGM. Herliani (2009). Assoc. Indonesia. Hendratno & A. Priadi.E.vangorselslist. D. 13-23. Teknosains 18. Indrajaya. Suroto (2005). PITIAGI2009-047. Conv. Indon. Rembang zone. 27th Ann. Jakarta 2006 Int. W of Tuban. Proc. dan rekayasa pemanfaatannya sebagai bahan baku produk keramik. Not much detail) Priyanto. 26-36.S. Indon. propinsi Jawa Tengah. p. Conv. 38th Ann. p. Conv. & A.M. Conv. S. 6. B. 38th Ann.S. (IAGI). Boyolali Residency. JCS2005-N090. Proc. Thesis. Harijoko (2005). Sucipta (1998). Setyawan (1998). Assoc. Geol. Conv. Geosc. (Unpublished) Prihatmoko. (HAGI).34th IAGI. B. 1. Geol.A. Mubandi (2005).Facies of Ngrayong Sandstone based on outcrop data and petrographic description of the Prantakan River section. and its uses as ceramic material. R. M. Indon. E Java. Econ. Indon. Wibawa. Bibliography of Indonesia Geology. Indonesia. Selogiri porphyry system formed at 1-1. A. p.Mineralization and alteration systems in Pegunungan Seribu.G. Siringoringo & V. Osmon & I.. Petroleum Assoc.Tholeitic to alkaline Cenozoic magmatism in East Java Indonesia.P. Proc.B. (2006). Gunung Kidul and Wonogiri. Bentonite originated from devitrivication of pyroclastic volcanic glass) Pribadi. 3. Indon. Jawa Timur.B. W Java)) Premonowati & W.Structural pattern and fault seal analysis of a potential hydrocarbon trap. Herliani (2009). Semarang. ('Carbonate facies of coral reef complex at Tanjung Kodok. A. Priadi. Conf.Fasies karbonat komplek terumbu koral di Tanjung Kodok. University of Tasmania. & I. R. L.. Proc. 125-139. ('Facies and diagenesis of the Rajamandala Limestone Formation' (latest Oligocene. Exhib. Assoc. Indonesia.. 1-73.. B. East Java') Priadi. Proc. (IAGI). 2. Kunto (2004). (Kliripan was site of pre WW-II manganese mining operation in early 1900's in S Central Java. & S. In W East Cepu High.. Gadjah Mada University. E. Exhib. E.M. (Extended Abstract) (Pondok Tengah 2003 oil discovery in NW Java Basin. A. 1.. Geol. and Exhib. p.Paleogene sedimentation of the Jatibarang sub-basin and its implication for the deep play petroleum system of the onshore Northwest Java Basin.On the Tjimanuk River delta.Karakteristik batuan sedimen berdasarkan analisis petrografi pada Formasi Kalibeng Anggota Banyak. R. M. forming buildup complex within isolated platform. (UNPAD) 13. Ascaria & T. Hydrocarbon column 205 m thick (175m in Lower Miocene Batu Raju Fm carbonates and 30m in Talang Akar Fm sandstones). (IAGI). Proc. 2. (Planktonic foram zonation of M Eocene. Petrography of 6 samples from Late Miocene (N16-N17) Banyak Mb of Kalibeng Fm in Kendeng zone from 170m section at Kali Jragung. possibly from Ungaran volcano.('Genesis of manganese deposits in the Kliripan area. Kulon Progo Regency'. Spec. (IAGI). Carbonates on basement highs of southern isolated platform of E Java Basin show similar stages of deposition. 3 p. Truncorotaloides rohri. Indonesia. Proc.Demise of the Oligo-Miocene reefs of the Southern East Java Basin. 6. Sunardi. Koesoemadinata (2006). Centre (GRDC). G. Carbonate reservoir N-S tranding low-relief buildup in S part of Rengasdengklok High. 35th Ann.. p. Jakarta06PG-02. E. North West Java basin. Survey Indonesia Bull.. 3.E. Res. Conv. 35-38.id/bsc/article/view/8382/3896) ('Characteristics of sedimentary rocks based on petrographic analysis of the Banyak Mb of the Kalibeng Fm'. Syafri & L.Stratigraphy and planktonic foraminifera of the Eocene-Oligocene Nanggulan Formation.P. p.com Sept 2016 . Survey Indonesia Bull. Assoc. Geosciences Conf. cerroazulenis. 238-247. Jakarta 2006 Int. Indon.. etc. (2003). Ed. N. Seismic stratigraphy of carbonates shows four sequences. Paris. Martodjojo (1994). E.. Jatibarang sub-basin. M. R. Geol.E Oligocene Nanggulan Fm marine clastic section 20km W of Yogyakarta. Indonesia.M. Semarang District..vangorselslist. C Java. Ryacudu. Purbohadiwidjojo. Proc. With Globorotalia lehneri. Indon. p. Seri Paleontologi 1. Dev. In: Proc.W. Preliminary reserves estimate 233 MBO. p. Petroleum Assoc. Geol. A. 1. 4p. Pekanbaru 2006. suggest magmatic arc provenance. Sunardi & R. Conv. I. Bandung. Bull. (1965). Yogyakarta.0 102 www.An example of gravity tectonics from Central Java. Generally..ac. Geol. R. Overlain by Late Oligocene 'Old Andesite Fm') Purnomo. Indon.M.. (1964). Publ. Ryacudu. Jurnaliah (2015).Petrographic compositional distinction between Jatibarang and Talang Akar Formations. (2006). Purnamaningsih Siregar & Harsono Pringgoprawiro (1981). Carbonates backstepping on previous stages. Ryacudu.unpad. Hantkenina spp. A. Central Java. p.a new big fish in mature explored basin. Seminar Geologi dan Geotektonik Pulau Jawa sejak Akhir Mesozoik hingga Kuarter. Purnomo. In: 66th EAGE Conf. Late Oligocene Kujung carbonate buildups shows depositional stages in SW-NE direction.Perubahan tektonik Paleogen-Neogen merupakan peristiwa tektonik penting di Jawa. p. Drowning events on carbonate isolated platforms. Geol. Dept. p. buildups grew away from southern marine Bibliography of Indonesia Geology. Central Java. (Extended Abstract) Purwaningsih. ('Paleogene-Neogene tectonic changes are important tectonic events on Java') Purasongka. Assoc.Pondok Tengah discovery.Diatom fossils of the Pucangan Formation. Kadarusman et al. 117-132. bounded to S by Ciputat Low) Purnomo. M. Purnamaningsih Siregar (1981). centralis. Ed. 1. (online at: http://jurnal. 253-274. Buletin Geologi (ITB) 34. 10th Ann.. 9-28. Geol. G. 40km E of Jakarta. 1-15.. Scientific Contr. Sangiran Area. E. (Paleohighs on old structural grain became sites of Oligo-Miocene carbonate buildups in E Java Basin. HvG)) Pulunggono. No locality map) Purbohadiwidjojo. (Petrogenesis of amygdaloidal Jatibungkus andesite in connection with the mafic Karangsambung ophiolite' Jatibungkus basaltic-andesitic pillow lavas interpreted as tholeitic magma formed in mid-ocean ridge. Geol. limestone in clay best explained through mudflow process) Bibliography of Indonesia Geology. Bandung.. Drowning events caused demise of buildups. E Miocene carbonate buildups followed ENE. Deformed during formation Oligocene-Miocene Totogan Fm) Putra. (IAGI) and 10th GEOSEA Regional Congress on Geol.go. Deposition of upper sequences contemporaneous with tilting of platform to SW. Floating pebbles of andesite.. Indon. (IAGI). Wonogiri. Min.H.Analyses of Eocene petroleum kitchen in East Java Basin: implication for prospect ranking. (eds.P.lipi. In mid E Miocene carbonate deposition ended due to clastic sedimentation and more tilting to SW) Purwanti.go. Waluyo (2010). (NW Java exploration history. E.S. 39th Ann. Puslitbang Geoteknologi (LIPI).E. A.M. Indon. Bachtiar (2001). formerly believed to be lake deposit. ('Stratigraphic study of oil seep and its correlation to petroleum system in Banyumas Basin') Puspoputro. Conv. 12th Ann. Jakarta. forming NE-ward backstepping pattern. Pemaparan Hasil Penelitian Pusat Penelitian Geoteknologi LIPI. Four depositional units terminated by drowning indicated by condensed section on top of carbonates.Petrogenesa andesit amigdaloidal Jatibungkus kaitannya dengan batuan beku mafis kompleks ofiolit Karangsambung. In: A. & G. Petroleum Assoc. Oligo-Miocene buildups on other isolated platforms of the southern E Java Basin similar histories: transgressive stratal pattern with local tectonic influence. Geol. Conv. Lubis (1992).WSW paleohigh in Madura Strait. Indon.The use of seismic data in predicting the abnormal high pressure zone for exploration drilling in Pertamina Unit E. North Serayu Basin'.Evolution of the Late Oligocene Kujung reef complex in the Western East Cepu High. 655-671. North West Java. Indon. Conv. 361-378.vangorselslist. & M. Sapri H. 7-18. Y. (1983)..bgl. 125-137. (Seismic stratigraphy of E Cepu isolated platform identified 4 sequences in Late Oligocene Kujung Fm carbonates. 21st Ann. S. 323-343. p. Proc. & A.. 30th Ann. III working area. (IPA).The geophysical case history of Rengasdengklok Area. 31st Ann.com Sept 2016 .M.Studi stratigrafi pada rembesan minyak serta hubungannya dengan petroleum system di cekungan Banyumas. P. B. Geol. M. Hastria & Ansori (2012). Yulianto (2015). B.. Lombok. (IPA). 9p. p. Seminar Geoteknologi Kontribusi ilmu kebumian dalam pembangunan berkelanjutan.CN9) sediments. Surabaya.0 103 www. Assoc. coral. Assoc. Halik (2002). (IAGI).id/index. Energy Res. Mukti (2007). Conv. Proc. Purwasatriya. Noeradi & N. Puspoputro. p. Proc. These events may mark onset of Neogene inversion tectonic episode in this area) Purwaningsih. M. D.M. p. 1. related to shifting course of Bengawan Solo Purba River and Pliocene tectonic tilting in S Java.B. BD Ridge younger carbonates similar history to E Cepu carbonates.S.php/IJOG/article/view/210/197) (Baturetno Fm black clay of Baturetno Basin S of Wonogiri in N part of S Mountains.php/2016/01/20/prosiding-2007/) ('Study of marine sedimentation and influence of tectonic structure. & E. Geoscience 2. Ed. Yogyakarta 2001. In: Pros. Assoc. Proc. Proc. East Java Basin: seismic sequence stratigraphic study. Petroleum Assoc. (online at: http://pustaka. Conv. (online at: http://ijog. P. Budiyani. Indon. Jakarta. p. Kali Lutut section with five main tectonically-driven facies/cycles in turbiditic Late Miocene (nanno zones CN7.id/index. E. Central Java.) Pros. Satyana. p. & E. p.A reinterpretation of the Baturetno Formation: stratigraphic study of the Baturetno Basin. Improved seismic processing lead to discovery well MB-3 and success of subsequent drilling) Puswanto. Indonesian J.Studi sedimentasi laut dalam dan pengaruh tatanan tektonik Cekungan Serayu Utara. Bandung 2012. 3.geotek. claystone. 1.influence. With common (reworked?) E Miocene Miogypsina larger forams) Putra. 6. PITIAGI-2010-308. 45-53. D. Tohari et al.esdm. ) Bibliography of Indonesia Geology. Armandita. Kecamatan Girimulyo. p. In: Proc. B. p. Raharjo. indicating lignite coal rank (demonstrating Eocene W of Yogya never deeply buried. (On Late Eocene coal of Nanggulan Fm exposed in Kali Songgo. Yogyakarta 2007.Endapan batubara Paleogen Formasi Nanggulan Kulon Progo. Ed. & C. Gunung Kidul area. Vitrinite reflectance 0. p. 439-449. p. (2007). Dev. Jakarta. 3. Indon. p.Depositional environment of nummulitic limestones of the Eastern Jiwo Hills. p.. In: Stratigrafi Pulau Jawa. Yogyakarta: kajian geologi batubara dan fasies batubara.Perkiraan inversi Sesar Baribis serta perannya terhadap proses sedimentasi dan kemungkinan adanya reworked source pada endapan turbidit lowstand setara Talang Akar: studi pendahuluan di daerah Sumedang dan sekitarnya. M. Dupuis (1985). Proc. Indon. Hariyadi. 37th Conv. etc. W. B.D.0 104 www. Wiyono. Lelono (1994). Proc. Bandung. (Estimate of inversion of Baribis fault and possibility of reworked source for Talang Akar Fm lowstand turbidites in Sumedang area) Rahmad. 12th Ann. Indon. Central Java. PITIAGI-2010-202. S Java) Rahardjo. Y. I. Nugraha et al. A. Ed. Polhaupessy.vangorselslist. 34. with slightly dry to wet condition..037%. Wartono (1982). Publ. Assoc. B. (2004). (IAGI). Kulon Progo Regency. Lombok. L. Sukandar Rumidi & H. Indon. Bandung. 1: 100. Centre (GRDC).27-0.C. Bandung. 36-39. Conv. Yogyakarta'. Centre (GRDC). Geol.Zonasi pollen Tersier Pulau Jawa. 1.000. Maha (2010). W. with examples from C Java Southern Mountains’) Rahardjo. Yogyakarta. 77-87.27% .Reflektan vitrinite dan komposisi maseral seam batubara Eosen Formasi Nanggulan daerah Kalisonggo. Maha & A.Pliocene zonation of 7 pollen zones. with average vitrinite reflectance 0. Assoc. Geol.com Sept 2016 . calibrated to planktonic foram zonation) Rahardjo.Prelimanary result of foraminiferal biostratigraphy of Southern Mountains Tertiary rocks. Sediments soft and hardly diagenetically altered. (IAGI). Late Eocene coal of Nanggulan Fm deposited in telmatic to forest marsh environment. 135-140. Geol. E. Coal thickness 53 cm. ('Pollen zonation for the Tertiary of Java Island'. 1.. Res. Macerals comprise vitrinite texto-ulminite. (Lens-like geometries and overlying M Eocene turbiditic clastics suggest Nummulite-Assilina packstones in Bayat area are redeposited blocks in deeper water environment. Coal rank is lignite. Pre-Tertiary metamorphics with SW-NE trending foliation) Rahardjo. Geol. (On morphology and evolution of karst in Gunung Sewu/ Southern Mountains. p. & M. S. Rosidi (1977).B. 205-220. 20p. A. Conv. Geol.. (‘Problems of carbonate stratigraphy. (IAGI). 23rd Ann. Nanggulan Fm coal depositional facies is forest swamp) Rahmad.T.Paleoenvironment reconstruction of sedimentary sequence of the Baturagung escarpment. Revue Geomorphologie Dynamique 34. E flank of Kulon Progo Dome. Java. W of Yogya. Proc.Un karst en zone intertropicale: le Gunung Sewu a Java: aspects morphologiques et concepts evolutifs.. ('Vitrinite reflectance and maceral composition of Nanggulan Fm Eocene coal seam. 87-92. Kalisonggo area. (2002). Rahardjo. Seminar Potensi geologi Pegunungan Selatan dalam pengembangan wilayah. Yogyakarta Special Province. 6. Eocene. 30. Spec. M. HvG). Wartono (1983). Rodhi (2008).Geological map of the Yogyakarta Quadrangle. 39th Ann. Rahardjo. Assoc.M. Conv. Geol. Nugrahaningsi & E. (IAGI). 1. 1-16. Assoc. Res.Quinif. Proc. Syafri.Permasalahan pada stratigrafi batuan karbonat (dengan beberapa kasus contoh di Pegunungan Selatan Jawa Tengah). p. Dev. Geologi Indonesia (IAGI) 9. W. Daerah Istimewa Yogyakarta. Buletin Geologi (ITB) Spec.A. Central Java.37%. Bayat area. Kabupaten Kulon Progo. Geol. Geol. N. 6. (Brief review of Central Java geology) Ratman. G. Gunung Sewu. Haidar. Dev. A. Ranikothalia. Conv. Karyanto. B.F. p. (E Java zones of high overpressure in: (1) post-Tuban Fm. jalur engukuran Padasan. N.vangorselslist. E-M Miocene Kerk Fm sandstones poor reservoir quality (2-10% porosity). S. (4) E Miocene carbonates no longer develop upward. Hapsoro. Proc. Samodra (2004). 181-186.Djuwangi.Unravel Kendeng petroleum system enigma: recent update from transect surface observation of Kedungjati. Ratman. 2012-SS-05.The geology from Gunung Slamet to the Dieng Plateau. p.moderate-high overpressure. etc. Eocene Nummulites. & H. Seismic facies analysis showed 5 growth stages: (1) initial Rupelian carbonate aggradation. Arifin et al.M. (2) Tuban Fm. 37th Ann. in Wonosari and surrounding area'. In: Stratigrafi Pulau Jawa.R. 3 (147). ('Biostratigraphic study and carbonate microfacies analysis of the Wungkal Gamping Formation. Widada (2013). Y. but probably = Sukowati. D.Peta Geologi Indonesia Lembar Surabaya. HvG) in NE Java Basin is one of mature oil fields in Oligo-Miocene carbonates of Kujung Fm. Res. Bull. Indon. p. Budiman & I. and Kepek (Late Miocene-Pliocene. 1-12. Central Java'. N. Klaten. IPA15-G-065.) Ramadhan.Studi biostratigrafi dan analisis mikrofasies batugamping. Rahardjo (2012). C Java'.E Miocene backstepping carbonates.B: Oyo-Wonosari Fm probably older. 1.000. Onshore East Java Basin: impact of fluctuating relative sea-level change to facies development. Centre (GRDC). p. Jakarta. Discocyclina. Hutasoit. Formasi Wungkal Gamping.. Saputra. Assoc. (3) Late Oligocene. Jakarta. (2013). Petroleum Assoc. ('Rama Field' (not real name. 5p. M. Geol. (IPA). A. 1: 1. Bandung.low overpressure.Stratigrafi batuan Eosen di Perbukitan Jiwo. Purnamasari. Central Java. J. W. T. N.com Sept 2016 .C. C Java) Ramdhan. Bayat. Proc. L. Publ. Prasetyadi (2013)Organism variety effect on carbonate rock porosity of Jonggrangan Formation: alternative approach to predict porosity complexity. Hakim.D.Stratigrafi dan lingkungan lengendapan batuan karbonat.I. Bandung. p. (' Stratigraphy and depositional environment of carbonate rocks. (3) Kujung Fm carbonate buildups. M. IPA13-SG-056. Novian & W. F.Sadirsan. 39th Ann. 9p. Daniar. Robinson (1996). (5) E-M Miocene drowning of platform) Ramadhan. Premonowati Hadipramono & S. F. Geol. E. Pellatispira. Maha. HvG). 37 th Ann. but prograded towards basin.E. Gunung Gajah. E. Conv. Middle and Late Eocene limestones with Nummulites.. (IAGI). Ed. Proc. Wonosari (Late Miocene). Centre (GRDC). Sumber Daya Geologi 14. Fardiansyah (2015). IPA13-G-152. Majalah Geol. & G. East Java.Rahmawati. 1-34. Jawa Tengah. (Facies and porosity of E-M Miocene Jonggrangan Fm of Kulon Progo area. Gunung Sewi di daerah Wonosari dan sekitarnya. & H. Res. Yogyakarta. Cahyo & C. (2) major sea level drop followed by lowstand deposits in E Chattian. Spec. Tansinhokella.C. (IPA). M. Carbonates of Gunung Sewu three formations: Oyo (upper E Miocene-M Miocene). Dev.0 105 www. 41st Ann. Padasan Section. M. Assilina. Jakarta.. I. Goulty. Jawa Tengah.M. G.Assilina limestones and quartz sandstones on metamorphic basement. Res. Centre (GRDC).. N.hydrostatic pressure) Ratman. Operculina. (IPA). Samodra (1998). Alveolina. Dev. Indonesia 28.. Proc. 30. Petroleum Assoc. Bandung 20. p. Suwarti & H. ('Stratigraphy of Eocene rocks in the Jiwo Hills. 1-13. Bayat. Putra. M.A. Austrotrilina. Remaining potntial in 'Globigerina sands' in E and S parts of Kendeng zone near Ngawi) Ramadhan. grading upward into marls with Eocene (P13-P15) planktonics) Ratman. Conv. Indon.W.Kerek area.Importance of understanding geology in overpressure prediction: the example of the East Java Basin. 148-159.Seismic facies analysis of Oligo-Miocene reef in Rama Field. Petroleum Assoc. Bibliography of Indonesia Geology. Indon. 29-40. Indon. N.000. Conv. Gunung Gajah. Samodra (2004).. (Kendeng Zone depocenter in E Java and continuing into S Madura Basin with oil seeps and small oil-gas fields. Bibliography of Indonesia Geology. Conv. N-S orientation. Indon. 163-173. Dark grey breccious limestone with Nummulites below m1 breccia-layers. Indon. 3 days travel from Purbolingo. 6. Res. Jakarta. (1937). Jakarta. Fieldtrip guide book. Lowry (1996). (1930).Sandbox modeling of thrust-fold belt in Cimanintin area. Banjoemas.. p. Y. reticuspiralis) Reinhold. Bothropoma. (1930). burrowed sandstone with sharp upper-contact. 5-8 km long.9 Ma. between Bandung. Natuurkundig Tijdschrift Nederlandsch-Indie 90. (IPA). Petroleum Assoc.Cirebon. A. Abundance of gastropods Smaragdia. Upper Cibulakan Formation: its implications for reservoir distribution and prediction. Tijdschrift Nijverheid Landbouw in Nederlandsch-Indie 11. Conv. C Java) Reich. 1-29. Yogyakarta region’. & B. voorkomende op Java. Age suggested by associated zone Tf1 larger foram fauna ~ E Burdigalian. N. by Sr isotopes ~18. Offshore Northwest Java. Bittiinae points to seagrass environment.Raya. Indonesia). Y. T. gouv. Ed. Sandbody formed in response to sea-level lowstand. p.W. p. S C Java. 25th Ann. (‘On an occurrence of dacite on the S coast of Yogyakarta in the Gunung Sewu limestone area') Reitsema. Kusumanegara & P. Lowry (1999). Proc. S.. with Glossifungites surface and siderite mudclasts. Ser. Proc. W Java suggests 30-40% shortening) Reerink. p. Upper Cibulakan Formation. p. ARII ONWJ.W. 401-426.. between Nanggulan and Purworejo) Reksalegora.vangorselslist. 184 species. Kusumanegara & P. F. near villages Gegerbajing and Plana. Wesselingh & W. offshore Northwest Java.Cipamingkis River outcrop: a contribution to the understanding of "Main" reservoir geometry. from Middle Miocene and younger 'Globigerina Marls' and diatomites of C and E Java) Reitsema.Cipamingkis River field trip: a visit to an outcrop analog of the "Main" Interval. Lower bounding contact discordant with underlying interbedded sandstone and mudstone. siltstones and mudstones. West Java. 43-132. Indon. Sapiie (2003). 362-363. glauconitic sandstone. Sandbodies of same age and similar facies in W Java outcrops pinch out over 500 m. Four new gastropod species: Bothropoma mediocarinata. in het Goenoeng Sewoe kalksteengebied..Over een voorkomen van daciet aan de zuidkust van Jogjakarta. E. Annal. Laterally extensive and correlative over inter-field distances (10's of km). Serie 12. 25th Ann. 2. (Two sandbody types in "Main" interval: (1): sharp-based. p. Reksalegora. Rissoina banyungantiensis and R. (Study of E Miocene shallow marine mollusc fauna from Jonggrangan Fm near Banyunganti village. T. T. 259-266. in beds transgressive over 'Old Andesite' volcanics. Indon. 29th Ann. Geol. Hermanto. Djokjakarta. p. (‘An occurrence of Nummulites limestone at N edge of the ‘Western border mountains’.A depositional model for the “Main” interval. Proc. S.. Verhandelingen Geologisch-Mijnbouwkundig Genootschap Nederland Kol.A highly diverse molluscan seagrass fauna from the Late Burdigalian (Early Miocene) of Banjung Ante (South-Central Java. S.Een voorkomen van Nummulieten kalksteen aan den noordrand van het Westelijk grensgebergte. Kusumanagara & P. Renema (2014). 1. Petroleum Assoc. Naturhist. 1-2 km wide. J.0 106 www. (Very brief.R. Petroleum Assoc.L. (IPA). Museums Wien.com Sept 2016 . Banyumas Residency. Progo Mts. Jakarta. Lower contact burrowed. including 158 carnivorous and herbivorous gastropods. Y. (IAGI). p. bioturbated. (Modeling of Plio-Pleistocene WNE-ESE trending ‘Majalengka fold-thrust belt’.P. Assoc. Upper Cibulakan Formation. 371-383. 116. (1865). p.Nota omtrent eene rijke aardoliesoort. in Poerbolinggo. Conv. Sumedang. 291-293. Reksalegora. (IPA). S.. (2): middle to lower shoreface "cleaning upward". (First and most elaborate paper on marine fossil diatoms of Indonesia. Natuurkundig Tijdschrift Nederlandsch-Indie 90. Plesiotrochus hasibuani. involving steep M-L Miocene bathyal sediments in Sumedang area. Lowre (1996). early report on oil seep in stream near villages of Kalian Jattan and Segran. 5-129.Fossil diatoms of the Neogene of Java and their zonal distribution.L. Archaeogastropoda. and Parigi Fm carbonates. Indonesia: I.. Indon. p. IPA14‐G‐138. Upper Cibulakan (Zones 16. S. in Cilamaya. Conductive features: (1) strong 'ocean effect' at S-most site. 12). E. continuous sheet-like deposits and channel-levee features. Initial eruptions along NE-SW trend. Rembangian (M Miocene) assemblage 89 species. Only S of Purwakarta lower part of U Cibulakan Mb sufficiently mature to generate hydrocarbons. 6. (Vent distributions in Azerbaijan mud volcanoes used to propose what controls distribution of 169 vents at Lusi mud volcano. Soc. Stewart & M. 121-141.Structural controls on mud volcano vent distributions: examples from Azerbaijan and Lusi. Letters 25. Muller. 10p. each ending with hemipelagic deposition. In E Tuban Area Ngrayong Units II-III three cycles of turbidite deposition.pdf) ('On fossil corals from Java Island'. Seismic facies identified: mounded mass transport complexes..The Rembangian (Middle Miocene) mollusc-fauna of Java.A hydrocarbon generation analysis in Northwest Java Basin using Lopatin's method.it/pub/images/docs/contents/102-2/Robba.Pamanuka -Kandanghaur between 2000-2300m. Armia. p.repository. 52 are proposed as new. E. (NW Java Basin producing from Jatibarang Volcanics.at/pdf_frei_remote/MON_GEO_0032_0165-0185. Jakarta.. p. (2013). Sediment provenance from NW) Ritter. Petroleum Assoc. Geol. Main locality Gunung Sel in Tji-Lanang valley. Prasetyo (2014). Tingay (2011). (IPA). 14th Ann. Neogene fauna composed almost entirely of extinct species. 38th Ann. Echternacht (1999).Reminton. Hoffmann-Rothe. 168.vangorselslist. Strat. mainly Langhian Tawun Fm) and review of collections of Naturalis Biodiversity Center. Conv. Top oil window (TTI 15) in Randegan (E part NW Java Basin) at 1800-2000 m. p. Vienna.E. A.N Cilamaya areas mature in S. Megastomia regina. M. (2) zone of very high conductivity in C part of profile (volcanic or geothermal activity?). East Tuban Area. E. Exesilla. Jakarta.naturalis.H. In: Reise der Oesterreichischen Fregatte Novara um die Erde in den Jahren 1857.A magnetotelluric profile across Central Java. new taxa Ilanga rebjongensis. (online at: www. I. Gerold. (online at: www.com Sept 2016 . (online at: www. CO2 content believed from dissolving carbonates of Baturaja Fm formed after burial of Talang Akar sediments with high content of carbonaceous materials) Reuss. Theil 2. Indonesia. S. Davies. p. four formerly described (Leucotina speciosa. 1859. K. Geophysical Res. Byrdina & F. 15. Ed.Gantar and S-ward. (IPA). 4. E Java.Tertiary and Quaternary fossil pyramidelloidean gastropods of Indonesia. A. p.nl/document/479757) (Descriptions of pyramidelloidean gastropods collected from Rembang anticlinorium (NE Java.M. Scripta Geologica 144. J. TTI 16 only in Purwakarta-1 in Jatibarang volcanics. Leiden. Rongga District) Rifqi. (M Miocene quartz-rich Ngrayong Fm prolific hydrocarbon reservoir in E Java Basin (>155 MMBO produced from 17 fields). changing to eruptions that follow E-W trends.A. East Java. 14. Pranyoto (1985). 165-185. locally eroded during next turbidite deposition cycle. 18 species incl.Uber fossile Korallen der Insel Java. 1858. East Java Basin.P.Seismic facies analysis of turbidite complex in Ngrayong Formation. parallel to Watukosek fault.pdf) (Langhian archaeogastropods from Burdigalian. R. Three main units in Ngrayong Fm. A. Geol. A.rivistaitalianadipaleontologia. Indonesia. 1-191. Conv. A. 2. O. (3) conductor in N (active fault zone?)) Robba. Petroleum Assoc. Staatsdruckerei. M. 267-292. Indon. Proc. Rivista Italiana Paleont. Mahfi. Proc. A. & U. Talang Akar Fm and Baturaja Fm equivalents. (1996). Pareucbelus pannekoeki and Leptothyra laddi) Robba. indicating regressive and transgressive phase of depositional cycle.0 107 www. 102.. 1013-1030. Baturaja Fm mature in Purwakarta.Langhian Tawun Fm/ Rembang Beds in Sedan-Tuban area of Rembang anticlinorium. London. Most Neogene species endemic to Indonesian Archipelago) Roberts. Nurnusanto.landesmuseum. subparallel to regional fold axes) Bibliography of Indonesia Geology. Arsadi. 42654268. NE Java. (1867). C. Ethalia stefanoi. Fajar & A. 23. 17 species of Neogene corals collected by Von Hochstetter during Austrian Novara Expedition 1857-1859. Nugraha. Talang Akar in Gantar. (Magnetotelluric data at 8 sites along N30°E striking profile in C Java. most undescribed species.J. Setiabudi (2014). Strong low velocity anomaly zone between Cilacap and Banyumas. in upper part of Nanggulan Fm. 4.and S-wave velocity structure beneath Central Java. Cikidang.) Sundaland Resources. Petroleum Assoc. Kerta. labradorite.F. Mineralization ages Late Miocene. Rocks tectonically mixed as result of subduction. pillow basalt). Int.F. Sulaksana (2006). (Gastropoda. Java. Peridotites in small outcrops in N and C part of Gunung Badak. Resource Geology 52.East Java and East Java Sea. Econ. p. Ed. 3-6: Enclosures. Seraphidae) from the Middle Eocene mollusc assemblage of Nanggulan (Yogyakarta province.C.a petroleum systems evaluation. 3. (Unpublished) (Comprehensive overview of NE Java basin stratigraphy and petroleum geology. SW Java. p. vol. (W Java and S Sumatera split up by Sunda Strait. PT (2002). schist) and sediments (greywacke. Three groups of magmatic-volcanic events: Eocene-Early Miocene. & H.Pliocene. Indonesia). metamorphics (quartzite. S. 53. mostly of hyperstene. Kedondong) and 'high base metal' (Cirotan. Gabbros as dikes with porphyric textures.Cikidang hydrothermal gold deposit in Western Java. all ranging from basaltic andesite with acidic-intermediate intrusives. A. Indon. 6.Tomographic imaging of P. Dahlius (eds.The new species Terebellum olympiae n. plus 'high silver' (Way Linggo). In: I. Conv.F. Low velocity anomaly also in Kebumen. coinciding with extensional oceanic basin toward land.. Pillow basalt-spilitic lavas outcrop in N part. red clay. A. Low velocity anomaly at LawuMerapi zone.com Sept 2016 . S. (Listing of 44 mollusc species. Proc. (IPA). In: Proc. F.. M. With paleogeographic maps Eocene (Ngimbang) to Pliocene (GL marls)) Rohadi. Geosains dalam Pembangunan Ekonomi & Kesejahteraan Serantau. Bibliography of Indonesia Geology. p. from water well outcrop near Watumarah. polymict breccias).vangorselslist. 1: Text. Jakarta. Nummulites lst. p. Fardiansyah (2013). Multiclient Study. Widiyantoro.ac. Vols. p. Tomography Simulation 24. Indonesia: joint inversion of the MERAMEX and MCGA earthquake data. High velocity anomaly pattern beneath W part of C Java may represent subducted Indo-Australian plate) Rohmana. 5p. J. 109-128. Syafri..East Java and Java Sea basinal area. phyllite. Ojolali).Robertson Research-Pertamina (1986). Proc. Multi-client Study. 2: Appendices. (online at: http://resources. and all hosted in Mio-Pliocene magmatic-volcanic group) Rosana. (2001). Novadhani & I. Cikotok mines). Prihatmoko & T. 95 p. (Tomographic inversions from combined local and regional earthquake events. planktonic foram zones P13-P14) Rosana. Host rocks Miocene lapilli tuff and breccia) Rosana. Age late M Eocene. Padova.P. Gold in low-sulfidation quartz-adularia-sericite(-calcite) vein deposits. + figs.D. Matsueda (2002). Mardiana & N. S. (Unpublished) Robertson Utama Indonesia. 4 vols. black shale. one new. serpentinite. I. Langkawi 2006. Soc. Conv. IPA13-SG-031. Palembang. Mio-Pliocene and Quaternary. 1-9.Low-sulfidation epithermal Au mineralization in Western Java and Southern Sumatra. Ann. Low sulfidation epithermal vein systems grouped into 'low base metal' (Cibaliung. Wibowo. West Java. M. Basuki & A.Petrology of Pre-Tertiary melange complex of Gunung Badak. U. Merapi’s magma source comes from S of Merapi. p. Indonesia.Z.pdf) (Gunung Badak melange in Ciletuh Bay. Geol. in particular volcanic and magmatic events. GunungPongkor.0 108 www. PutihDoh. S. stratigraphy. 341-352. M. Nugraha & Masturyono (2013). 37th Ann.unpad. locally serpentinized. Indon. (MGEI). mainly bipyramidal volcanic quartz) Rolando. with ophiolite (peridotite. (M Miocene sandstones of Jaten Fm in C Java Southern Mountains quartz-rich.Quartz-rich sandy facies behind the Miocene volcanic activity in South East Java: insight from sandstone characteristics within Jaten Formation.sp. 4 km W of Nanggulan. probably reflecting large dome of sediment.id/unpadcontent/uploads/publikasi_dosen/1D%20Persidangan%20Geosience%20UKM%20-ITB. vol. 41-44. gabbro.. (Cikidang gold deposit discovered in 1991 in Bayah dome gold district (also Pongkor. overlain by E Tertiary Ciletuh Fm sediments. Dewi. Memorie Scienze Geol. R. but geologically similar. Sukabumi.. A. petroleum geochemistry and petroleum geology.. Ciletuh Region.M. Afd.F. Amsterdam.pdf) (Large amounts of annual sediment discharge in modern rivers suggest very high denudation rates on Java (around 0.id/bsc/article/view/8409/3916) ('Petrology of ophiolite rocks in the Sodongparat area.Tagogapu (=Rajamandala Limestone.unpad.Sukabumi. L.knaw. (1925).digitallibrary.dwc. M. Sammlungen Geol. File E43. Akademie Wetenschappen Amsterdam. Ikhram & N. and emplacement can be equated with "Cordilleran" ophiolite. 28. p. 221-230. Lok Ulo area. Pretertiary ophiolite in Ciletuh area. R. Geological Survey. (online at: www. C. 65-78. 597-608. 000. L. (‘Four cross-sections through the Tertiary marl zone between Surabaya and Ngawi’ (Kendeng zone)) Rutten.Studien uber Foraminiferen aus Ost-Asien.5-2. probably granitic Sundaland basement) Rosana. Sukabumi. Kunti islands. (1916).000. Res. 19 p. Verhandelingen Geologisch-Mijnbouwkundig Genootschap Nederland Kol. Jawa (Quadr. 1: 100. p. 838-848. (online at: http://jurnal. only rel. 149-152.vangorselslist. Kon. L. ('On the direction of Tertiary mountain building movements on Java'.knaw.13-43. W. (1918). 2. Rutten. p.T.R. limestone and polymict breccias in Manuk.. 9. Geol.R. Akademie Wetenschappen. schist and quartzite as fragments of polymict breccias in N flank of Gunung Badak. Bandung.Petrologi batuan ofiolit daerah Sodongparat. 7. K. associated with sedimentary-volcanic and metamorphic rocks. 1:10. Proc. 11096. L. p.The geology of the Serang quadrangle.Geological map of Nanggulan area. p.. L.dwc. Amsterdam.D. Nederl. young volcanics and Miocene sediments without volcanic content are found) Rutten. while basalt is Mid-Ocean Ridge Basalt (MORB). Dev. p.ac. Akademie Wetenschappen.repository. (UNPAD) 13. Some retrograde metamorphism) Rothpletz.H. Nederl. Zwei Fundstellen von Lepidocyclina aus Java.Phyllite. (1943). Geol. Serie 3 (Molengraaffvolume). Kon. K.M.On the rate of denudation in Java. E.Vier dwarsprofielen door de Tertiaire mergelzone tusschen Soerabaja en Ngawi. Bandung. 322-324. Ophiolite sequence incomplete.nl/DL/publications/PU00015144. assemblage of basalt.Studi nannoplankton pada Formasi Karangsambung dan Totogan di daerah Luk Ulo. Ardiansyah (2015). 191-203. Amsterdam.naturalis.com Sept 2016 . Kon. (1925). p. & A. (online at: www.pdf) Bibliography of Indonesia Geology. See English version below) Rutten.0 mm/year)) Rutten. (1914). Proc. Ed. Ciletuh Fm provenance from N part of Java.On the direction of the Tertiary mountain-building movements in the Island of Java. Scientific Contr. SW Java. (online at: www. HvG) characterized by large Lepidocyclina. Bull. 34.nl) (Survey E of Bogor suggests Verbeek & Fennema 1896 assertion of presence of 'Old Andesites' in that area is incorrect. Kawasan Ciletuh. 3. Jawa Tengah. p.nl/document/552393) ('Two localities with Lepidocyclina on Java'. Saragih. Kebumen. (online at: www. (Unpublished map) Rubiyanto. Kebumen.. Kon. E. 1. 1. Harsolumakso (1996). 1.Over de richting der Tertiaire gebergtevormende bewegingen op Java. 1110-3). Natuurkunde. 20. Yuningsih. Centre (GRDC). Reichs-Museums Leiden (1). 20. Tectonic environmental of gabbro Island Arc Tholeiite (IAT) and Mid-Ocean Ridge. p. 6. K. Rutten not sure if earliest Miocene or Oligocene) Rutten. Buletin Geologi (ITB) 26.0 109 www. L. Proc. W Java limestone belt between Cibadak. Suwitodirdjo & Suharsono (1991). Nederl. Sukabumi'.nl/DL/publications/PU00012275. gabbro and ultramafics. Java') Rusmana. Akademie Wetenschappen. Sedimentary rocks composed of greywacke in Mandra island. ('Nannoplankton studies in the Karangsambung and Totogan formations. 2.'Old Andesites' and 'brecciated Miocene' to the East of Buitenzorg ( Java). (1918). (English version of paper above.G. 27th Ann.R. unlike observations of Van Es and Ziegler.8 ± 2. Purnomo. It is delineated by N-S bounding fault N of Cirebon. In: L.Geosynclinal subsidence versus glacially controlled movements in Java and Sumatra. Bachtiar (1999). 211-220. J. Geol.Penggunaan paleoheatflow dalam penentuan sejarah kematangan batuan induk. Cekungan Jawa Timur Utara. obvious North. Kadarusman.The status of the OO-Brebes fault system. and its implication to hydrocarbon exploration in the Eastern Part of North West Java Basin.directed folding in Kendeng zone. Rutten (1927) Voordrachten over de geologie van Nederlandsch Indie. 2-8. Proc. 28th Ann. R. p. Conv.dwc. (Critical discussion of Smit Sibinga (1949) paper on influence of glacial eustatic movements on E Java and SE Sumatra Plio-Pleistocene stratigraphy. North Central Java Basin. (online at: www.M.5 and 17. Groningen. 35th Ann. 6.G.Sutarsih (1995). (IAGI). Most hydrocarbons in Paleogene clastic reservoirs. generated by Miocene N-S compressive stress and thought to be extensional regime of Cretaceous. (IAGI). Pekanbaru 2006. Unsuccessful exploration in E part of NW Java Basin (‘E Carbonate Shelf’) due to lack of these deposits. A. NE Java Basin') Saefudin. continental source. Petroleum Assoc. Northwest Java. Jawa timur. 15-33. (Petrographic description of core samples from Eocene-Oligocene volcanoclastic Jatibarang Fm in four wells) Sadjati..G. I. A. Isnainiwardhani (2006). Cemara Fields) adjacent to this boundary. Adhiperdana (2006)Petrographic compositional distinction between Jatibarang and Talang Akar Formation. (E part NW Java basin little exploration success. ('Usage of paleo heatflow in determining history of source rock maturation.M.0 110 www. p. & A. 38. Rutten sees no such influence) Ryacudu. Kesumajana & R.M.P. 6. East Java'. (IAGI).. Proc. 18-25. (1927). 115-120. B. Conv. N-S trending faults act as releasing double-bend structure of NW-SE rightstepping strike-slip fault system (OO and Brebes Faults). Permanadewi & A. Indon.On the origin of the material of the Neogene rocks in Java.pdf) (Older Tertiary (~M Miocene and older) sands on Java mostly quartz-rich and from from northerly.nl/DL/publications/PU00015249. Adhiperdana & V. Geologi Sumberdaya Mineral 5.9 Ma (Late Oligocene). R. E. Lebak. Late Tertiary. Jawa Barat.Umur mutlak granodiorit. p.lacustrine Talang Akar and upper Jatibarang Fms. Bibliography of Indonesia Geology. Geologie en Mijnbouw 14. Conv. Cihara.3 Ma (E Miocene)) Saefudin. J. Absolute age of altered hornblende dacite at Tegalombo ~25km NE of Paciran: 30.vangorselslist. Sunardi. Hydrocarbon accumulations (OO. Assoc. Proc. (1952). I. Assoc. R. p. Pekanbaru 2006. which is splay of NW-SE trending OO fault. 1. Ed.Chapters 5-9 on the geology of Java. L. Purnomo. Vergence of thrusting not clear in W Java. Proc. 1-12. rejuvenated in Miocene) Ryacudu. Kon. Hutabarat. a case study in Ngimbang-01 well.Quaternary more common volcanoclastics from South) Rutten.H.. studi kasus sumur Ngimbang-01. Geol. Koesoemadinata (1999). Fresh andesites at Mt Guling and Menteron E of Pacitan ~19. 54-143.com Sept 2016 . (1994). and E-facing Cirebon fault onshore. 8 p. p. ('Fission track dating of dacite and andesite intrusive rocks of the Pacitan area..knaw.. 29. Nurdrajat & B. E. Jatibarang sub-basin. Conv.R. Indon. Indon. Ryacudu. but. Geol. O. p. E.Oligocene Meratus System. X. Geologi Sumberdaya Mineral 4. L.Vertical petrographic variation of mixed intrabasinal and extrabasinal detritus Klantung well. Akademie Wetenschappen Amsterdam. M. 35th Ann. (1925).Pentarikhan jejak belah terhadap batuan terobosan dasit dan andesit daerah Pacitan. Paleogene deposits good reservoir quality and potential source rock from deltaic. Wolters. 41.P. E Java) Rutten. 2. J. E. Assoc. (Review of geology of Java in Rutten's classic lecture series) Rutten. Indon. W-facing normal fault. Sunardi. Jatibarang. Proc. p.R. S. p. p. T.Stratigraphy and tectonic history of the eastern Southern Mountains. SW Java. Explanatory Notes 22 p... Centre (GRDC). Central Java. Bandung. 106-117. with Manda. Central Java Indonesia. p.org/content/9/2/106.6 ± 1. Suharsono & T. p.Suwarti (1992). Centre (GRDC). and fore reef. Res. Indonesia. petrology and lithostratigraphy of Cenozoic rocks of the Yogyakarta region. Sempor and Rawakele Formations of the Kebumen Area. reef. Hendrasto (1998). 14p. Bandung. S. Marls with sandy and tuffaceous intercalations.('Absolute age of the Cihara granodiorite. Geologi Sumberdaya Mineral 17.4 Ma) Safitri. Gafoer & S. Japan. (Collection of papers reporting on fieldwork around Yogyakarta. 73-84. & S. 179. J. Java. ENE of Ngawi. H. Earth Sci. Proc. E Java. Wiryosujono (1993). & F. P. Dept. Foraminiferal Research 9. Lebak. Correlation with Bodjonegoro sequence relatively easy) Saito T. p. Samodra. 6.id/index.pdf) (Planktonic foram biostratigraphic study of Late Miocene.Metamorphic and related rocks from Jiwo Hills near Yogyakarta. Suharsono. Samodra.Geology of the Pacitan Quadrangle. W Java'. 640m thick.Biostratigraphy of Late Miocene and Pliocene deep water sediments of eastern Java. scale 1:50. N4-N10) and and Bayat (Eocene)) Saito. Res. Indon. with more submarine volcanism). Java. Salatun & Windiastuti (2009).php/mtg/article/view/188/150) ('Facies analysis and depositional environment of the Tuban Formation. H. Mandalika arc in E. Publ. Conv.upnyk. Oyo Fm tuffs and Semilir Fm) Samodra.Geology of the Tulugagung Quadrangle. Earth Sci. Five major lithofacies facies. 15075.full. Spec.E Miocene volcanics (Nglanggran volcanic arc in W. 2.0 111 www. (ed. HvG). 1507-4. petrology and lithostratigraphy of Cenozoic rocks of the Yogyakarta region.) Micropaleontology. back reef.15. Jawa Timur Utara.9 Ma.Geology of the Tulungagung Quadrangle. p. Res. Kalisonggo/ Nanggulan (Eocene). (Abstract only) Said.2 Ma) in PetroChina wells ANC 1-3 (real name Sukowati?. Yamagata University. (1981). (1057-5). Gafoer & T. Publ.Micropaleontology. 1:100. Dev.000. 2. Ed.Planktic foraminifera biostratigraphy of the Penosogan. Samodra. Geol.e. Possibly derived from different sources.ac. Brief descriptions of E Miocene carbonate (Sr ages ~20.) (1981). sheet Jawa. 14-22. H. N14-N15). Geol. 27th Ann.com Sept 2016 . Centre (GRDC). Centre (GRDC). Dev. 17. Dept.2 Ma and from Gombang 24. Djurang (M Miocene. J.. Kabupaten Gunung Kidul. Suwarti (1992). 'The Wediwutah quartz sandstone: quartz provenance and information of geodiversity of the Wonosari Formation. Bandung. Environments lagoon. (Review of S Mountains geology.geoscienceworld. With log correlation figure) Saint-Marc.vangorselslist. H. Geol.4 Ma ± 0. N8-N12). i. 7-14. In: T. Dev. Jawa. Measured sections and micropaleontologic content at Pereng (E-M Miocene. Dev. Geologi Sumberdaya Mineral 3. Fission-track ages of zircon in quartz sandstones of Wediwutah 12.S. H. K/Ar analysis of one sample 22. suggests E Miocene age (~21-23 Ma). Geol. Spec. Res.Batupasir kuarsa Wediwutah: asal kuarsa dan informasi keragaman geologi Formasi Wonosari. Japan. & K. Bandung. Explanatory notes 16 p. Widespread Late Oligocene. Saito (ed. Jawa.000. + map. with abundant planktonic foraminifera. Sutisna (1997). Assoc. 2. Jawa. J. (online at: http://jfr. & Suminta (1979). (online at: http://jurnal. Oyo River (E-M Miocene. N7).Geologic map of the Klaten (Bayat). NE Java'. Quartz sst in basal part of Wonosari Fm Wediwutah area of S Mountains. Geol. C Java. D.Pliocene Globigerina Marls Fm of Ngepung section. Fission-track dating of zircon from granodiorite in Bayah area. Indonesia. Niten (E Miocene. Gunung Kidul Regency'.Analisis fasies dan lingkungan pengendapan Formasi Tuban.3 ± 2. Tjokrosapoetro (1992). p. + map. H. (IAGI).2. Samodra. Central Java. Yamagata University. Kendeng zone. Ilmiah Magister Teknik Geologi (UPN) 2. Eocene-Miocene rocks in Bibliography of Indonesia Geology. S. 1-61. J. G. (2016). Samodra. 23%). Jawa (1608-1). Geol. Jakarta.53-1. Indonesian Mining J. 2. 25th Ann. Indon. indicating marine influence during deposition) Santoso. Geol. Jawa (1508-1). Quadrangle 1508-3. Indon. & E. Geologists (IAGI). ('Quantitative analysis of Pliocene foraminifera of the Ledok area. 14th Ann. C Java') Samuel..1.S Mountains only slightly folded. Santosa. 8p..A. Proc. based on vitrinite reflectance data. 11. Assoc. 31st Ann. Zeiza & F. Cepu area. IPA07-SG-002. S. Geol. In Ngimbang 1 at ~2500m sudden increase in vitrinite and spore color. not much new) Bibliography of Indonesia Geology. Ledok Formation. and (3) Cimandiri coals in Oligocene Cijengkol Fm sub-bituminous A and high volatile bituminous A (Ro 0. Fuji (1978).0 112 www. & M. Bandung. 183-207.000.P. Assoc. Untung & K. Centre (GRDC).0. (2010). Indonesian Mining J. S. Atmawinata (1992). Most coals have high pyrite contents. Bangkok. Proc. Southeast Asia (GEOSEA). Six seams.. Northeast Java Basin. Centre (GRDC). Two continental fragments posulated in S Mountains.2m thick. 1:100. (2) Cihideung coals in Eocene Bayah Fm sub-bituminous A to medium volatile bituminous ranks (Ro 0. GRDC Spec. 75-82.subbituminous) Santoso. 16-30. & Dev. 19 p. & T.0 m thick. Untung & Y. Indon. S. (1978). between Kujung High and Ngimbang low) Santosa.Geology of the Malang Quadrangle. Conv. Indonesia. p. Petroleum Assoc. Ningrum (2008). Survey Indonesia and Geol.D. (Petrography of rel. p.vangorselslist. Proc. S. 2.2. .in W (Bayat) segment general dips of 15-30° to S. Bayat (with pre-Eocene schists and phyllites) and Mandalika) Sampurno & Samodra (1991). Conv.Neogene tectonic and sedimentary control to hydrocarbon generation in Banyumas sub-Basin. In: M. Ed. Centre. mainly in Bayah coals (2-13%). Sano. Yohannes (1986). Res. Res. (Maturation studies for several E Java wells.Geological map of the Ponorogo Quadrangle. B. p. Sato (eds. Geol. Res. one seam in Bojongmanik 1. 18 p. L.000. 25p. faulting more common. suggesting normal fault within Eocene Lower Ngimbang Fm. thin Late Miocene coals in Bojongmanik Fm of W Java. G.83%). 35th Conv.I. (IPA). South of Central Java. 6. K. Assoc. SW Java: (1) Bayah coals in Eocene Bayah Fm mainly vitrinite and subordinate inertinite. + map Santoso. Jawa Tengah. A. Santosa. 6. Bandung. M. 0. Res. Sampurno. Survey Japan Joint Research Program on Regional Tectonics of Southeast Asia.Direction of current. 13.6. (Paleogene coal deposits in three coalfields in Banten Province. . (IAGI). Geol. Nugroho (2007). Publ. 11. (IAGI). 1: 100. Dev.Petrographic properties of Palaeogene Southern Banten coal seams with regard to geologic aspects. B. Bandung. p. Indon. Third Regional Conf. & N. B. p.Gravity anomalies associated with island arc. Jawa.600.S.Revealing undetected geological structure within Ngimbang Formation in the Ngimbang-1 well. Geol. Suwarti (1992). & S. Min.) Gravity and geological studies in Jawa. 42-48. Indonesia. sub-bituminous A to high volatile bituminous A ranks (Ro 0. p. Sano.com Sept 2016 .M.I. Kapid & D. Subroto (2006). Pekanbaru.5.000. Barmawidjaja (1996). Conv. Proc. Yogyakarta. Dev. (Review paper.Petrographic analyses of coal deposits from Cigudeg and Bojongmanik areas with regard to their utilisation. Geol.Analisis foraminifera kuantitatif pada kala Pliosen di daerah Ledok Kabupaten Blora. R. 1:100. Grade lignite.Some gravity features of island arcs of Jawa and Japan and their tectonic implications.Geology of the Kediri Quadrangle. 6 p. PITIAGI2006-054.79%).2. Riset Geologi Pertambangan (LIPI) 24.Ichnologi dan sedimentologi untuk pemodelan facies sedimentasi pada Formasi Sambipitu-Oyo. and seismic inversion. R. Spec. ~20 km N of Kebumen.000. magnetik dan geologi kompleks melange Luh Ulo.A. Proc. Sapiie. Spec. Assoc.S. Edition. In: Selected papers on the geodynamics of the Indonesian regions. (Wells drilled near edge of Oligo-Miocene isolated carbonate platforms in Cepu Block. (IPA). can be divided into two units: Jatisamit Melange and Seboro Melange. Astadiredja & Suharsono (1992).. Jawa. Geophysicists (HAGI). and caused by combination of depositional and diagenetic processes. Conv. Thalassinoides. Munadi (1995). Explor. Assoc..D. 31st Ann. Indonesia. Centre (GRDC).. Planolites. Indon. 1-9. (IAGI). Blocks of sedimentary rocks. Petroleum Assoc. p.. 1607-6 and 1607-3. have low porosity (~8% compared to 20-35% in Platform Interior in most fields). on oceanward and landward edges. Soc. Fakhruddin. R. Indon. D. Tight zones ~400’ wide. 209-233.Santoso. (IPA). 35th Ann. In: Proc. Expanded Abstracts. T. A. Jurnal Teknologi Mineral (ITB) 1. Indon.H.vangorselslist. D.Paleocene melange Complex in Karangsambung area.Geological interpretation of the melange Complex. Susilo & Putri (2007). p. Mtg. Publ. Central Java based on gravity and magnetic data.. Suparka (2001). Irawan (2009). Yogyakarta'. Koesworo. Subphyllochorda and Scolicia. A. F. (Extended Abstract) (Seismic imaging and reservoir interpetation of M Miocene Parigi Fm carbonate buildups in NW Java Basin) Santoso. Musgrove & N. B. W. Stephens (2013). Pusat Survei Geologi. L. Conv. p. Yogyakarta 2007.Relationship between fracture distribution and carbonate facies in the Rajamandala limestone of West Java region. (‘Gravity. Insani & R. Ed. based on nannoplankton population changes. differing by more abundant exotic bloks in Jatisamit Melang. Dev. & M. Houston 1995. E Java basin.Geology of the Jember Quadrangle. 37th Ann. Bibliography of Indonesia Geology. Suparka (1994). Jakarta.. Proc.D. J. with folded Oligo-Miocene sediments and volcanics in S and widespread Quaternary volcanics in North) Sapiie. Bandung. Geol. Workshop Geologi Pegununungan Selatan.com Sept 2016 . Chondrites. p. from tidal. D. Pegunungan Selatan. 6. Jurnal Geofisika. Proc. B.S. 8p.0 113 www.Fault characterization and fault seal analysis in the Gunung Walat area. Petroleum Assoc. Cretaceous. Similar to Malampaya field. Indon. scale 1:100.Penafsiran gaya gerat.com/index. Yogyakarta.Paleosalinity conditions on Late Miocene.Estimation of Parigi reservoir characteristics using seismic attributes. metamorphic rocks and ophiolite members such as pillow lava. shoreface to 'lobe' facies) Sapardina. p. L.php/jrisgeotam/article/view/77/pdf_21) (In Rembang zone of NE Java Basin peaks in abundance of nannofossil species Calcidiscus leptoporus and Helicosphaera carteri used to infer rel. Ophiolite Complex found in same area interpreted to be from a mid-oceanic ridge of Cenomanian age) Santoso. hyposaline conditions in Late Miocene Ledok and Late Pliocene-E Pleistocene Selorejo Fms) Santy. R. gabbro and serpentinite. incl. p. & M. Jawa Tengah. AVO analysis and AVO inversion. Res. H. Hendrajaya. 1. Alam & S. Sandstones of E-M Miocene Sambipitu and Oyo Fms in Southern Mountains SE of Yogyakarta with locally common trace fossils. Suganda. K. (2006). S.Pleistocene in the North East Java Basin. Sekti. Kapid (2014). 38. IPA13-G-195.. p. Jakarta. Overlain by Eocene olistostromes and younger sediments.E. S. Bandung. D. (online at: http://jrisetgeotam. C Java. 1-11. Luh Ulo. Watkins. (Southern Mountains of E Java. magnetics and geology of Luh Ulo melange complex’. 1-399. Southern Mountains. Geol. Conv. R. ('Ichnology and sedimentology for sediment facies modeling in the Sambipitu-Oyo Formations. primarily lack of leaching that makes Platform Interior good reservoir. Skolithos.E. Santoso. Anshory. 577-580. Eight facies associations in Ngalang River. Alfian. Pekanbaru.Tight rinds in SE Asia Oligo-Miocene isolated carbonate platforms. all embedded in sheared clay matrix. Geophysics (SEG) Ann. 1. p. Setiawan & D. J. Philippines) Sapei. S. Sapiie & T. short wavelengths suggest fragments of upper mantle material close to surface) Sari. R. p. 35th Annual Conv. Dept. Indon. A. Simo. Indonesia. Amir. Jakarta. p. A. W. Nugroho (2010). Indonesia. Sapiie. Indon.0 114 www. Geosc.. Yogyakarta. Perdana. Husein (2012). Proc. Rajamandala platform carbonate complex developed on NNE-SSW regional basement high. B. Proc. Fracture density also controlled locally by presence of faults and folds) Sapiie. Surya Nugraha.Exploration challenge in Kendeng Zone. Riswanty. Soouthest Asian Applied Geol. 12p. Suryanugraha. Kurniawan. Conv. IPA-AAPG Jakarta 2006 Int. D. T. 5 p. E.H. Proc. Assoc. (PIT IAGI). A. J. AAPG Int. Southern Yogyakarta: outcrop study and petroleum implications.Fault zone characterization and fault seal analysis in the Gunung Walat area. Pamumpuni. and Exhib. with~50% shortening. Indon. B. Kabupaten. M. p. Stylolites more common in boundstone facies than in wacke. Punung. OT-16. A. M Oligocene Lower Kebo Fm in S Mountains SE of Yogyakarta are submarine fan deposits) Sartika. Warmada. 6. Conv. Pekanbaru. 4p.E. Conf.N. IAGI. Saputra. a technical field trip for geoscientists. I. Biantoro & M. I. (Fracture distribution and characteristics in Late Oligocene Rajamandala Limestone outcrops dependent on carbonate facies) Sapiie. A. Geol. Lanin. A. Indon.an approach via constrained gravity modeling. (Abstract only) Sapiie. (IPA). 35 th Ann. Harsolumakso & S. I.I. Petroleum Assoc.H.A..Late Oligocene tholeiitic lava from Kenanga River. Conf. suggesting basement. Asikin (2006). B. Harahap & Widiasmoro Soewondo (2009).. E. Indon. Saputra. Sartono (1961). Proc.H. IPA11-G-190. West Java. A. IPA10-G-057 3D. The stratigraphy and structure of the Oligocene (Chattian) Rajamandala Limestone. W. (Gravity modeling along seven N-S transects show Java island composed of continental crust. 30th HAGI and 34 th Ann. with Cimandiri fault acting as shelf edge. daerah Mojosari. Proc.W.A.vangorselslist. Simo (2011). Geol. 34th Ann. Perth. 1. & S. Shirly & A. p. Geology 48. p. ITB Contrib. Conv. Joint Conv.M. (IAP). 3-19. Lanin. Pamumpuni.S. Sardjono (2006).and packstones. Ed. Indon. Saputra. Tegalombo. Badai (2006).E.. Simo & D. 1-16. Bibliography of Indonesia Geology. Proc.Carbonate fractured reservoir characterization using analogue outcrop study of the Rajamandala Carbonate Complex. Petroleum Assoc. ENE-WSW trending thrust-fault system. B. E. Western Java. Fracture density also higher in boundstone facies. Satyana & N.Sedimentology of the Wonosari carbonates.Shifting of the coastline and interfingering in the Neogene of the easternmost part of the Gunung Sewu.Crustal architecture of Java Island.Paleogene tectonics evolution and sedimentation of East Java Basin.A.Sedimentasi gaya berat Formasi Kebo bagian bawah. Pacitan (East Java). (Rajamandala Carbonate Complex N-verging. B. Nugroho & T.Structural characterization of the Rajamandala Limestone. L. Proc. Bayat District'. Surabaya 2005.com Sept 2016 . p. Assoc.H. p. Conv. 41st Ann. but in places high gravity anomalies with rel. Youngest Plio-Pleistocene deformation parallel to pre-existing structure. Petroleum Assoc.(Fracture characteristics strongly dependent on carbonate facies. In: B. Bandung... A.involved deformation) Sapiie. West Java. 35th Ann. Jakarta. 8 p. Field Trip. Novian (2006).. Noeradi. B. East Java. Geol. ('Gravity deposition in lower part of Kebo Formation. Assoc. Indon. Janata. 2012-SS-02. (IAGI). Pekanbaru 2006. Satyana. Indonesia. Geol.Palinspatic reconstructions of Rajamandala carbonate complex as implication of paleogeography in the Western Java. Conv... Kurniawan. (UGM) 1. D. Pacitan. A. Mojosari area. Simo (2011). Kecamatan Bayat. M. Assoc. D. S. A. Ascaria (2005). Indonesia: outcrop study and petroleum implication to identify a potential deepwater playsystem. (IAGI).J. Herlambang & T. H.) Proc. In: F.. Geol. Assoc.Jawa Barat. North Central Java and Ciputat-Jatibarang areas). SE Java) Sartono. S. Assoc. S. (IPA) Newsl. Geol. Indonesia. ('Intra-Miocene orogeny in Indonesia') Sartono.Orogenesa intra-Miosen di Indonesia.Early Miocene Kujung. Ciemas District. 193-204. October 2003. 42-52. Two trends: (1) North (Cepu-Surabaya-Madura. & H. Umum 1. Assoc. Publ. p. Indon. Petroleum Assoc. Serayu.Stratigraphy and sedimentation of the easternmost part of Gunung Sewu (East Djawa). 1. S. Bandung. 3-13. 16th Ann. S. the Southern Mountain of Java. West Java'. Kecamatan Ciemas. right-lateral. Conv. comprising Kujung. p. A. Indon. Indon. Setiawan (eds. 217-249. and (2) Pamanukan-Cilacap Fault. A. p. Indon. SW Java 3 deformation periods: (1) Pretertiary compression with axis of N355°E. Bandung.Extensive slide deposits in Sunda Arc geology. Conv.0 115 www. Giant Field and New exploration concepts seminar.Olistostrom sebagia batuan dasar di Jawa. (2002). Sartono.Oligo-Miocene carbonates of Java. (IAGI). (2005). 2001. Ed. Proc. ('Structural pattern and deformation periods of the Cihara area. (1984). 16th Ann. Bandung. (IAGI). p. 2001. Geol. A. Assoc. p. (IAGI). (2005). 30th Ann. Maximum uplift of Cilacap-Kebumen exposed basement rocks in Luk Ulo area. Conv. Kabupaten Sukabumi. (Hydrocarbon play potential in deep marine Tertiary basinal areas of Java (Bogor Basin. S of maximum uplift region submergence of Southern Mountains across southern C Java) Satyana. land-attached platform) and Banyu Urip (ExxonMobil Cepu. Proc. Survey Indonesia. Indonesia: tectono-volcanic setting and petroleum implications. leftlateral. (1991). (2) Oligo-Miocene compression with N5°E axis and (3) M Miocene NE-SW compression with dextral strike-slip faulting)) Satyana. A.com Sept 2016 .H. Sartono. Bibliography of Indonesia Geology. Proc. (IPA). Teknik Seri Geol.H.Pola struktur dan periode deformasi daerah Cihara. (IAGI) and 30th Ann. Surabaya. J.H. (Indentation of coastlines of N and S Central Java caused by two major Paleogene wrench faults with opposing trends and slips which terminate in southern C Java near Nusa Kambangan: (1) Muria-Kebumen Fault. Banten Selatan. (1987). 34th Ann. Kendeng. (1964). p. Jakarta 2002.Prupuh carbonates in E Java Basin: Bukit Tua-Jenggolo (Gulf/ConocoPhillips. West Java') Satyana. Geol. p. Indon. p. isolated buildup) Satyana.Sartono. (2003). 95p. Sidi & A. 13th Ann. extensive study of stratigraphy and Miocene carbonate development in Southern Mountains and W Progo Mountains. (1990).H. Proc.Structural indentation of Central Java: a regional wrench segmentation. p. Geol.H.vangorselslist. Bandung. A. S. Riset Geologi Pertambangan (LIPI) 10. (Unpublished) (Petrotectonic study of ophiolite members of the Gunung Badak melange complex. 1. (Rel. Proc. Indon. (1989). Jakarta. South Banten. Geol. ('Olistostrome as basal rock in Java') Sastramihardja.Studi petrotektonik kerabat ofiolit pada kompleks melange Gunung Badak.Deep-water sedimentation of Java: hydrocarbon opportunities and resistance. Joint Conv.Oligo-Miocene reefs: East Java's giant fields. 8-13. (Java Oligo-Miocene carbonates widely distributed. Conv. Sukabumi. East Java basins) Satyana. trending SW-NE (Meratus trend).HAGI. Petroleum Assoc. (On recent discovery of two giant fields in Oligocene. Buletin Geologi (ITB) 20. Conv. (IAGI).Olistostrome sebagai dasar batuan di Jawa. 6. 45-62. Padjadjaran University. p. Conv. T. trending NW-SE (Sumatran trend). during time of “Old-Andesite” volcanism. Thesis Jurusan Geologi. Ciletuh. Indon. Murwanto (1987). Jawa Barat. Assoc. Ciletuh. Faults caused: uplift of Serayu Range and exposure of Luk Ulo melange. Assoc. Petroleum Assoc. (IPA). Indon. Indonesia.H. causing abundant reefal carbonates deposition along S Trend.BayahSukabumi-Rajamandala). Yogyakarta 2009. but inadequately explored) Satyana. A. subsidence of S Mountains in southern C Java and indentation of S coastline. Petroleum Assoc. Conv. Perth 2006. when sea transgressed many areas in SE Asia. Proc. and without any oleanane. Jakarta. 75-150 km from contemporaneous volcanic arc in S Java. S Trend no hydrocarbons. Jakarta. Petroleum Assoc.H.H.C Java. 8p. S Trend reefs on ridges in Bayah-Sukabumi-Padalarang areas not contemporaneous with volcanism. Two major Paleogene strike-slip faults with opposing trends and slips responsible for indentation: (1) SW-NE Muria-Kebumen Fault. (Expanded version of Satyana (2014). A. (2007). (Presence of oil and gas seeps in volcanic areas of Java show presence of active petroleum systems under volcanic covers. Volcanic quiescence across Java from 18. (2016). Deep seismic lines in East Java Sea and South Java forearc suggest possibility of Pre-Eocene section in Australia-derived microcontinent(s) (But: proven oil source rocks on Australian NW Shelf older than Cretaceous. and N-ward shift of Quaternary volcanic arc in C Java) Satyana. and N-ward shifting of Quaternary volcanic arc in C Java. A. Indon. Common oil and gas seeps in volcanic areas of Java show presence of active petroleum systems underneath volcanic cover. left-lateral and (2) NW-SE. Indon. 30p. (Geochemistry of Sepanjang oil in Eocene reservoir from Kangean area in Java Sea and general East Java oils suggest possible presence of marine Lower Cretaceous-sourced oil.H. (2009).vangorselslist. 4p.0 116 www.New insight on tectonic of Central Java. leftlateral. IPA15-G-105.. subsidence of N part of C Java and indentation of northern coastline. p. Conv. HvG) Bibliography of Indonesia Geology. 39th Ann. right-lateral PamanukanCilacap Fault.a “Terra Incognita” in petroleum exploration: new considerations on the tectonic evolution and petroleum implications. Geoph. A. Proc. Two sets of fault zones. Gadjah Mada University.The emergence of Pre-Cenozoic petroleum system in East Java Basin: constraints from new data and interpretation of tectonic reconstruction. (Two major Paleogene strike-slip faults with opposing trends and slips responsible for indentation of Java coastline: (1) SW-NE trending Muria-Kebumen Fault. and (2) NW-SE Pamanukan-Cilacap Fault. Indon. IPA07-G-085.Tuban. Proc.Central Java. (2014). (2006). based on low oleanane and sterane content. 31st Ann. Faults caused indentations of N and S coastlines.com Sept 2016 . right-lateral. Seismic imaging and reservoir quality issues) Satyana. (IPA). 6. A. uplift of Serayu Range and exposure of pre-Tertiary Luk Ulo melange complex. Jakarta. Baturaja and M Cibulakan formations and (2) South (Gunung Kidul. This hydrocarbon prospectivity of Java Island so far unexplored. (2015). disappearance of S Mountains in southern C Java due to subsidence.Subvolcanic hydrocarbon prospectivity of Java: opportunities and challenges.Subvolcanic hydrocarbon prospectivity of Java: opportunities and challenges. trending transversal to Java Island responsible for collapse of S Mountains in these areas) Satyana. Ed. (Extended Abstract) (C Java conspicuous indentation of coastlines compared to W and E Java. In: International Conference on Java’s Southern Mountains. 40th Ann.Banyumas. and geochemistry. (IPA).Disappearance of the Java’s Southern Mountains in Kebumen and Lumajang depressions: tectonic collapses and indentations by Java’s transverse major fault zones. Presence of two opposite regional strike-slip faults crossing each other in southern C Java has configured petroleum geology of C Java) Satyana. and subsided northern C Java) Satyana. A. 1-22. N Trend carbonates prolific petroleum reservoirs. 15p. deep seismic. but so far unexplored. subsidence of North C Java.Jampang. Conv. Abstract AAPG Int. Conf. IPA16-573-G. Majalengka-Banyumas area and N Serayu area. Conv. Focus areas for this target suggested here is at border between W Java. (Two ‘gaps’ in Java Southern Mountains: (1) Kebumen Depression in C Java and (2) Lumajang Depression in SE Java. Solo.12 Ma.H. (HAGI). N Trend carbonates in back-arc setting.H. Indonesia and its petroleum implications. Areas with prospectivity: Banten Block. 39th Ann. Proc. Reservoirs M Miocene Tawun to E Pliocene Mundu sands and carbonates) Satyana. Conv. and (2) Muriah.Satyana. With Ngrayong Fm paleogeography) Satyana. Conv. (Outcrop studies in Sumedang area suggest Bogor Basin also received sediments from N (e. C. across middle of Java.H. (Extended Abstract) (E Java basin basin rich in gas. Deepwater and Frontier Exploration in Asia and Australasia Symposium. Indon. Assoc.com Sept 2016 . A. Porong-BD platform). MDA. In: R. Indonesia: regional evaluation on opportunities and risks. (IPA). (Major E-W left-lateral wrench zone. & Asnidar (2008). Ed. Depressions formed by isostatic subsidence compensating for uplifted volcanic arcs located to S.g.. (IPA). Geol. Oil fields in E Java have reservoirs of Ngrayong sands considered as deepwater deposits on slope of Rembang Zone. A. 23 p. p. & M. A. Indon. natures and implications to petroleum system. (Brief but good overview of Oligo-Miocene carbonates distribution of East Java basin. East Java Basin: the origin and nature of a geologic border. Biogenic gases in two trends: (1) Surabaya. Conf. Indonesia: facies definition leading to recent significant discoveries. Yogyakarta. Jakarta. forming deformed zone 15-40 km wide and 675 km long from Rembang in W through Madura and Kangean Islands to Sakala offshore in E. West Java: opportunities for turbidite hydrocarbon play. E.vangorselslist.Oligo-Miocene carbonates of the East Java Basin. Biantoro & A. Bukit Tua. Proc. Geol. Petroleum Assoc. 20p. Indon. Proc. Fault Zone at hinge or shelf edge between stable E Sunda Shelf (Paternoster-Kangean micro-continent) in N and deep-water area with different basement lithology in S. 33 rd Ann.New observations on the evolution of the Bogor Basin. an axial depression with rapid deposition of Mio-Pleistocene sediments and subsequently compressed. Eocene clastics at Pagerunganand W Kangean) and (2) N Madura Platform (Kucung and Rancak carbonate reservoirs at KE.H. (Numerous mud diapirs and mud volcanoes in Bogor-North Serayu-Kendeng-Madura Strait Zone. North Serayu and Kendeng Zones. Abstract 65th EAGE Conf. Oil and gas seeps and producing oil and gas fields in same zone) Satyana. Jakarta.) Proc. Spec. Terang-Sirasun-Batur-Kubu).H. Syafri (2002). Bandung. 293-319. formed during Paleogene rifting. E. Spain. 34.H. Conv. Buletin Geologi( ITB). Barcelona. Oil seeps and oil fields in N Serayu Trough in turbiditic volcaniclastic sandstones. p. Indonesia. B. showing isolated platforms on WSW-ENE trending faulted basement highs.Madura Strait (Wunut. Armandita (2004).. 101116. 32nd Ann. Flower Bibliography of Indonesia Geology.Rembang-Madura-Kangean-Sakala (RMKS) Fault zone. Oyong. Ext. (Review of Mio-Pliocene deepwater sedimentation in Bogor.H.. In Plio-Pleistocene time trough/basins significantly uplifted and deformed. (IAGI). Darwis (2001). Maleo.0 117 www. abstract.A.Gas habitat of the East Java Basin. AAPG Int. (eds.Deepwater plays of Java. Prasetyadi (2004). 30th Ann. Djumlati (2003). Gases from Cepu High high-CO2 gas due to thermal degradation of carbonates. and currently form fold and thrust belts..Bawean (Kepodang Field). Eo-Oligocene Ngimbang carbonate at Suci. Jenggolo. (NE Java basin paper describing Oligo-Miocene deposition of carbonate buildups on ENE-WSW trending highs (W Cepu. Tectonic inversion started in mid-Miocene and peaked in Pleistocene time) Satyana. Raharjo & I. Petroleum Assoc. 5p. Erwanto & C. Deepwater plays viable in Java. p.. E Cepu. & A.Recent significant discoveries within Oligo-Miocene carbonates of the East Java Basin: integrating the petroleum geology. as suggested by Martodjojo (1984). followed by M Miocene and younger inversion) Satyana. Thermogenic gas in two trends: (1) Cepu. Vol.H. Stavanger 2003. Most sands deposited in ponded basins on slope area and as submarine fans on basin floor) Satyana.H. Proc. & Exhibition. & C.Kangean High (in Oligo-Miocene carbonates on Cepu High. Initiation of fault zone in late E Miocene in Sakala area. Indon. Noble et al. A. Congress. Fields in Pliocene-Pleistocene volcaniclastic turbidites of E Kendeng Zone also show prospectivity of deepwater plays in Java. A. formed during Eocene rifting. (IAGI) and GEOSEA 10th Reg. 4p. Luthfi (2003). IPA08-G-139. Armandita. 3.Mud diapirs and mud volcanoes in depressions of Java to Madura: origins. 6. 37-41. A. A. Payang). M Miocene in Rembang area. Assoc. upper M Miocene Cinambo. Lower Pliocene Subang and Bantarujeg Fms) not just from S.meets the future demand. R. p. P. & M. (IAGI) and 28th Ann. E.com Sept 2016 .Banyumas.B. Jakarta. deeply-rooted vertical master faults with upward diverging splays with reverse separations. 585-607. 2. 10. High CO2 gas (30-80%) in two areas: Cepu High. Conclusion disputed by Davies et al. p. (Shear wave velocity model of Jakarta Basin from seismic noise shows low-velocity basin under most of N Jakarta down to ~1-1. E.Bayah. Conv. & M. these splays are mapped as fold and fault belts trending W-E and WNW-ESE. 26. (IAGI).B. N Central Java.E.H. Most oils from terrestrial. Istadi & A.vangorselslist. Geol. Hawkins. Geol. & M. Indon. 1658-1675.H. Oyong. etc. (Study suggesting LUSI mud volcano is naturally occurring mud volcano in area prone to mud volcanism. Tectonic inversion observed. including Cepu-Surabaya-Madura.The LUSI mud volcano triggering controversy: was it caused by drilling? Marine Petroleum Geol. (Java Late Oligocene-Early Miocene widespread platform and reefal carbonates.L. Widiyantoro & B.E.M. 204. B.M. E. Masturyono. Murjaya. 68-102. Sutriono. 6. S. 55-66. N. 9. Assoc. Darmoyo (2010)-Was LUSI caused by drilling?. M.Geochemistry of the East Java Basin: new observations on oil grouping.structures on seismic sections.H. p. 1766-1784. 29th Ann. Ed. R. Shale diapirism common S of fault zone in thick shale sequences deposited rapidly to S of RMKS FZ) Satyana. J. p. Poleng. (2010) and Tingay (2009. Proc.M. Sutriono. Lower Kujung and Lower Tuban shales sources of oils and thermogenic gases. 918-931. Maleo (Madura straits). In: Proc. Volcanic quiescence in Java from 18-12 Ma (M Miocene) resulted in significant reefal carbonates development along S Mountains of Java. No volcanic material found in these carbonates. genetic gas types and trends of hydrocarbon habitats. IAGI Central Java section. Conf. Istadi & A. Irsyam. (Reply to Davies et al. In map view.Jampang. p. Proc. with Gunung Kidul. R. (2010) discussion. Marine Petroleum Geol. Karangbolong/Kalipucang in Banyumas.N. S Trend in intra-arc setting. 1. 27. Kepodang (Java sea) Wonolelo seep in W Cepu. Ngimbang.Lekukan struktur Jawa Tengah: suatu segmentasi sesar mendatar. Jakarta. showing basement-involved. who argued LUSI mud volcano was triggered by drilling) Saygin. and Bojonglopang in Jampang areas) Sawolo. & M. with transdimensional inversion of seismic noise. N Trend developed in back-arc setting. Indon Petrol. Sumberdaya geologi daerah istimewa Yogyakarta dan Jawa Tengah. Int.5 km) Bibliography of Indonesia Geology. Offshore oils more terrestrial than onshore.E. (Geochemical data from ~100 wells and seeps. Two trends: (1) N Trend. 32nd Ann. Rajamandala reefs developed prior to E Miocene Jampang volcanism. Extensional component of wrench zone subsided Paleogene rifted blocks like Central Deep and formed normal faults. Assoc.P..P. Jonggrangan in Kulon Progo. A. B. Kidul-Banyumas-Jampang areas. p. HAGI. Two wrench zones representing Paleogene tectonic elements of major shears in W Indonesia (NE-SW Sumatran Trend and SW-NE Meratus Trend) meet in C Java) Satyana. A. 31st Ann.M. Period also noted for 'Old Andesite' volcanism along S part of Java. Kennett (2016). Conv. Proc. 75-150 km away from Oligo-Miocene volcanic arc in S Java.H. Purwaningsih (2003). 2016)) Sawolo. M Cibulakan and Baturaja and (2) S Trend. Geophysical J. Biogenic gas in M Miocene-Pliocene reservoirs in Terang-Sirasun. and Ciputat-Jatibarang areas consists of carbonates of Kujung. Purwaningsih (2002). A.Lidah shales. Pandhu. (Similar to 2002 paper. Indonesia. Darmoyo (2009). Tuban. High CO2 associated with thermal degradation of Paleogene Kujung carbonates) Satyana. Purwaningsih (2003).. Prupuh. 27p. A.0 118 www.marginal marine facies. Conv.Authors reply to discussion.Geochemistry and habitats of oil and gas in the East Java Basin regional evaluation and new observations.Oligo-Miocene carbonates of Java: tectonic setting and effects of volcanism. Yogyakarta. (Indentation of C Java structure by wrench faults.SukabumiRajamandala areas. like Wonosari/Punung in Gunung Kidul. A.. Cummins.E. Purwaningsih (2002). Biogenic gases from Neogene Tawun.Imaging architecture of the Jakarta Basin. Conv. N. offshore Java Sea) Satyana. Cipta. No reefal carbonates in G. Indon. (IPA). Assoc. A.M. Conv. E Pliocene drift facies widespread from E-most-C Java to Bali Sea. & T. 189-212.. De Ingenieur in Nederlandsch-Indie (IV). F. gouvernement Jogjakarta. D. 4.A.A. Descriptions of cowrie shells from Miocene of Lodan anticline. 5th Ann. p. Two types: foram sand "drifts" deposited by bottom currents and foram "turbidites" deposited as submarine channel-fills and fans. composed almost entirely of volcaniclastic sediments. HvG)) Scheidecker.A. & D. p. (1937). (IPA). Geol.The marine mollusca of the Kendeng beds (East Java). 95-114. 6. W. p. Two lithofacies: (1) composed of mostly quartz (58-84%) and variety of lithic fragments. Petroleum Assoc. Mesozoic granitic continental crust and Late Cretaceous subduction complex areas to N interpreted to have supplied majority of quartz and lithic fragments. Similar globigerinid-rich facies in Late Pliocene Selorejo Fm of C and E Java.sp. (2) less pervasive volcanic facies. Petroleum Assoc.A. D. F.. (1939). J. Yogyakarta area'.The reservoir potential of Globigerinid sands in Indonesia. with undulose extinction (= metamorphic quartz?.naturalis. etc.com Sept 2016 . Jakarta.253/cgi-bin/ ) ('An occurrence of quartz sandstone. 23rd Ann. interpreted as sand-dominated submarine fan complex. Leidsche Geol. & C. Gastropoda). Prasetyo (1991). Proc.R. Seubert. Garrard & L. Quartz described as polycrystalline. (IPA). Drooger (1974).. ('Neogene Cypraeacea from East Java'. Musliki & M.W. (online at: www.M. p. p.L Eocene Ciletuh Fm f-vc sandstones and sandy conglomerates. 494-500.L. p. 20th Ann.Eocene submarine fan sedimentation in Southwest Java. Palaont. Ed. Natuurkundig Tijdschrift Nederlandsch-Indie 91. Volva surajensis n. and Amphiperaidae). daciet en contactmetamorphe gesteenten in het heuvelterrein nabij Godean. Facies development related to tectonic event. 1. 81.vangorselslist. R. (IPA). Gastropods) Schilder. Proc. dacite and contact metamorphic rocks in small hills near Godean. 11.28. Locality of G. Pliocene of Solo River and E Pleistocene of Mojokerto region. 195-210. Reitsema (1931). Petroleum Assoc. Late Pliocene examples appear restricted to Rembang Zone of NE Java) Schipper. Foram drift deposits in E JavaMadura Strait mostly latest Early Pliocene.Miogypsinidae from East Java and Madura. Neues Jahrbuch Mineral. Indon. B. NW of Godean. 1-14. collected during mapping by Bandung Geological survey) Schilder.) Schiller. while possible Eocene local volcanic arc is believed to have sourced volcanics. Schiller. (Second offshore oil discovery in Indonesia.8 Ma global sea level lowstand. F. "Foram drift" facies more common and best reservoir characteristics. B77. Cypraeidae. Part 3 (Families Eratoidae. S. Bibliography of Indonesia Geology. Gastropods from Upper Kalibeng and Pucangan Fms includes Zoila kendengensis. Jakarta. Proc.Scheibener. possibly Eocene sandstone with intrusive younger andesitic volcanics.nl/document/549360) (Part of series of papers on Kendeng Beds marine molluscs by Van Regteren Altena 1938-1950 and Schilder. partly coinciding with 3. W of Yogya.0 119 www. 196-202. Nederl. Indon.Java (Mollusca.repository. p. Pare. 3.Arjuna B structure: a case history. Upper Cibulakan Fm and 'Main' and 'Massive' sand reservoirs improve in quality away from crest of structure) Schilder.41. in 1968.Up to 30-45% primary porosity. 1. 100-1000 md perm and 30-40 m thick. Amsterdam. Mededelingen 12.W. Gastropoda. Akademie Wetenschappen. 1.Een voorkomen van kwartszandsteen. Taiclet (1976).Uber einige fossile Cypraeacea aus dem Sunda-Archipel. (Outcrops of M. Conv.. (online at: http://62. Reservoir quality of quartzose sst poor due to compaction and carbonate cementation). Conv. Jakarta. 1. p. (1941). ('On some fossil Cypraea from the Sunda Archipelago'. Indon. 171-194. (Porous limestones composed of sand-sized planktonic forams in outcrops and wells with variable reservoir quality and thickness. E. Proc. 2. 125-181. Kon.Neogene Cypraeacea aus Ost. Abdullah (1994). Wissensch. (1900). probably Pliocene-age shallow marine mollusc fauna) Schuppli. Zeitschrift 36. 216-217. long-lived M. Reichs-Museums Leiden ser. Abhandl. (online at: http://bhl. 5.Note sur deux especes de Lepidocyclina des Indes Neerlandaises. 11/111/15. ('Brief report on the geological situation of the South Rembang hill country'. Same paper as above) Schweitzer. Engelmann. p 1-10. 6.A new family of brachyuran (Crustacea. 1-64. (Flenley 1979. R. Gaedicke. B. 1. Roeser. Geologische und palaontologische Ergebnisse der Trinil-Expedition (1907-1908). (1932). J. H. (1911).nl/cgi/t/text/get-pdf?c=scripta.L. C. Lepidocyclina insulae natalis (probably E Miocene Eulepidina. 6. with 21 species no longer present on Java. Lowland tropical species appear to be absent. 235-257. H. Walther (1962). At 80m above sea level karstified limestone overlain by thin conglomerates and sands with clasts of manganese impregnated limestone and wellpreserved. Ed. ('On a new occurrence of Pliocene on the Gunung Sadeng near Puger (E Java)'. antillea (Gr. Paleontol. H. Decapoda. Java) and its significance for the age of the manganese mineralization’) Schmid. Reichert. p. are E Miocene Old Andesites overlain by M Miocene marls and Wonosari reefal limestones. Verhandelingen 3. & H. 128-134.repository. E Java. (online at: www. In: M. Van Zeist 1984: presence of leaves with entire margins and drip-tips suggest everwet conditions. Djajadihardja & A. Bonadio (2009). HvG) from Ngembak well. often at altitudes of 700-1500m. Bayerischen Akad. and stellate Lepidocyclina martini from Miocene of Madura. & H. p.) Die Pithecanthropus-Schichten auf Java. (‘The flora of the Trinil Beds’. cushmani (~N8?) and M.U. Y. 1. Leipzig. M. Meyer. Suppl. 25. Kl.. Goneplacoidea) from the Eocene of Java. C.Kort verslag over de geologische situatie van het Zuid-Rembangsche heuvelland. Walther (1962). 6. C. Transtensional pull-apart basins along W Sunda Strait. (‘A new Pliocene locality at Gunung Sadeng near Puger (E.M.(Three E-M Miocene miogypsinid species assemblages from same samples studied for lepidocyclinids and planktonics by Van der Vlerk and Postuma (1967): rel.Tectonic features of the southern Sumatra-Java forearc of Indonesia.A. F.) Schmid. Kon. Math. etc. p. p.SW Java: Paleogene inner wedge and Neogene.org.ala.com Sept 2016 . 1. Tectonics 21. (Seismic suggests two units in accretionary wedge off SW Sumatra. Sammlungen Geol. SE Java. globulina (N5-N7?). Prex (2002). but known from other parts of SE Asia.au/bibliography/7643/summary) ('Monograph of the fossil flora of the Pithecanthropus beds'.E.Recent outer wedge. Jaarboek Mijnwezen Nederlandsch-Indie 59 (1930).naturalis. With analyses of foraminifera and molluscs by Van der Vlerk and Martin) Schuster. (1911). collected by Verbeek) Schluter. not monsoonal with pronounced dry season like C-E Java today)) Schuster. N9)) Schlumberger.nl/document/552395) ('Note on two species of Lepidocyclina from the Netherlands Indies'.Uber ein neues Pliozan-Vorkommen auf dem Gunung Sadeng bei Puger (Ost-Java). Central Java Pleistocene plant fossils from Trinil area 52 species.. Feldmann & C.Monographie der fossilen Flora der Pithecanthropus-Schichten.W.idno=09138a01) Bibliography of Indonesia Geology.vangorselslist. Indonesia. H. C. p. Blanckenhorn (eds. p.scriptageologica. Scripta Geologica 138. Schreckenberger. Geol. peripheroronda zone.Ein neuer Fundpunkt von Pliozan auf dem Gunung Sadeng bei Puger (OstJava) und seine Bedeutung fur das Alter der Manganvererzung. 95-121. Pliocene in S Mountains of SE Java N of Puger village. All suggesting climate cooler than today (possibly ~6-7°C less)). Munchen. 247-276. J. locally with metasomatic manganese mineralization. Jahrbuch 80.-phys. Selenka & M.W. F. p. Early report on Mio-Pleistocene stratigraphy and structure of Kendeng zone by BPM geologist. (online at: www.Die Flora der Trinil-Schichten.0 120 www. Proc. Derewetzky. Jakarta. Indon. daerah lama. Int. 2nd Ann. Proc. Makassar. Conv. Two Tethyan molluscs species recorded for first time from Nanggulan. (2011). Indonesia. Wikanswasti & A. IPA14-G-309.M. Priambodo.E Miocene subsurface carbonate buildups and associated deeper water calciturbidites and debrites similar range of environments as outcrops of Late Oligocene Rajamandala Lst) Sembodo (1973). Proc.) Proc. Bellier (1993). Maryanto.Geosciences. East Java Basin testing 488 and 744 BOPD from DST in M Miocene reefal limestone in July 2012. Petroleum Assoc. 5. B. p. R. Growth of Mid Miocene reefal limestone in area related to Miocene uplift event in area of earlier deep marine facies) Sebrier.Middle Miocene reefal limestone as a new exploration play in Ngimbang sub basin. Conv. Petroleum Assoc. C Java.E Pleistocene Citalang Fm of N Sumedang ~1000 m of fluvial deposits..Facies analysis and sequence stratigraphy of Tertiary subsurface (Cepu Block) and surface (Rajamandala Limestone) carbonates of Java.Miocene to Recent kinematic evolution around the Sunda Strait and southern end of the great Sumatra Fault: microtectonic approach. IPA15-G-039.I. 37-40. 403-414. F. p. an overlooked reservoir. East Java. IPA11-G-063. play types and play fairway and underexplored play in East Java Basin. Rieb (eds. (Extended Abstract) (P-1 Well. D. JCM2011-097. 45-48. D. 36th HAGI and 40th IAGI Ann.structural framework. 6. In: B. Chiang Mai.osaka-cu. T.. Indonesia.a case study. Looks like typical Tethyan fauna) Scolari. (Review of geology and Cenozoic hydrocarbon plays in offshore E Java Basin in and around Pangkah PSC) Setiawan. French Indonesian Cooperation in Oceanography. Strohmenger. Ratanasthien & S. D.pdf) (Pliocene. a discussion on shared taxa. A. Jakarta. Osaka City University. ('New play. 5p. Conv. Tu P 12. Nugroho (2011). one of thickest non-marine deposits on Java.J. 38th Ann. In: EAGE 6th Int. 9p. S. perspektif baru: identifikasi batugamping N11-N14 pada sub cekungan Ngimbang menggunakan data seismik 2D. Jakarta. Nanggulan. Hakiki. 16p. M. Indon. Ardana Darma (2014). and Exhibition. p. (New gastropod species from M Eocene lower Nanggulan Fm('Axinea Beds')) Sebayang. C. p. Geosciences. Petroleum Assoc. D. p. 10th Ann. Ed. D. Sekti. Conv. p.J.D. R.ac. Jakarta. R. M.vangorselslist. old area. Facies map was also made to give a picture of the N11-N14 paleogeography. Proc.Middle Eocene molluscs from the eastern and western Tethys. Indon.Fluvial facies of the Citalang Formation (Pliocene-Early Pleistocene). Overall environment interpreted as braided streams) Setiawan. F. 1-15. Fullmer.com Sept 2016 . 30 Km NW of Ngimbang Sub Basin.Stratigraphic.The new species Sundabittium shutoi from the Middle Eocene of Nanggulan (Java.N. (IPA). (online at: http://dlisv03. Setiadi. (2001). S. C.Play baru. Java) Scolari. 53. Simo. Seismic shows presence of reefal limestone reflection patterns at M Miocene (N11-N14) level. Petroleum Assoc. Noeradi (2014).(New family to accommodate fossil crab Martinocarcinus ickeae Boehm 1922 from Late Eocene of Kali Puru.N. A. Padova. Bibliography of Indonesia Geology. possible equivalents of Bulu Limestone and limestones in Tapen 1 well between 1475-1760m) Sebayang. Saint Petersburg. (1999)..Tuban Sandstone. Conf.. Memorie Scienze Geol.Notes on formation evaluation in the Jatibarang volcanic reservoir. 35th Ann. Sapiie & D. Indonesia. Interpretation of M Miocene reefal buildups on 2D seismic in E Java basin. (IPA). (Cepu Block late M Eocene. Prasetyo & D. Pramumijoyo & O. K. (Eocene fossil molluscs from Nanggulan. Juliansyah & I. (2001). E of Cepu block. Indonesia).W. on Shallow Tethys (ST).P. Proc.L. J.media. West Java. (IPA). F. Joint.jp/infolib/user_contents/kiyo/DB00010811.. new perspective: identification of N11-N14 limestone in the Ngimbang sub-basin from 2D seismic data'. 12p. F. Twelve facies defined in four sections. Symp. Wardhana (2015). 189-199.. (IPA). 39th Ann. Jakarta. 44. Conv.I. Indon. 131-147.0 121 www. Deposition begins in E Eocene (P8) to M Eocene (P13). Conv. Prasetyadi (2013). Jakarta.com Sept 2016 . Provinsi Jawa Tengah. L.O. Epidote-glaucophane schist mainly glaucophane. 6. followed by suspension currents. epidote. Yogyakarta 2013.B. Southern Mountains. 6th Seminar Nasional Kebumian. Low quartz. Kecamatan Bayat.The genesis of Tertiary "Dakah Volcanic" in Karangsambung. 39th Ann.Future exploration play concept in Western Kendeng fold thrust belt: based on comprehensive stratigraphic and geochemical analyses of outcropped Miocene Kerek and Pelang Formation and oil seeps.I.Characteristic of turbidite deposits of Halang Formation based on outcrops and thin Section petrography description in Cisanggarung River. Kabupaten Klaten. Backarc magmatism after detachment of subducted slab between 270-500 km depth.E Miocene Kujung Fm carbonate reservoirs. Sunda Arc. Presence of blueschist facies confirms Jiwo Hills is one of high-P metamorphic terranes together with Luk Ulo (C Java). Several carbonate sedimentary rocks converted to garnet-wollastonite skarn under contact metamorphism caused by diabase intrusion. 105-121. (2015). Proc. IPA15-SG-094. Japan. avoiding partial slab melting. Deeper mantle is upwelling through this slab window and produce backarc magmas characterized by low 87Sr/86Sr and 143Nd/144Nd values (mantle array). Kebumen. mica schist. Bayat District.D. More than 90% of metallic mineral deposits located within Tertiary volcanic arc centers) Bibliography of Indonesia Geology.E Pliocene Halang Fm upper bathyal turbidites along Cisanggarung River. 11-23.S.. Arcs experienced CCW rotation during Cenozoic with W-most Java as rotational pole. H. calc-silicate schist. W Java subducted oceanic crust is old (Cretaceous) and cold. Erosional unconformity between E Eocene (P8) and M Eocene (P10). Lower part of Wungkal-Gamping Fm is debris flow.0 122 www. Petroleum Assoc. Serpentinites might have facilitated exhumation of blueschist in Jiwo Hills) Setiawan. Backarc magmatism since latest MioceneRecent in C and E Java.I. 35th Ann.Geoinformation of island arc magmatism and associated earth resources: a case study of Java Island.. marl and claystone. then shallowing until P13) Setijadji. Paleocurrent direction from N 280°-300°E (or SW?)) Setiawan. Sucipta (2011).. JCM2011105. resulting in adakitic igneous rocks. In: Proc. Well-defined volcanic belts since Oligocene. Central Java. p. L. phengite. (2005).ac. (2011). and hematite. Conv.140107-nugroho. conglomerate. D.E Oligocene island arc tholeiite volcanism in melange sediments of Karangsambung and Totogan Fm) Setiawati. N.(In offshore NE Java basin E Miocene Tuban Fm shale usually seal for Oligocene. Meratus (S Kalimantan). (IPA). Fukuoka. Formation comprises tuffaceous sandstone. Rare epidote-glaucophane schist crop out near exposure of serpentinite in W part of complex. (Descriptions of outcrops and thin sections of M Miocene. N. Jakarta. IPA11-SG-005. Ph. and Bantimala Complex of S Sulawesi. Yogyakarta 2013. (GIS-based study of Java arc volcanism. 8p. 6th Seminar Nasional Kebumian.Studi fasies Formasi Wungkal-Gamping Jalur Gunung Gajah. C Java') (Facies study of Eocene Wungkal-Gamping Fm at Gunung Gajah village in Bayat area. Nine facies types. Indon. quartz. Ed. Y. Dept. Deepening at P10 then shallowing at P11. ('Facies study of the Wungkal-Gamping Formation at Desa Gunung Gajah. Yuwono & E.vangorselslist. marble) with NE-SW foliation trend. Kyushu University.ugm.A preliminary view and importance of metamorphic geology from Jiwo Hills in Central Java. Barianto (2013). Petroleum Assoc. Tuban Sst prograded to S) Setiawan. Indonesia. Thesis. M.pdf) (Jiwo Hills E of Yogyakarta with low-grade metamorphic rocks (phyllite. p. Proc. 9 p. (On Late Eocene. Tuban marine sandstone reservoirs may have been overlooked in other areas like Pangkah.. with andesite breccia in lower part. 36th HAGI and 40th IAGI Ann. and traction currents influenced by tides and waves of sea water. early P12 deepening. Osanai & C. p. Y.id/digitasi/upload/4243_jhon-mu. high feldspar suggest mainly volcanic arc provenance. (online at: http://lib. p. Indon. Y. I. (IPA). S of Cirebon/ Kuningan. Proc. West Java.H. Conv. titanite. Kuningan. Teknik Geologi Universitas Gadjah Mada. but more sandy Tuban facies present in E (Ronggolawe 1 well). Desa Gunung Gajah. Universitas Gadjah Mada. Novian & D.D. BPS02. Teknik Geologi. In: Proc. Setiawan. 1-201. Makassar. In C and E Java subducted slab younger (<50 Ma) and warm enough to melt. pdf. Six Oligocene-Miocene volcanic centers form backbone of Southern Mountains) Setyanta. Proc. Menoreh/ Borobudur.M Miocene (~20-10 Ma. Semin. Itaya & K. Geol. (Java island multiple events of Cenozoic arc magmatism.D. Post-Miocene-Pliocene roll-back effects of retreating slab. Uruma (2007). J. A. 267-292. Setijadji. Proc. Pathuk. but not uniformly distributed along island.Setijadji.geothermal-energy. L. B. 33-36. 3. p. Watanabe (2007). Indonesia. and backarc magmatism in C Java. L. Increasing K-contents of magmas towards backarc-side and in younger magmas. Workshop on Earth Science and Technology. Conv. S.5-0. D. Ann. 1-12. p. dan hubungannya dengan stratigrafi cekungan Pegunungan Selatan. Indonesia. (online at: www. Kahar. Deep-seated crustal faults focused locations of overlapping volcanic centers and metalliferous fluids into few major gold districts. (2010). 377-384.D. Selogiri.Segmented volcanic arc and its association with geothermal fields in Java Island.vangorselslist. Barianto et al. Oldest group of Late Oligocene age (). 433-443. p. & K. J. Y. Harijoko.pdf) (Java has largest geothermal resources in Indonesia. Indonesia.com Sept 2016 . Inst. Bayat). S. Yogyakarta 2009. Y. Setijadji. Wediombo. Bigger prospects concentrated in few locations and can be related to geologic segmentation of Quaternary volcanoes. low-sulfidation epithermal gold deposits in U Miocene-Pliocene volcanic centers) Setijadji.id/digitasi/upload/3005_MU. Kyoto University. W Java. (1999). p. Imai. Indonesia. L. B. (2005). and relation with stratigraphy of the Southern Mountains'. Workshop Earth Science and Technology.Migration of subduction in Central Java.ac. World Geothermal Congress 2010. Parangtritis. S. Disaster Prevent. Geologi Sumberdaya Mineral 9. 89. Econ. Int. Banda and Eastern Sunda arcs. Porphyry deposits mostly in Lower Tertiary volcanic centers in E Java. 27-33. A. 40. in S Mountains (~30-24 Ma. 3rd Int. L. 125-132. Second oldest cluster late Early. Watanabe (2009). (online at: http://lib. Indonesia): clues on relationships between geodynamics of volcanic centers and ore mineralization.) Proc.Analysis of GPS measurement in West-Java. Pathuk. Crustal compositions. Res. 1. Watanabe (2006). p. (Stratigraphy of the Gunung Wayang complex. L. Workshop Earth Resources Technology. Yogyakarta. 6. Volcanic centres around Yogyakarta span ~30 My and appear to become younger to North. Indonesian Soc. Murata.I.org/pdf/IGAstandard/WGC/2010/1275. Major geothermal fields associated with magmas of Late Pleistocene ages (~0. In: N. (MGEI) Ann..D. 1-22.D. p. I.121000017-ldsetijadi.D. p.2 Ma)) Setijadji. Backarc-ward migrations of volcanic centers through Tertiary.Stratigrafi kompleks Gunung Wayang. Kajino. Imai. 5th Int. Setijadji.. A. L... suggest N part Cimandiri FZ moved to NE and area under NE-SW directed compression) Bibliography of Indonesia Geology. Yogyakarta. Int. Seminar Geology of the Southern Mountains of Java. Fukuoka. Kajino.Geology of metallic deposits in Java island (Indonesia) with a special reference to the island arc magmatism.Cenozoic island arc magmatism in Java Island (Sunda Arc. Kohno. Ed. p. Tanaka (1997). A.Geology and arc magmatism of the eastern Sunda magmatic arc. Proc. L. p. (GPS measurements along Cimandiri and Lembang fault zones. Watanabe. Fukuoka. B-1. highgrade.Reconstruction of Cenozoic volcanic centers in Java Island (Indonesia): a key for understanding the geodynamic of subduction zone. On E Miocene Gn Wayang volcanic breccia unit between Semilir and Nglanggran Fms)) Setydji. Fukuoka 2005. Malang.H. Proc.. Resource Geology 56. Indonesia. Imai & K. subducted slabs and tectonics determined spatial-geochemical evolution of magmatism and metallogeny. T. Maryono (2012).D.Updated age data of volcanic centers in the Southern Mountains of Central-East Java Island. Kulon Progo South. Basuki (ed. 2012.D. Suparka & T. Setijadji. Bali 2010.ugm. 23-30.0 123 www. slab detachment. Ponorogo) and finally modern arc volcanoes of last ~2 My. In: Proc. K. Oceanic nature of crust and likely presence of hot slab subducting under E Java created adakitic magmas. Kohno & R. & A. Thesis. p. Jakarta. Carroll (2014). mixed carbonate-siliciclastic) and Ngrayong (Serravallian. (Oligocene-M Miocene in E Java grouped into three stratigraphic intervals.com Sept 2016 . M. (2004). p. IPA07-G-102. J. Stratigraphy 2. East Java’. p. Widjanarko & Thurissina (2007).A. Simo & A.A. 2006) papers on NE Java basin Miocene biostratigraphy) Sharaf. mudstone and chalk) Sharaf. Carroll (2006). Kabupaten Semarang berdasarkan manifestasi permukaan. Banyuurip and Sentul Members deposited in middle-outer fan environment. and formed above S-dipping subduction zone) Sharaf. B. Kabupaten Ngawi. NE of Salatiga) Setyowiyoto. Conv. 32nd Ann. (Unpublished) (Oligocene-Miocene strata of E Java mixed carbonate and siliciclastic sediments.U Miocene (N13-N17). E. carbonate mound and off-mound). Geol. Nurhandoko. (2006. At base shallow-marine carbonates that grade laterally into deep-marine calcareous mudstone. Petroleum Assoc. Simo. (online at: http://i-lib. Datun & S. Winardi (2007). C Java.B. siliciclastic progradion of tidally influenced deltas grading into turbidites. Indon. J. (online at: www. separated by individual subduction zones. Surjono (2003). 799-819. Ph. (IPA). Indonesia. B. Proc.. (2) Tuban (mixed carbonate-siliciclastic).R. Lower Kujung sediments covered by chalk and marls. Kujung.F. Proc.Setyowiyoto.F.ugm.K. University of Wisconsin.W.Influence of porosity and facies of Baturaja carbonate to the seismic wave velocity: case study of Tambun Field West Java. Carroll & M.ac. Oil and thermogenic gas seeps near Bata in W Kendeng zone SSE of Semarang. Ngrayong unit (~15-12 Ma) period of regional Bibliography of Indonesia Geology.A revision of the biostratigraphy and strontium isotope dating of Oligocene-Miocene outcrops in East Java.R.Biostratigraphy and strontium isotope dating of Oligocene-Miocene strata. & F. Samsuri. Media Teknik (UGM) 29. Madison. p.R. 89. J. Sediments sourced from N (quartzose material) and southern mountains (andesite and tuff clasts)) Seubert.Miocene mixed carbonate and siliciclastic strata. East Java. Larger foraminifera and planktonic foraminifera overlap in occurrence in many localities. 6. J. (AAPG) Bull.D.A proposed new model for the tectonic evolution of South Java. A. Jawa Timur. docked onto Java and underlie S Mountains. Tuban (∼22-15 Ma. Old Andesites are arc-volcanic product of older subduction phase which predates present-day subduction.A. Indonesia. 1-220. (Geology and review of petroleum system of the Banjak area. A. Simo & A. Conv. 3. Indonesia.iagi. suggesting several continental fragments. Tuban (~2215 Ma) shallow-marine mixed carbonate and siliciclastics and marine shale and chalk. 44-58. Boudagher-Fadel.0 124 www.. Berita Sedimentologi 30. (IPA). Indonesia. 4. 239-257.id/jurnal/detail..php?dataId=3349) (‘Analysis of sedimentology and facies of the Kerek Formation between Biren and Kerek. Multiple stages of isolated carbonate mound growth surrounded by deeper marine off-mound sediments or by shallow-marine siliciclastics. Indonesia.chalk (lower Kujung). p. Tuban and Ngrayong Fms. 15-26.. & S.vangorselslist. Measured section of 250 m of SW dipping Kerek Fm sandstone-claystone turbiditic series.∼15--12 Ma. B. (New model for tectonic evolution of Java. E. 1. E. p. Biostratigraphic ranges of larger benthic and planktonic foraminifera tied to the ages from Strontium isotope dating) Sharaf. Boudagher-Fadel. M. Good outcrops along Solo River. basinal shale. p.F. 16 p. East Java basin. American Assoc.or. J.Stratigraphic evolution of Oligocene-Miocene carbonates and siliciclastics. 1-22. Sulistianingsih (2008).K. 31st Ann. At least six cycles of deltaic deposition with episodes of carbonate mound growth.E. Ngawi.Geologi dan tinjauan petroleum system daerah Bancak. Semarang District. (Multiple stages of carbonate mound growth in E Java Oligo-Miocene.id/fosi) (Updated version of Sharaf et al. M. E. Jakarta.Stratigraphy and sedimentology of Oligocene. Ed. J..Analisis sedimentologi dan fasies pengendapan Formasi Kerek di daerah Biren dan Kerek.S. East Java basin. (Strong relationship between seismic velocity and lithology facies) Setyowiyoto. Three phases (1) Kujung (mound carbonates). Shields (2005). Petroleum Assoc. Kujung unit (~28-22 Ma) limited to few outcrops. Petrol. and (3) Ngrayong (siliciclastic). 12-17. Indon. IPA08-G-034.Three main intervals: Kujung (∼28--22 Ma. Media Teknik (UGM) 25. age M. Geologi Pegunungan Selatan di daerah Gunungkidul dan sekitarnya ditafsir pada cita alos. Toriyama (eds. 1. p. Shulgin. Indonesia. University of Tokyo Press. Harijoko. K. Imai. Warmada. p. A. 184. Two possible models: either accumulation of Roo Rise crustal fragments above backstop or uplift of backstop caused by basal accumulation of crustal fragments) Shuto. Int. 6. (2005). Martin. East Java. University of Wisconsin. p. Kopp. Bandung.W. p.The evolution of the East Java Basin. 19. for gastropod Cerithium fritschi from Eocene of Nanggulan) Shuto. 411-414. Active since M Miocene. In: T. L. Symposium on Earth Science and Technology. Kobayashi & R. initially transtensional.0 125 www.verging thrusts on S side of basin initiated reversal of basin symmetry) Shingo. (3) foreland inversion. starting in M Miocene. Java.Martin (~1880-1922). ('Dynamics of the Citarik Fault'. Sahuro Kanno Memorial Vol.oxfordjournals. mudstone. Lueschen. (Taxonomic revisions of many of the new gastropod species described by K. Noda (eds. I. (2) flexural deepening.A note on the Eocene turrids of the Nangulan Formation. In: Proc. (1974). developing NE-SW trending paleo-highs at inception. J. 135-160. Fukuoka 2020. Takahashi. (4) arc convergence in U Pliocene with N-ward vergence of Sunda magmatic arc. Yogyakarta 2007. p. Watanabe. Potamididae and Cerithiidae. Idrus & P. with sharp increase to 33 km towards Java.Pliocene turritellids from Java. Planert. basinal shale. NNE-SSW trending fault across W Java. (Unpublished) (E Java Basin originated in Eocene on continental crust.com Sept 2016 . Quartzose source from N of basin in Borneo. Igo & H. p. Thesis. Japan. Proc. Turritellidae and Mathildidae In: T. (1978). II. In: H. M. E. E. Madison. A. Forearc crust thickness 14 km. Toriyama (eds.000 km2.. Basin development four stages (1) crustal buckling. 12-28. Sidarto (2008). Y.Condition of gold ore formation at Trenggalek Prospects. With range chart. and chalk.) Prof. (online at: http://gji. 113-160. Sumber Daya Geologi 18. 14. until M Pliocene. Ph. Kobayashi & R. 167-180. 1. Indonesia. Phoumephone (2010).Notes on Indonesian Tertiary and Quaternary Gastropods mainly described by the Late Professor K. starting in M Eocene with sediments in lows on folded continental crust. T. Geohistory profiles and low heat flows in wells point to basin origin by lithospheric flexure of continental crust. Martin I. starting in Late Oligocene with gradual subsidence until E Miocene. associated with exposed granites.) Geology and Palaeontology of Southeast Asia.vangorselslist.Dinamika sesar Citarik. Ngrayong beds truncated by Serravallian-Tortonian Bulu carbonates) Shields. p.D. Muller. p.pdf+html) (Offshore S of E Java in early stage of Roo Rise oceanic plateau subduction. Oceanic plateau crust 12-18 km thick and area of ~100.Flueh & Y. Incl. but left-lateral strike slip fault since Plio-Pleistocene) Sidarto (2009). (Second part of taxonomic revisions study of many of the new gastropod species described by K.gen.) Geology and Palaeontology of Southeast Asia.Structural architecture of oceanic plateau subduction offshore Eastern Java and the potential implications for geohazards. Int. throug Pelabuhan Ratu. A. 38. Paleo-highs separated at wavelength of 80-100 km. Ed. Martin from Java. During Pleistocene N.. mainly Miocene. Upper oceanic crust high degree of fracturing. A. R. 25-52. H.full. Stratigraphy mainly shelfal carbonates with influx of quartz sandstone in Miocene. Brief review of geology/ structure of western S Mountains area) Bibliography of Indonesia Geology. 1-18. Djajadihardja (2011). Spec. but no information on localities) Shuto. not rifting. University of Tokyo Press. C.BogorBekasi.L. T. Workshop Geologi Pegununungan Selatan.org/content/184/1/12.R. Sundabittium n. (1980).siliciclastic influx and progradation of tide-influenced deltas and grades into turbidites. Publ. Pusat Survei Geologi. Only Pliocene-Recent sediments (<5 Ma) sourced from volcanic centers to S. T. 3. Geophysical J. 1-402. ('Geology of the Southern Mountains in the Gunungkidul area and surroundings with Alos remote sensing data'.Notes on Indonesian Tertiary and Quaternary gastropods mainly described by the late Professor K. J. Jakarta. Alcheringa 8. Kangean PSC.10. With overviews of sedimentary structures. Masria (1978). Oldest terrace Sembungan. Kuala Lumpur 1994.1.Geologic map of the Cirebon Quadrangle. Siemers et al. (E-most coastal area of Java.Indonesian Petroleum Association 1992 SW Java Field Trip/ Core Workshop. scale 1:100. C. Bandung.H. 2. Core Workshop Notes. Bayah and surroundings. Brown & E. 16m above river base) Sidarto.000. similar to Cihara granodiorite intrusion. 285-301. Centre (GRDC). P.vangorselslist. Overlain by Pleistocene and younger volcanics) Siemers. This study 11 terraces of point bar deposts.New insight on the prehistoric chronology of Gunung Sewu. Assemblages also include reworked Late Miocene Disoaster quinqueramus) Silitonga.A. Java. famous for hominid fossils. Sudana (1993). East Java Sea.T. T. D.000 hills) karsted Miocene limestone area underwent uplift in M Pleistocene) Simandjuntak. A. depositional environments and core from Widuri/ NW Java and Bentayan/ S Sumatra wells) Siesser. In: C. Quad.NN18 (3. 6. indicating Late Pliocene age for both.Sidarto & M. 9-30.. p. IPA Field Trip Guidebook. 5 (155). p. Suwarti & D. Sumber Daya Geologi 14.O. (Sartono 1976 distinguished 6 Quaternary terraces up to 96m elevation along Solo River N of Ngawi). combined in four groups. C.T.Solo River terrace mapping in the Kendeng Hills area: use of Landsat imagery and digital elevation model overlays. W. Deckelman. intruded by M Miocene andesites.Micropalaeontological investigation of Late Pliocene marine sediments at Sangiran.R. Sumber Daya Geologi 16. & M. with folded Late Oligocene. Indonesia. Djubiantono (1984). (Fieldtrip to SW Java Eocene at Gunung Walat. (Gunung Sewu (‘Thousand Mountains’ more accurately 40.C. (1973). Co-ord. average matrix porosity 2%) Siemers. fractured M-U Eocene W of Kangean Island. relation to the mineralized zones in the Malingping area. Bayah dan sekitarnya.3 Ma). Silitonga. Young (1992). Indon.) Proc.. P. Bandung. 242-260. Orchiston & T. 1-116..early M Miocene tuffaceous sediments of Batuampar Fm. Propinsi Banten.Anomali geomagnet. Indonesia..1. (Gas in tight. p. (eds. p. Java.25. 87-99.Geological map of the Banyuwangi Quadrangle. p.) Carbonate rocks and reservoirs of Indonesia. (2004). West (1993). In: J. J. Res.65 Ma) (but may contain common reworked nannos). S-dipping thrust zone in back arc of Java. Ed. kaitannya dengan zone mineralisasi di daerah Malingping.Back-arc thrusting and Neogene orogeny in Java.A. 196-207. 31st Sess. ('Geomagnetic anomaly. Low anomaly tied to intrusion of acid magmatic rocks at 500-2000m depth.W. Three groups of magnetic anomalies.0 126 www. 1704-4. Lebak Regency. Geol. W. 10. Morwood U. T. J.Characteristics of the fractured Ngimbang carbonate (Eocene). scale 1:100. Banten Province'.. Java. Comm. (1995). 2. Upper Kalibeng Fm assigned to Zone NN16 (3. Central Java.252. T.G. (2004). p. 9/XIII-F. Geol. p. (Upper Kalibeng Fm and marine intercalations of Lower Pucangan Fm at Sangiran contain > 30 calcareous nannoplankton taxa. overlain by M Miocene Punung Lst. (Late Neogene long. Bandung.com Sept 2016 .T. Lower Pucangan Fm within zones NN16. Joint Prospecting Mineral Resources in Asian Offshore Areas (CCOP). Bayah. 3 (147).H. Ngandong terrace. Geol. Dev. Jawa. In: Modern Quaternary Research in SE Asia 18.Geologic map of the Bandung Quadrangle. in E continues across Bibliography of Indonesia Geology. L.H. Centre (GRDC). West Kangean-2 well.000. 20m above river base.000. and important for Au and Ag mineralization in Cikotok and Cirotan areas) Simandjuntak. Kleinhans & R. Survey Indonesia. In W terminates at S end of Sumatra fault system in Sunda Strait. Simamora. Ringis (ed. Scale 1:100. Dev. Res. Kabupaten lebak. (2006). Mud-dominated platform facies. Petroleum Assoc. Indonesia. called Baribis Thrust in W Java and Kendeng Thrust in E Java.40. J. id/wp-content/uploads/2016/02/Riset-Vol. J. Ed. Bali 2012. Geol. Conf.vangorselslist. 35th Ann. Indonesia. Geosc.E Pliocene Halang Fm) Simandjuntak. Oil content 6. (Seismic imaging of two intervals of isolated carbonate platform and mound development N of Madura: E Miocene. T. (2006). Proc. Ruf. M. Bandung.T. Sekti. Steffen. A. T.searchanddiscovery. 25th Ann. Deposited in lagoonal environment. T. followed by M and end-Rupelian erosion/ exposure. van Simaeys. (Six tectonostratigraphic zones: Basement (J-K metamorphics 213-125 Ma and Cretaceous. 06-INT-12. Strohmenger.lipi. Banyu Urip. a technical field trip for geoscientists.Reservoir characterization and simulation of an Oligocene-Miocene isolated carbonate platform.pdf ('Stratigraphy and depositional history of oil shale in the Mangunweni-Karang Bolong area'.1-No. upper part from N or NW. van Gorsel. Neogene fore-arc and Neogene back-arc) Simo. (online at: www.Miocene of subsurface Cepu Block and outcrops in Rembang Hills) Siregar. also causing plutonic intrusions and uplift of S Java and Nusatenggara) Simandjuntak. Conv. East Java basin.Madura Straits to Flores Sea. Hakiki. Sekti. (online at: http://pustaka. M. S. D. R. 20159. NE Java.Stratigrafi dan sejarah pengendapan serpih bitumen di daerah MangunweniKarangbolong. Indon. p. Kujung Fm and Late Miocene. Indonesia. K. 21-36.14.J. 2. T. Fullmer (2012). Res. p. Banyu Urip carbonate reservoir is steep-flanked carbonate buildup with ~3300' of relief. Geol.2. followed by Chattian-Burdigalian aggradational phase. Riset Geologi Pertambangan (LIPI) 1. Western Java. Hakiki. Workshop Stratigrafi Pulau Jawa.Tectonostratigraphy of Jawa. (1996). 1-9. Simo. F. p. Publ.P. 30. Jakarta. Petroleum Assoc. Weidmer.geotek. Java. Res.6m) oil shale of early M Miocene age.5%. Sapiie (2011)Sedimentology and sequence stratigraphy of the Rajamandala Limestone.. Neogene volcanics and inter-arc. (1979). Sekti. D. below sandstone-limestone. Dev. M. R. AAPG Geoscience Technology Workshop. 2. p.. Common fractures) Simo. Part of 'Sunda Orogeny'.O. comparisons and lessons learned from outcrop and subsurface studies.. M.go. F.) Siregar. (Stratigraphic correlation in onshore NE Java Basin between Late Oligocene. Indon. Thin (0. Indon. R. Paleogene shelf.Seismic and outcrop carbonate platform geometries and facies: Oligocene-Miocene. In: Proc. 21-29. IPA11-G-234. J. Change from carbonate to siliciclastic deposition during Burdigalian-Langhian transition. Similar deposits in Late Micene. Assoc. A. Simo.0 127 www. (Sedimentology of Oligocene-Lower Miocene Jampang Fm near S Coast of C-W Java. Strohmenger & A. Geol. Search and Discovery Art. Centre (GRDC). Proc. C.D. Derewetzky (2011)Sequence stratigraphic correlation and sedimentological implications. In: B.S. Petroleum Assoc. Bandung 2003.A. Gravity flows rich in volcanic arc material. Proc. H. Noeradi & B. (IPA). Hughes. Centre (GRDC). Above volcanic breccia. J. p. T.O. Paleogene volcanics. Jakarta. 120-126. (IAGI).S. van Gorsel. Sapiie & T. T. Bull. 6. 21-54. (2004).Eocene granites 87-52 Ma). (IPA). Conv. 15p. (1978). (IPA) Field Trip. Lower part of succession derived from S or SW. near Mangunweni in Karangbolong area of S C Java. R. C. Spec. Myers & S. Bibliography of Indonesia Geology. Bandung. Petroleum Assoc.E Oligocene. Bandung 2. Sun. Exhib.Endapan pasang-surut dalam Formasi Wonosari. p.pdf) (In Cepu area.3-1. Nugroho. Wonocolo Fm) Simo. Indonesia. Jakarta 2006 Int. After M-Oligocene unconformity increasing accommodation forced carbonate factory to backstep to small areas over pre-existing highs.com Sept 2016 . Dev. 5p. 1-31. East Java Basin.Sediment gravity flow deposits in Pangandaran-Cilicap region.2-78. widespread carbonate deposition in Late Eocene.com/documents/2012/20159simo/ndx_simo. Indon... Gombos et al. South-West Java and their bearing on the tectonic development of southwestern Indonesia. The stratigraphy and structure of the Oligocene (Chattian) Rajamandala Limestone. p. Boundstone facies deposited in reef crest to reef flat environment. Indon.Siregar. M.S.S. J.id/wp-content/uploads/2008/08/04_safeipraptisih_1.S. 9-28. ('Limestone sedimentation of the Kalipucang Fm.lipi. p. fringed by reef slope Lepidocyclina packstones to N. Interpreted as barrier-reef with back-reef part to S and reef front facing North. Proc. SW Java') Siregar.go. (2005). Dev. 1.id/index.Early Oligocene planktonic forams in Nanggulan Fm marine clastic section overlain by Old Andesites) Bibliography of Indonesia Geology. Publ. Puslitbang Geoteknologi (LIPI). West Java'. South of Central Java.Fasies dan lingkungan pengendapan Formasi Campurdarat di daerah Trenggalek-Tulungagung. Riset Geologi Pertambangan (LIPI) 5. Three types of limestone in E part of outcrops of latest Oligocene. Centre (GRDC). interbedded with planktonic foram marl) Siregar. coral boundstone (reef). 1. (eds. Kamtono & M. J. reef core boundstone facies three subfacies ( framestone. p. 1. South Central Java.2-2. J. 36-46.lipi. Ed. Conv. (online at: http://elib.Sedimentasi Formasi Rajamandala di daerah Tagogapu.vangorselslist.id/katalog/index. (IAGI). M.Tulungagung area (E Java. (online at: http://pustaka. 26th Ann. Riset Geologi Pertambangan (LIPI) 18.0 128 www.) Pros.. (Limestones of Wonosari Fm S of Yogyakarta excellent exposures of Tertiary reefs. Assoc.S. Age reported as Early Miocene. Four carbonate facies types.M.Sedimentasi dan model terumbu Formasi Rajamandala di daerah Padalarang-Jawa Barat.Padalarang area. 61-81.Mukti (2004). Lepidocyclina packstone and coral-lithoclast rudstone. p. Late Oligocene.5-No. but larger foraminifera characteristic of zone Lower Tf and could be Middle Miocene.php/2016/01/20/prosiding-2007/) ('Facies and diagenesis of the Rajamandala Formation in the Padalarang area. 1-17. M. Central Java. p.. Jawa Barat. 1.Stratigraphy and planktonic foraminifera of the EoceneOligocene Nanggulan Formation. In: A. 25-36.M. M.earliest Miocene Rajamandala Fm: planktonic packstone. Geol. (online at: http://pustaka.Early Miocene Rajamandala Fm carbonates interpreted to represent ENE-WSE trending barrier reef with reef front and basin to N. Facies include planktonic packstone-wackestone (basinal toe of slope).go. Miliolid packstone facies in various environments including surge channel. 923-930.Padalarang.id/wp-content/uploads/2016/02/Riset-Vol. p.Sedimentasi batugamping Fm.Reef facies of the Late Miocene Wonosari Formation. P. W Java'. p. Geol. Riset Geologi Pertambangan (LIPI) 16.go.geotek. 19-23.com Sept 2016 . Five carbonate facies distinguished in Late Oligocene Rajamanda Lst. Praptisih. lagoon. Facies map showing ~15km long WSW-NNE trending zone of reefal boundstone. Bandung. J. Reef front three facies (planktonic packstone. & Harsono Pringgoprawiro (1981). p. J. & D. S coast). 6.geotek. & Praptisih (2008). packstone-rudstone (reef slope). Tohari et al. bafflestone and bindstone). M. Kalipucang di Jawa Barat Selatan. grainstone-packstone facies (surge channel to lagoonal sediments) and algal-foraminiferal packstones (back reef to shelf sediments)) Siregar. (1997).php/searchkatalog/downloadDatabyId/7924/7924.Reef facies of the Wonosari Formation.pdf) (Facies study of Campurdarat Fm carbonates in S part of Trenggalek. (M Eocene.backreef miliolid packstones to S) Siregar M. Bandung. HvG) Siregar. Seri Paleontologi 1. Seminar Geoteknologi Kontribusi ilmu kebumian dalam pembangunan berkelanjutan.S. Res. 2. West Java'. Riset Geologi Pertambangan (LIPI) 14. Riset Geologi Pertambangan (LIPI) 14. Jawa Timur.pdii. lagoon and back reef) Siregar M. Praptisih & M.go. Jawa Barat.S.S.pdf) ('Sedimentation of the Rajamandala Formation in the Tagogapu. (online at: www.lipi. Mukti (2004). (1984). Kamtono.Fasies dan diagenesa Formasi Rajamandala di daerah Padalarang.lipi.pdf) ('Sedimentation and reef model of the Rajamandala Formation in the Padalarang area. Siregar.geotek. Lepidocyclina packstone and rudstone). Mulyadi (2007). p. 6. Discussion of foram biostratigraphy in and around M Miocene (N9-N12) quartz-rich Ngrayong sandstone in wells Cepu 1-6 (probably not real well names). scale 1:100. Proc. 53-68. Asian Offshore Areas (CCOP). 189-197. 16p + map. R. Slameto. Sjamsuddin.R. 23-36. Panggabean & S. Geol. E. (1952). Jakarta.Wrench fault tectonics and aspects of hydrocarbon accumulation in Java. Thajib & F.Biostratigrafi dan lingkungan pengendapan Formasi Ngrayong di daerah Cepu. well correlations and paleogeographic map showing transition from inner neritic in North to bathyal paleoenvironment in South) Sjarifudin. (1949).000. 4. all others gas source rock. Ph. p. Co-ord. (IPA). 1:100. Geol. p.. With foram distribution charts. Jawa (1509-2). 236-243. Proc. Sumber Daya Geologi 20. E. ('Organic content and geochemical properties of Paleogene and Neogene claystones in the Serayu Basin: an analysis of potential hydrocarbon source rocks'.Z. Paltrinieri (1976). Situmorang. Comm. 2. & Djuhaeni (2008). Comm. Agustianto & M. Subono (1995). H. +map. Proc. 220-225. & S. van Vessem (1992).vangorselslist. Archean zircons in Miocene volcanics indicate basement beneath E Java includes Australian origin continental crust. TOC of Neogene claystone higher than Paleogene. (Discussion of control of Pleisocene glacial eustatic cycles on Pleistocene stratigraphy of C-E Java and S Sumatra (N. Heat flow 2.L. Dev. much higher than world average) Siswoyo & S.F. Res. D.000. Indonesia. H. 16th Sess. Jawa (Quad.34 ± 0. Geol. Centre. CCOP Techn. Res. Madura.Geology of the Blitar Quadrangle...G.Geological map of the Waru and Sumenep Quadrangle. Bandung. Conv.L. Res. Dev. Verhandelingen Nederl. (Rebuttal of Rutten (1952) critique of Smit Sibinga (1949) paper. B. I. Geologie en Mijnbouw 14. Explanatory Notes 7p. ('Biostratigraphy and depositional environment of the Ngrayong Formation in the Cepu area'.J.L. Geochemistry of 2 samples of Paleogene claystone.0 129 www.L. Rutten (1952)) Smit-Sibinga.000. p. Centre (GRDC). Serie 15.: Sumatra stratigraphy age interpretations too young. Bandung 1979.. Situmorang. HvG) (See also critical discussion by M. 25. p. & Sandjojo (1980). Bull.Geosynclinal subsidence versus glacially controlled movements in Java and Sumatra. Arc volcanism starts in M Bibliography of Indonesia Geology. p. R. Bachri (2010). Bandung. One Neogene sample classified as oil. 1507-6). Asian Offshore Areas (CCOP). hydrocarbon maturity and migration in Northwest Java. R.Geology map of the Jatirogo quadrangle. Geol. Geol. G. 6.Heat flow measurements in the Northeast Java Basin. Repeats conclusion that Pleistocene eustatic sea level changes do interfere with large scale sedimentation trends) Smyth. Siswoyo. Bandung. Joint Prospecting Mineral Res. p. 272-280.gas source. Indon.Pleistocene eustacy and glacial chronology in Java and Sumatra. 18th Sess. Thesis University of London.Siswoyo (1982).Heatflow. Hamidi (1992).B. p. Ed. Conv. Average T gradient 4.Kandungan material organik dan sifat geokimia batulempung Paleogen dan Neogen di cekungan Serayu: suatu analisis potensi batuan induk hidrokarbon. M. S. p. Assoc. Kerogen types of all claystones Type III (terrestrial) to Type II (mixing terrestrial and marine)) Smit-Sibinga.42 °C/ 100m. (2005). Situmorang. 3 Neogene and one oil seep sample. (Unpublished) (Exposed Cretaceous basement in E Java of arc and ophiolitic character. Proc. Dev.D. Coord. Smit & E. 1. Geologisch Mijnbouwkundig Genootschap. 98-112.com Sept 2016 . 1-31.A. 37th Ann. Northeast Java Basin. Siswoyo. Indonesia. 1:100. Indonesia. Centre (GRDC). (IAGI). Suparman (1986). Seoul 1981.17 HFU. Petroleum Assoc. (Study of heat flow from 82 wells at 6 fields in Cepu area. 1-476.10 ±0. J.Heat flow in Cepu Area. 5th Ann. Neogene claystone at Gintung River can be correlated with oil seep. G. Joint Prospecting Mineral Res.Eocene to Miocene basin history and volcanic activity in East Java. Indon. 45 Ma. 34-47.Significant volcanic contribution to some quartz-rich sandstones.with axis 50 km N of older arc) Smyth. Q. H. R. Kinny (2005). H. Hall. P. Many quartz sst described as 'mature' are primary. (Major E Miocene 'Semilir eruption' in S Mountains of E Java. p. Setijadji. Warmada.G. after which arc volcanism resumed in modern Sunda Arc. Proc. Soebowo (1987).Geology and goldcopper mineralization at Selogiri area. Petroleum Assoc. Imai & K. Many Cenozoic deposits previously interpreted as continental clastics from Sundaland with significant volcanic component and local basement source. L. Conv. 335-356.R. Hall & P.J.. U. Draut. Hall. Sinomiya. I. Hamilton & D.D. This implies continental crust was present at depth beneath arc in S Java when Cenozoic subduction began in Eocene. p. Smyth. P.W. Engineering and Geological Engineering Education.D. Jakarta. Jawa Tengah.Cenozoic volcanic arc history of East Java. 541-559. Hall & G.. Soc. Volcanic quiescence from ~20-12 Ma. Hall & G. Late Cenozoic deformation and associated uplift in number of phases and not single event) Smyth.E Miocene of E Java. crystal-rich volcaniclastics. 3-4. Indon.East Java: Cenozoic basins. 6. Late Miocene-Recent arc activity ~50 km farther N. Symp. J. Banyumas.com Sept 2016 . p. America (GSA). Hall (2003).J. Scholl (eds.Volcanic origin of quartz-rich sediments in East Java. and activity included significant acidic volcanism.T. Conv. (Inherited zircons from Oligo-Miocene volcanic arc rocks along E Java S coast only Archean. (IPA). 78. volcanoes and ancient basement. Spec.D. 1. A. Proc. (E Java geology and history overview. Indonesia: the stratigraphic record of eruptions on a continental margin. p. H.A Toba-scale eruption in the Early Miocene: the Semilir eruption. RISET Geologi Pertambangan (LIPI) 8. 1. Petroleum Assoc. Activity in S Mountains Arc ended at 20 Ma with phase of intense eruptions.Cambrian zircons. Hamilton & P. p. H. Bibliography of Indonesia Geology. H. S Mountains Arc active from M Eocene. 5. East Java.N. 29th Ann. P. R.) Soe. Quartz from acidic volcanic sources commonly overlooked) Smyth.E Miocene (~45-20 Ma).. (Volcanic arc active in S Java from M Eocene-E Miocene. Kinny (2003). H. Load of volcanic arc may have generated Kendeng zone flexural basin. J. 251-266. (IPA). (Indian Ocean lithosphere subducted continuously beneath Java from ca. J. Hamilton. Nichols (2008). After lull in M Miocene. R. Extensive explosive Plinian-style volcanism in M Eocene. p. Jakarta. Sedimentary Res. although volcanic activity not continuous. Earth Res. Proc. Hamilton & P.. 30th Ann. 436. but significant volcanic component.R. earlier than previously thought (Late Oligocene). probably from W Australia.0 130 www. Earth Planetary Sci. Indonesia. probably from underlying Gondwana continental fragment. Yogyakarta. Kinny (2007).The deep crust beneath island arcs: inherited zircons reveal a Gondwana continental fragment beneath East Java. R. University of London SE Asia Research Group Fieldtrip.Studi fasies turbidit Formasi Halang de daerah Panusupan. Indon. 1st Int. Zircon ages in arc rocks indicates that acidic character of volcanism related to contamination by fragment of Archean. Most Eocene-Miocene sands onshore Java have high volcanogenic content) Smyth. Wonogiri regency. P. Indonesia. East Java. resulting in formation of volcanic arc. Clastics from N and W parts of E Java mainly Cretaceous zircons. Nichols (2008).W.7 Ma) Smyth. p.Field guide to the geology of South East Java. R. 198-211. Schmidt (2011). Watanabe (2004).) Formation and applications of the sedimentary record in arc collision zones. with main phase at ~20. Lithos 126.J. J. Hall. Indonesia.Eocene.. Central Java. 269282.Cambrian continental crust beneath the arc. not present in arc rocks to S. (Cenozoic quartz-rich sandstones from E Java long been assumed to be product of erosion of continental source.. R.J. 20-24.vangorselslist.Publ. p. Potential super-eruption in S Mountains (Semilir Eruption) at ~20 Ma. Geol. Archean zircons suggest Gondwana continental crust below part of S Mountains) Smyth..R. October 2003. H. & R. 199-222. Kinny.E. In: A. Letters 258. J. Indonesia.D. Clift & D. Ed. Crowley.R. p. Ed. (1973). etc. Sudjaah (1980). Sc. and is hosted by altered calc-alkaline volcanic rocks of Oligo-Miocene Old Andesite Fm (mostly andesites). Forward modelling indicates rapid increase in geothermal gradient Sunda-Asri and NW Java Basin since Plio-Pleistocene. Indon. Chiang Mai 1993. Jakarta. S.V. Indon. Ciletuh-Cimandiri region of SW Java forward modelling implies ~90°C of cooling in Late Miocene-Early Pliocene. Thanasuthipitak (ed. trispinosa. ('Genesis of Ngrayong sand unit in Ngepon village. All rocks strong Late Cretaceous signals.) Soenarti. Yogyakarta. Ph. Proc. & Djuhaeni (2006). Northwest Java and Southwest Java): evidence from fission track geochronology of apatite. Petroleum Assoc. In: J. R. Geol. West Java. (IPA). NE Java Basin') Soeharto. Symposium Biostratigraphy of mainland Southeast Asia: facies and paleontology. SW Java.edu.C.J. S. Indonesia.E Pliocene (N18-N19) turbiditic sandstones. 601-629. Mtg. Sudjaah (1981). E. etc.Western Indonesian Basins: constraints on their thermal history and provenance from Fission Track Analysis. (1997). Thayib & T. Teknik Geologi. H. 1. Petroleum Systems of SE Asia and Australasia. NW Java and SW Java forearc basins. In: T. tikutoensis/ P. p. E. Jakarta. Soenandar.B. Howes & R. propylitization. sericitization.Constraints on sedimentary provenance in the Sunda-Asri Northwest Java Basins and the Ciletuh region: evidence from zircon fission track (FT) analysis.. Indon.0 131 www.Analisa batugamping Jatibungkus. East Java. Kamp (1998). p. Ref? . Java Tengah. M. (1987). Indonesia. E. P. S. Central Java'.) Int. p. basement of NW Java Basin. Lemigas Scientific Contr.The Miocene/Pliocene boundary in the North-East Java basin. 1-130. (1996). Soeka.uow. Hamilton.) Proc. p. Sis (1981).('Study of turbidite facies of the Halang Formations in the Panusupan area.au/theses/2830/) (Cikotok mineralization in Tertiary volcano-magmatic belt of Java Island. Thesis. Assoc. University of Wollongong.A. Suminta.Thermal history of the western Indonesian basins (Sunda-Asri. 348. 1-378. H. indopacifica and Calcarina calcar) Soeka. (Unpublished) Soenandar. Soeka. Thayib & T.B. Latest Miocene. (Poster abstract) (Zircon FT data from basement and sediments SW Java. p. chloritization and argilitization) Soeka. 1976) Bibliography of Indonesia Geology. and from EocenePleistocene sediments of Sunda-Asri.com Sept 2016 . 1.J. Banyumas. 38. p. (online at: http://ro. corresponding to ~3 km of inversion where basement is exposed) Soenandar. claystones.Neogene benthic foraminiferal biostratigraphy and datum-planes of East Java basin. see also Paltrinieri et al. H. Suminta & W.Unit genesa pasir Ngrayong di Desa Ngepon Jatim.Gold and silver mineralization in sulphide vein deposits of the Cikotok area. Suminta. Thesis. S. p.vangorselslist. 6. tuffaceous sandstone in Banyumas basin SW of Purwokerto sourced from magmatic arc in N) Soedjoprajitno. Cekungan Jawa Timur Utara. p. p. (Apatite fission track from basement in Ciletuh. A. Institute Teknologi Bandung.. Asanoina globosa. Dominant alteration of host rocks silicification. NZ. Noble (eds. Proc.D.S. Conv.Neogene benthonic foraminiferal biostratigraphy and datum-planes of East-Jawa basin. Conf. Karangsambung. (Unpublished) ('Analysis of the Jatibungkus Limestone. University of Waikato. Petroleum Assoc. Buletin Geologi (ITB). Defined by evolutionary appearances of (old to young:) Asterorotalia subtrispinosa. (IAGI). Eocene limestone study. Thesis Dept. (Review of six Late Miocene-Pleistocene biozones based on rotaliid benthic foraminifera from outcrop sections in NE Java..Paleogene foraminiferal biostratigraphy and its problem in the South Central Jawa. Bandung. Central Java'. Karangsambung. (IPA). Gold-silver mineralization at Cikotok accompanied by base metal sulphides. & Mudjito (1993). probably caused by formation of Neogene volcanic belt.B. carbonatization. Pseudorotalia catilliformis. p. 9th Ann. & P. S. 26th Ann. p. Exploration Geophysics (Bull. Polve & B.0 132 www. & P.) Soeria-Atmadja. (Same paper as Soeparyono & Lennox 1990. R. 98-112.. & S. Polve & B. (New model for Cepu oil fields. Dev. Upper Pliocene deformation accelerated development of flower structures in Nglobo-Semanggi. (‘Tectonic aspects from the stratigraphic evolution of the Todanan area. (IPA). Jakarta. Gadjah Mada (UGM). Indonesia.Spermonde Shelf. (Three main phases of volcanism: (1) M-L Eocene (43-33 Ma) island-arc tholeites (2) tholeitic pillow basalt in Miocene (11 Ma) and (3) calc-alkaline magmatism in Pliocene. H. Pringgoprawiro. p. In: Proc.Soenarto. Proc. Kebangsaan Malaysia. Southeast Asian Earth Sci. Later Pliocene flower structures in Nglobo-Semanggi area. which also comprises much of E JavaPaternoster Platform. which include both wrench and compressional structures) Soepomo. Indon. Res.vangorselslist. Soc.Structural styles. & P.G. Univ. D.Structural development of hydrocarbon traps in the Cepu Oil field Northeast Java. The Island Arc 14. R. Geologi Indonesia (IAGI) 5. N. p. shown at surface as en echelon. In: Pros. Center for Geotechnology (LIPI).G. 13-27. H. Maury. Silver Jubilee Symposium on the dynamics and its products. Java. J.Distribution of early Tertiary volcanic rocks in South Sumatra and West Java. causing erosion of main reservoir rocks. S.com Sept 2016 . 18th Ann. 9. Southeast Asian Earth Sci. Pringgoprawiro & B. 6. 139-156. & S. (Two episodes of arc volcanism in E Java: 'Old Andesites' ~40-18 Ma in Southern Mountains. Noeradi (2005). do not continue into S Kalimantan. p. well data and surface geology enabled new structural model for Cepu oil fields. Lennox (1989).Kawengan thrust) Soeparyono. R. 369-374. p. Further hydrocarbon-bearing folds may exist N of Tambakromo-Kawengan structure: blind imbricate thrusts parallel to Tambakromo. etc. Priadi (1994).Tertiary magmatic activity in Java: a study on geochemical and mineralogical evolution. Generally shallow-water sequence developed in rifting back-arc basin with NESW oriented basement faults. Bellon. Australian Exploration Geophysicists) 22. 4. oil-bearing anticlines. Maury. J. Kuala Lumpur July 1990. M. Tambakromo. & D.C. Yogyakarta 1991. Lennox (1990). p. 4. 2. H. Priadi (1990). 1. p. Early M Miocene reactivation of basement faults in Nglobo-Semanggi area with flower structures caused areally restricted erosion of main reservoir rocks. (Cepu oil fields in shallow water limey-clastic sequence in rifting back-arc basin with NE-SW basement faults. 1. M. Deformation in early M Miocene caused basement fault reactivation in Nglobo-Semanggi with wrenching and development of flower structures. 679-686.. Namida (1978). Lennox (1991).The Tertiary magmatic belts in Java. Indonesia. reflected at surface as en echelon anticlines. Persidangan Sains Bumi and Masyarakat. Teknik Geologi Univ. R. 1-2.G. Pringgoprawiro.. Outboard shift in ?Eocene relative to Late Cretaceous arc related to docking of ‘Sumba microcontinent’. Petroleum Assoc.C. & P. Conv. Indonesia. Bachri (1983). 59-69. Early Tertiary volcanics of Java S coast can be traced E as far as Flores. Reinterpretation of 18 local and 7 regional seismic lines. p. N. Priadi (1991). H. Bibliography of Indonesia Geology. Cepu oil fields. Ed. Soeria-Atmadja. H.Tertiary magmatic belts in Java.Structural development of hydrocarbon traps in the Cepu oil fields. Kulonprogo DIY serta genesa deposit biji mangaan di Kliripan. Northeast Java. R. East Java’) Soeparyono. ('Geology of the Kliripan area and surroundings and genesis of manganese ore deposits at Kliripan') Soeria-Atmadja. p. Jawa Tengah. then start of modern Sunda Arc at 12-11 Ma ~50 km farther N) Soeria-Atmadja. 164-180. N. 1991. R. 281-291.Kawengan area minor N over S thrusting along E-W oriented reverse faults with shallow detachment depth.Quaternary. Such folds related to imbricate blind thrusts parallel to Tambakromo-Kawengan thrust) Soeparyono. Tambakromo-Kawengan area minor N over S thrusting along E-W oriented listric reverse faults with detachment at shallow depths and development of Tambakromo-Kawengan hydrocarbon-bearing folds. Bellon.Geologi daerah Kliripan dan sekitarnya Kab.Aspek tektonik terhadap perkembangan stratigrafi di daerah Todanan. C. Indon. (1994). E. Sopaheluwakan.The diapiric structures and its relation to the occurrence of hydrocarbon North East Java basin.. Zulkarnain & K. .com Sept 2016 . with M Miocene. & Sutanto (2000). Natural Science (Majalah Ilmu Alam untuk Indonesia) 112. p. p. 34-41. Conv. p. Karangsambung and Bantimala common early history and form single tectonic entity. Centre for Geotechnology (LIPI). Proc. Indon. Conv.Application of the dual porosity concept for well log interpretation of Jatibarang volcanic tuff. Karangsambung and Bayat (C Java).Soesilo. 30th Anniv. p. Conv. 87-105.Petrology and geochemistry of the quartz-white mica schist in the Luk Ulo Melange Complex. Proc. Miyazaki. Proc.Study on garnet bearing quartz-muscovite schist blocks of the Luk Ulo Melange Complex.Studi petrologi lava bantal pada seri Oligo-Miosen di Kaki Lereng Peg. 3.Ringkasan peristiwa-peristiwa tektonik pada batuan andesit tua di selatan Jawa Timur.go. All young surface anticlines. with local N-S compression) Sopaheluwakan.Early Cretaceous Eastern Sunda subduction metamorphism and its tectonic implications: record from Karangsambung and Bantimala eclogite. (IAGI). Central Java. 1976. 149-176. 2nd Ann. Metamorphismexhumation. Bandung 2000. Indonesian J. Res. J. (online at: http://pustaka. 123-138. Geol. Ed. Proc.geotek. linked to Meratus Range prior to Makassar Strait opening. Samuel & G. Ann. Interpreted as continental protolith. Riset Geologi Pertambanganan (LIPI) 1. 7-8. 1998). J. S. Soewono & Setyoko (1987). Petroleum Assoc.. J. p. p. Indon.600° C and 10-14 kb between 135-110 Ma. Symp. J. I. HP metamorphism at 500. Buletin Geologi 40.I. (IPA).granodioritic intrusions. Miyazaki et al. Suparka. 16th Ann. Proc.Pliocene clastics reservoirs) Soetarso. 4. Conv. (Cretaceous subduction complexes of Ciletuh (W Java). A. and Bantimala and Barru (S Sulawesi) may belong to same orogenic belt. Suyitno (1976). Bantimala and Barru complexes may form single and intact Mesozoic basement.0 133 www. 1-5. p. Somosusastro. 6. Soesilo. (IAGI). Mtg. Indon. S Mountains. ('Study of the petrology of pillow lava from the Oligo-Miocene series of Kaki Lereng. Proc. Geol. Indon. (IAGI). B. 2. Bandung 1996. B. 2. while subduction continued during most of Cretaceous in C Java and ceased in Albian time in Bantimala) Sopaheluwakan. (2) Plio-Pleistocene migration of subduction towards Indian Ocean.. Nayoan (1973). p. & P. Jakarta. J.. Central Java. Mtg. Selatan.A contribution to the geology of the eastern Jiwo hills and the southern range in Central Java. L. Kebumen. 409-420.vangorselslist. with Bantimala earlier than Karangsambung.. Proc. (Description of the old Cepu area oil fields. Subandrio & Sutarto (1996).Do Karangsambung (Central Java) and Bantimala (SW Sulawesi) form a single subduction process? a provocative view. Meratus (S Kalimantan). K-Ar dates from muscovite yielded ~Aptian ages of 117.lipi.The geology of the oil fields in North East Java.1-No. Rocks of mid-Tertiary Old Andesite arc at least 2 deformation periods: (1) M Miocene N-S compression. Dev. Petroleum Assoc. Fast uplift to 20-25 km immediately after peak metamorphism.S. (1956). Assoc.pdf) ('Summary of tectonic events at the Old Andesite rocks in the south of East Java'. high pressure metamorphites and metabasite. Bandung. p. p. Karangsambung accretion may have continued to Paleocene. Assoc. Indon. transformed basaltic rocks and trench-fill sediments into blueschist and eclogite at depths of >40 km. turbidite sediments. 5th Ann. with dioritic. Assoc. (IAGI). Assoc. (IPA). C Java') Soesilo. (Garnet-bearing quartz-muscovite schist outcrops in Kali Brengkok in melange together with ophiolite. Geol. (1977). Schenk (2010).id/wp-content/uploads/2016/02/Riset-Vol.A. Wakita (1993).accretion cycle in both areas in Late Jurassic-Cretaceous. Jateng. 1. 22nd Ann. Bibliography of Indonesia Geology. Presence of Nummulites limestones as boudins in melange suggest melange formation still in progress in Eocene) Soetantri. 25th Ann. Abdullah & V. 3. J. K.1-22-. E Java. 115 and 110 Ma (Ketner et al. Nummulites limestone. Jakarta. Geol. 115-134. & J. (1979). (Earthquake foci in central part of Sunda Arc (S Sumatra. Active calc-alkaline volcanoes in Sunda Arc above this gap. TC1005. Ryacudu.Fossil wood of Dryobalanops from Pliocene deposits of Indonesia.Bijdrage tot de geologie der vlakte van Bandoeng.The collision of the East Java microplate and its implication for hydrocarbon occurrences in the East Java Basin. C.. 2nd. R.E. C. Mountaineering/ hiking guide book. Central Java. With maps of structural elements and Late Cretaceous magmatic arc (mainly in S Java Sea) and Eocene arc across Java area) Srivastava. sandstone and carbonate.Geology. consisting of volcanic tuff. Abstract volume. Vertical fractures important for hydrocarbon migration into upper units. Vanek (2005). T.M Eocene. 29th Ann. J. p. Hydrocarbons in lower units (Jatibarang Volcanics. Petroleum Assoc. beginning of a new subduction cycle? Tectonics 26. (1933). W Java. 56. ('Guide for mountain trips on Java'. V. P. No seismically active columns beneath volcanoes of C Java: not at outcrop of seismically active fracture zone) Spicak. 20km W of Bogor. 395-401. Umbgrove (1939). ed. Kagemori (2001). 223-245. Amsterdam. 335-346. Asian Earth Sci. found today in tropical evergreen rain forests of Malaysia. Conv. 301-314. p. Indon. (2003). p.Gids voor bergtochten op Java.0 134 www. (Seismotectonics between Java-Timor. Clusters of earthquakes beneath active volcanoes seismically active columns. R. Proc. 46. but not on Java) Stehn. 1.Earthquake occurrence along the Java Trench in front of the onset of the Wadati-Benioff zone.Late Mesozoic subduction polarity reversal along the southeastern Sunda margin: a new vision on the Meratus-Bantimala-Karangsambung triangle. Jakarta.. 8th Ann. The Palaeobotanist 50. Vanek (2007). Astono et al. Hanus & J. J. (Description of new species of petrified tree trunk (Dryobalanoxylon bogorense) from volcanic sediments at Leuwilang. & N. p.Hydrocarbon occurrences in the Kandanghaur-Cemara Area. In: Tectonic Evolution of SE Asia Conference. displaying thrust tectonic regime. 3. Ed. High temperatures from DST probably related to recent volcanic influence and are higher than paleo temperatures indicated by maturation evaluation) Speelman. Wakita. creating Meratus Mts and Lok Ulo melange in C Java. 1-155. A.. conglomerate. (IPA). Majority of earthquakes in wedge above subducted slab attributed to deep regional fracture zones. Vrije Universiteit. Zulkarnian (1994). Structures drape over basement blocks. Soulisa. V. I. Conv. Proc.vangorselslist.. Thesis. & F. (IPA). London 1994.D. Timor) show distinct strip of earthquakes distributed along Java Trench.H. Nederlands-Indische vereeniging voor bergsport. 188 p. (‘Contribution to the geology of the Bandung plains’) Bibliography of Indonesia Geology. N. (Collision of Gondwanan microplate and Sundaland in Late Cretaceous. Rodopi. Sumatra and Borneo. (Hydrocarbons in pre-Parigi reservoirs on Pre-Tertiary basement. and with facies changes and combination traps. Muchsin. 583-600. p. Lower Cibulakan) and probably also in upper units (U Cibulakan) originate from Talang Akar Fm. separated by trench-parallel.com Sept 2016 . p. Kunto. Tijdschrift Kon.Seismotectonic pattern and the source region of volcanism in the central part of Sunda Arc. (Unpublished) Spicak.F. p. 1-16. Batavia.Sopaheluwakan. 25. Aseismic gap without strong earthquakes in Wadati-Benioff zone between 100-200 km depth. Indonesia. Hanus & J. Nederlands Aardrijkskundig Gen.. B. North West Java. 50-150 km wide aseismic link) Sribudiyani. Indon. induced by magma transport through lithospheric wedge. Jakarta. E-W structural trends of E Java inherited from microplate. describing climbing routes of 52 Java volcanoes by Volcanological Survey geologist) Stehn.E. H. Sujanto (1979). p.X. hydrogeology and engineering geological features of the Serayu river basin. K. Ph. A. Petroleum Assoc. K. 6. Shows affinities with modern genus Dryobalanops of family Dipterocarpaceae. Miyazaki & I. W Java. Reservoirs complex. 2-3. 6.searchanddiscovery. O. p. AAPG Int. Petroleum Assoc. Hermanto.id/publication/index. (1949). Oligocene Batuasih Fm and EoceneBayah Fm. Proc.) Suasta. D. Conf. and implications to hydrocarbon prospectivity. 1023612. Perth 2006.C. is low-sulfidation..P.com Sept 2016 . A. J. Porphyry type Cu-Au mineralization at Randu Kuning (see also Muthi et al.E. Sinugroho (2011). IPA07-G-091. 4. Reservoir Quality Zones are basic building blocks and include Platform Interior. 31st Ann.S. Central Java Island.Otoliths from Bodjonegoro.B. adularia sericite epithermal gold deposit.G. H. Exhibition.marginally mature and unlikely sources of gas unless buried deeply in basin. E. Petroleum Assoc. p.vangorselslist. AAPG Int.pdf) (Geochemical study of SW Java Eocene. 59-68. Conv. F.Banyu Urip reservoir rock type and geologic models for different stages of asset life. Santoso (2007). IPA13-G-194. E. (Unpublished) (Seven species of fish otoliths 'of deep-sea character' from Mio-Pliocene marls of Bojonegoro 1 well. Doct. Conf. 30km S of Solo. Highest anomaly around Pelabuhanratu. hosted by Late Miocene andesitic volcanic at SW side of Malabar Volcano complex) Subroto. Ann. J. Indon. 247-261. et al. reflecting presence of ultramafic rocks.A. E.. A. & N. J. p. Gross. Eocene Bayah Fm coals significant oil and gas potential and locally mature. McPherson. Geary.Occurence of zoned epithermal to porphyry type Cu-Au mineralization at Wonogiri. Geol. 2013)) Subagio (2013). 154-157. Indonesia: innovative approach using geochemical inversion and modelling. Subroto. West Java. IPA Jakarta 2006 Int. Zaim (2006). Priyono. (2006). White. Hermanto.esdm. 1-12. 6p (Extended abstract) Subroto. showing sediment basin. (IPA).. (Wonogiri prospect in SE part of C Java province. (Geologic model of Banyu Urip Field Oligo-Miocene carbonate buildup in Cepu Block. N. Wahono.. NE Java. G. Pangalengan. Jakarta. 14 p. C. Assoc. p. Sumber Daya Geologi 23. Puncak area and surroundings are graben zone.W. (IAGI). Musgrove & P. Cepu Block. Indonesia. Proc.Miocene outcrop samples from Ciletuh and Gunung Walat.I.M & I. (online at: www.E.Anomali gayaberat dan potensi bencana geologi di kawasan Jawa Barat bagian Tengah. Conv. E. (IPA). Geosc.A revised sequence stratigraphic framework and nomenclature. Indonesia. Four species of Scopelus.. p. Extended Abstract. Search and Discovery Art. Padalarang area. and Exhib. Kamtono (2010). Best source quality in Miocene Cimandiri and Nyalindung Fms. In: L. D. Noeradi. Basuki (2010). Thesis. Jakarta. Kamtono & K. Wahono. P.C.A. Conf. J. and Drowning Phase) Stevens. (E Java Basin stratigraphy tied to global eustatic cycle chart) Stinton.Stephens. Geologi Indonesia 5. In C West Java Bouguer anomaly values 5-125 mGal. E. Cahyono (2006).net/documents/2010/10236subroto/ndx_subroto. filled by low density Quaternary volcanic rocks) Subandrio.G. Lower Platform Interior.V. F. 36th HAGI and 40th IAGI Ann.0 135 www. University Utrecht..Alteration and vein textures associated with gold mineralization at the Bunikasih Area. ('Gravity anomalies and geological hazard potential in the central part of West Java'. 60 km S of Bandung. J. I. Praptisih & K. Indon. Rio de Janeiro 2010. Boomgaart (1949) Smaller foraminifera from Bodjonegoro (Java). Proc.A. Indon.. E. Makassar. p.A. No oil seepage in area) Subroto. a potential hydrocarbon basin in Indonesia. Oligo-Miocene sediments immature. p. Bibliography of Indonesia Geology. E. Ed. 2.A. Proc. Rodda & A.M.Source rock geochemical study in the Southwestern Java. Lowest anomaly around Tagogapu. H. E.go. Noeradi & Y.php/dir/article_detail/281) (Bunikasih vein system in Pangalengan district.. 37th Ann.bgl. Conv.Reevaluation of the petroleum potential in Central Java Province. Glenton (2013).Detailed petroleum geochemical analyses on sedimentary rocks collected from southern West Java. E Java.The Paleogene Basin within the Kendeng Zone. 2006. Tight Rind. Proc. Hermanto. Johnstone. Conv. 12p. also Macurus gracilis and Argentina sp. 1-5. (online at: www. Central Java. East Java Basin. clay-dominated Kalibiuk Fm. Presence of black claystone) Sudijono (1985). Dev. C Java. Bandung. Jakarta. 1:100. A. & A. Java.Asterorotalia fauna)) Sudiro. Jawa Tengah.vangorselslist. Yasid. Quad. 2.B. 2008. Oesterle et al. (1975). p. Quad. 2 (149). Santosa (1992).. Conv. Dev.Geology of the Cikarang Quadrangle.ElphidiumNonion.. Geol. p. 3. Lepidocyclina. Sudrajat. Centre (GRDC). p. Jawa. Proc. Kebumen. Bibliography of Indonesia Geology. Ed. Bumi Ayau.Geologic map of the Leuwidimar Quadrangle. 1:100. 10 p. p. (IPA). Sudana. 1309-4. A. Klaten. Quad. etc. 1209-5. Central Java. Bandung. Dev.Geology of the Indramayu Quadrangle. 9/XIII-E. C Java') Sucipta I. Geol. 6.The structural units of the Jawa Sea. Jawa. (Java Sea several N-S and NE-SW trending highs and lows. Bandung.W. Central Java. 253-273.) Quaternary geology of the hominid bearing formations in Java.Pemakaian kontak stratigrafi secara struktur untuk evaluasi batu lempung hitam sebagai sumber daya geologi di Perbukitan Jiwo. Achdan (1992). G.Geology of the Karawang Quadrangle. D. W of Bandung) Sudjatmiko & Santosa (1992). (IAGI). Miogypsinoides) and marls with Eocene. 1:100. Survey Indonesia. Central Java. Kebumen.000. Assoc. Centre (GRDC). Geologi Indonesia 2. Sedimentation started with Eocene transgression from East) Sudjatmiko (1972). 2nd Ann.000. (2008). Proc. & A. Watanabe & D. (Well-documented study of foraminifera of ~370m thick. ('Petrology of high-pressure metamorphic rocks in the Karangsambung area. scale 1:100. (1973). p. T.The P-T path of metamorphic rocks from Karangsambung Area. Dev. (Sedimentary rocks from mud volcano include limestones (M and Late Eocene with Nummulites. Bandung (2n ed. Sangiran. Nayoan. Geol. p. Res. Indon. 1109-3. 1:100. (Rajamandala area. Achdan (1992).(Regional gravity map of C Java shows Kendeng zone is deep basin. Geol. Jawa. in Bumiayu area. Miocene and Pliocene planktonic forams) Sudijono (2005). p.Pellatipira. 290-299. Stratigraphic studies in Paleogene outcrops in S part of Java revealed Paleogene basin present in S part of island. 118-135. Petroleum Assoc. 177-185. Sudana.0 136 www.000. Centre (GRDC). Bayat. J.A. Miogypsina.B. Bandung. Sudarno (2008).Foraminifera from the mud volcanic area.E. suggesting mainly Late Pliocene ages (upper N20-N21). Quad. Buletin Geologi (ITB) 38. Media Teknik 30. Res. Dev. Geol. Indon. Bandung.com Sept 2016 . 4. Geol. Res. Centre (GRDC). Lattreille.E. Kebumen.Petrologi batuan metamorf tekanan tinggi di daerah Karangsambung. 4 p.Age and the depositional environment of the Kalibiuk Formation of the Cisaat river section. dissected by NE-SW structural lineaments that can be interpreted as S-ward prolongation of Paleogene structural trend. J.Batuan gunung api dan struktur geologi di Jawa Timur dan Nusa Tenggara Barat. In: N. E Miocene sandy limestones with Spiroclypeus. Centre (GRDC). 13p. & S.S. 19-22. C Java. Lower part deposited in shelfal marine environment (Cassidulina. Ann. Res. p. Publ.Hanzawaia fauna).000. Sudana. (2006). I G. Geol.G.000. Kadar (eds. Quad. A. Oligocene. (On possibly unconformable stratigraphic contact between Eocene Wungkal-Gamping Fm limestone with Oligocene Kebo-Butak Fm in Jiwo Hills. 2. 1109-2. Spec. M.Geologic map of the Cianjur Quadrangle. H. A. upper part in brackish shallow marine and lagoon (Ammonia. Sumber Daya Geologi 15. 1-38. Conv. Res. 2003). Java. Geochemical analyses performed on selected sediments and oil samples) Sucipta. W-most Klambu segment dominated by NE-SW sinistral slip faults with drag folds. 15th Ann. E.Exploration history of the MB Field. Conv. Syahbuddin (1986). Geol. daerah Ciodeng. Syafri & E. 6 p. etc.The geotectonic configuration of Kulun Progo area. Sugiatno. Budiadi (2010). 13th Ann. I. Lombok.com Sept 2016 . Jawa. Centre. 227-240. (IAGI). Proc. Southern slope of axial ridge-flexure) Bibliography of Indonesia Geology. & C. 27th Ann. H. Ciodeng River area. p. Jakarta. Faults defining N-S trending horst may have acted as pathways from basinal areas (Ardjuna/Pasir Putih or Ciputat subbasin) Sujanto. Assoc. Quad. West Java'.lipi. Turritella-Bufonaria. Indon. T.Evolusi lingkungan pengendapan Formasi Nyalindung berdasarkan kajian paleontologi Moluska. (online at: http://pustaka. At least 11 times of depositional environment changes caused by changes in Late Miocene sea level. (Java five major E-W trending structural units.) Sugiaman.Stratigraphic traps defined by seismic data: a case study. Kistiani & R. Proc. from N to S: Seribu Platform. Conv. 30 km W of Yogyakarta: Meratus (SW-NE). as suggested by Van Bemmelen (1949)) Sufiati. D. (IPA). F. Geol. (1982 MB field straddles NW Java coast. Petroleum Assoc. Wahyudin (2014). Indon. 1.. Prasetyadi (1998). Productive interval over basement horst block.X. Conv. 183-213. (IAGI). Assoc. Geol.Preliminary study on the Tertiary depositional patterns of Java. PIT IAGI 2014-069. Proc.1608-2. Geol. Geol. Indon. Jakarta. Yogyakarta. One of several fields in M Miocene MidMain Carbonate buildup. 6. F. 5p. Strombus-Balanus. Klampok and Todanan. Central Java.geotek. Proc. & A. with later inversion.000. and cut by E-W and NE-SW trending normal and sinistral slip faults. Petroleum Assoc. 16-25. Jakarta.J. (Rembang Hill in W Rembang zone is E-W trending monoclinal structure bounded by flexure in N and Jatipohon fault in S. p. Major N70°E trending Jatipohon fault interpreted as normal fault. Stratigraphic onlap of Ledok Fm on Bulu/Wonocolo Fms suggests Rembang structuration around 7.Geology of the Probolinggo Quadrangle. (1999). Rembang Hill three segments. Kabupaten Sragen. Riset Geologi Pertambangan (LIPI) 5. Suhartati (1984). Jawa Barat. 3035.Penyebaran foraminifera bentos familia Rotaliidae dan Miliolidae pada Formasi Kalibeng Atas di daerah Sangiran. Conv.1-2. J.0 137 www. N Java hinge belt. downthrown to N. Jawah Tengah. Not result of vertical undation force. A. Rengasdengklok High.0 Ma event) Sugiharto (1984). p. 2. 1. A. Indonesia.Depositional and diagenetic models of Miocene Parigi and pre-Parigi carbonates. p.pdf) ('Distribution of benthic foraminifera of the Miliolidae and Rotaliidae families in the Upper Kalibeng Formation in the Sangiran area. 101-122. Dev. Indon. Sumantri (1977). Petroleum Assoc. ('Evolution of depositional environments in the Nyalindung Fm based on paleontology study of molluscs. Proc. offshore northwest Java. 1. (IAGI). (Analysis of satellite imagery with field visits suggest three regional tectonic stages controlled development elongated dome of Kulon Progo in S Mountains.id/wp-content/uploads/2016/02/Riset-Vol. p. Sragen. 1:100.R. (IPA). 39th Ann. 6th Ann. Central Java'.5-No. 43rd Ann. Berita Sedimentologi (Indon. Conv. Nyalindung Fm deposited in shallow marine environments. weakening effects of N-directed compressive stress in West. Suwarti (1992). Conv. ~35 miles NE of Jakarta. Proc. Sukabumi. Jakarta. Yogyakarta. 7-8. BogorKendeng Trough. Forum) 10. Res. Ed. Purwodadi High S of Klampok may act as structural barrier.go. Associations of Turritella-Dentalina. Aswan. (KL field in Arjuna basin off NW Java stratigraphic traps in Baturaja Fm carbonate and M Miocene Cibulakan Fm clastics) Suharsono & T. 9 p. Sopanji. Assoc. Indon. Sunda (NNW-SSE) and Java trends (E-W).. & Y.vangorselslist. (IPA). Axial Ridge-flexure. coastal area of Northwest Java. Klambu.(Volcanic rocks and geologic structure of East Java and West Nusa Tenggara) Sudrajat. Indon. p.Structural geology of the Rembang Hill. Mixed shallow and deep foraminiferal faunas) Suherman. Sukabumi. 3. 6.Opal from Banten Province. SE of Rangkasbitung. 11p. 1:100. W Java. Bandung. Thesis University of Wales. p. 150-162.D.Volcanic arc to backarc setting. drilled to 2630m. M. 682-690. p. Dev. Geol..Neogene foraminifera from the Rembang Basin. Thick gas cap and aquifer cause gas and water cuts in production from thin oil column. NW Java) Sukanta U. J. Henn (2008). Ph. Sujatmiko (2004). Java. Jawa. Thesis University of Wales. Leverbvre (1982). Proc. Res. 1. Centre (GRDC). Sapulu Quadrangle. Geol. Indon. Bandung. (IAGI).000.0 138 www.vangorselslist.Ammonia umbonata zone)Pleistocene (Asterorotalia trispinosa zone) biostratigraphy of Jatibararang CLS-X well. Conv. Assoc. Proc. Opal found in 0. 30. p.Geologic map of Cianjur Quadrangle. Aberystwyth. Jawa (Quad.000. Achdan (1994). (IAGI). Java Sea). 11093). 1:100. Media Teknik 12.C.Geologic map of Padalarang Quadrangle. Geol. p. (IPA). Conv. Res. M Miocene (Lepidocyclina verbeeki. Quads. Jawa (1608-1609-1).A reservoir description.Sc. Partoyo & A. East Java. Types of opal range from common opal to hyalite. Centre (GRDC). East Jawa. Geol.000. Geologi Sumberdaya Mineral 4.earliest Miocene 'Old Andesites complex of S Mountains).Geologic map of the Jampang and Balekambang Quadrangles. Res.Depositional environment of the Besole Formation in the western part of the Blambangan region. 37th Ann. 9-14. H. Sujatmiko. 1:100. 1:100. and white and black precious opal) Sujatmiko & Santosa (1992). Centre (GRDC). Dev.32. Indon. Ruslan (1978). Bandung. 11th Ann. Geol. Java. with andesitic pillow lavas passing upward into classic turbidites. based on wireline logs. 49-62.000. Sukamto.Seismik di Jawa Barat: kemajuan teknologi processing meningkatkan kemampuan interpretasi. Einfalt & U. Jakarta. & E. Petroleum Assoc. p. Conv. aids selection of new well locations for optimum oil production. 1:100. Proc.Late Cenozoic foraminifera from West Java (Jatibarang oil field. Dev. Indonesia. Geol. (On depositional environment of E Miocene volcanics-dominated Besole Fm in easternmost SE Java (part of Late Oligocene. Jatibarang. Ed. 415-427.Geology of the Leuwidamar Quadrangle. W of Pelabuhan Ratu. Sukandar. Assoc. 2nd Ed. Indonesia and its varieties. p. 1. 223-231. Jatibarang'. 12th Ann.. 1-730. ('Geology of Kangean island as basis of development of the region') Sukandarrumidi (1986). geological and production data. Siregar & L. Centre (GRDC). 38 p..3m thick weathered pumice layer in Late Miocene Genteng Fm volcanoclastic sequence. ('Biostratigraphy of well CLS-X. E. (Reservoir description of Parigi limestone reef in Tugu Barat field. R. Dev. 5.Biostratigrafi sumur pemboran CLS-X. fire opal. Lower part deep water deposits.Geologi Pulau Kangean sebagai dasar pengembangan wilayah. p. Bibliography of Indonesia Geology. Res. (Map of SW Java. Res. Two limestone facies: "reef core" with high vertical permeability. Bandung.A. Current directions probably NW to SE) Sukardi (1992). Bandung.000. P.Geology of the Surabaya. Dev. (Unpublished) Sukandarrumidi (1989).Sujatmiko (1972).com Sept 2016 . Aberystwyth. (Unpublished) Sukandarrumidi (1990). (Opal mined since early 1970s in 9 x 13 km2 area in Banten Province. S. Geol. 9-XIV-A & 8-XIV-C. Indon. p. Centre (GRDC). (1975). 1-292. Bandung. Geologi Indonesia (IAGI). S. Oldest beds Eocene coal-bearing Bayat Fm) Sujitno. and overlying "reef debris" with better stratification and reduced vertical permeability) Sukandarrumidi (1983). 0 139 www. Primitive Late Eocene. D. Brata (1993). p. (1993). Noya & S. (IAGI). Assoc. Late Eocene.A. Thesis State University of Ghent. p. p. (1999).com/2014/09/bgsm1993013. 86. 9-15. Bull. ('Geochemistry and isotopes of primitive basalts (volcanic rocks of the Bayah area)'. Dev. Budhitrisna (1992).Rb. Belgium. Sr.Geology of the Bayah area. Late Oligocene. No paleogeographic maps) Sukarna. ('Petrogenesis of the Mt.Petrogenesa diorit Gunung Malang.wordpress. all calc-alkaline arc rocks: (1) Lower Old Andesite: Late Eocene. Centre (GRDC). & K.Wall rock geochemistry and hydrothermal alteration of the Cikotok Ore Group (COG) in the Bayah area. Proc. p.Paleogeography and evolution of the Bayah area during Tertiary. p. primitive basaltic magmas (2) Upper Old Andesite (Late Oligocene. (online at: https://gsmpubl. Island arc volcanics in Late Eocene and Late Oligocene. p. Tectonic framework and energy resources of the W margin of the Pacific Basin. Sukarna. and (3) latest Miocene faulting in N. (Cirotan ore deposit of Cikotok ore group in SW Java is epithermal gold deposit with polymetallic minerals. Indon.E Miocene 'Upper Old Andesite'activity along all of S Java. Three periods of tectonic activity: (1) Late Paleogene N-directed folding-thrusting of Paleogene. D. flanked by late E and M Miocene rocks. Geologi Sumberdaya Mineral 4. In Late Cretaceous. Res. hosted in E Miocene 'Od Andesites') Sukarna.E Miocene) and (3) late E Miocene.pdf) (Review of SW Java Eocene. D. Geol. D. 2-9.Late Miocene) Bibliography of Indonesia Geology. D. 1-293. based on geochemical and mineral chemistry'. including Sangiran Dome) Sukarna. Conv.earliest Miocene ('Old Andesites') and Late Miocene. Indonesia.000. A. Zr. Bandung. (Three episodes of Tertiary igneous rocks in Bayah area.Pliocene sedimentary and volcanic rocks. Geol. Dev. daerah Bayah bukti bukti geokimia dan kimia mineral. 163-180. Indonesia. 6. 37. rel. (Unpublished) Sukarna.Geology of the Salatiga Quadrangle.. In: G. Res.E Eocene Bayah area was in fore-arc position. Geol. D. (1994). J. Bandung. Ba and Y behvior during mineralization in the Cirotan ore deposit. 70-96. (1991). Malang diorite Mount Malang. 2-12. Geologi Sumberdaya Mineral 3. Teh (ed. Sukarna. 389-412. (2) latest M Miocene folding. (NE part of Central Java. Geologi Sumberdaya Mineral 8. Geol.files. Geologi Sumberdaya Mineral 9. Bayah area. p. p. J..Geokimia dan isotop batuan basal primitif (batuan gunungapi daerah Bayah). Symp.D.com Sept 2016 . Mangga (1994). D. J. D. (1998).E Oligocene basalt in Cisiih River. Ed.Sukardi & T. (1993). which result from calcalkaline island arc magmatism) Sukarna. Mangga S. implications for the Cenozoic evolution of West Java.J. 1:100. (1998). + map. SW Java. Indonesian Mining 5. with W part of Kendeng zone and Quaternary arc. 1. SW Java) Sukarna.Recent) Sukarna. Banten. Centre (GRDC). Ph.Geochemistry and origin of gold in the Cikotok ore group (COG) and associated plutonic and volcanic rocks in the Bayah area. 23. 90. 15 p. 16. Geochemistry of M Miocene(?) diorites at N side Bayah Dome. SW Java. J. 53-36 Ma. 110. 23rd Ann. p. with source of Paleogene sands from N. D. Malaysia 33.Petrology and geochemistry of the Tertiary plutonic and volcanic rocks in the Bayah area. Kuala Lumpur 1992.) Proc.E Oligocene. Bull.H.M Oligocene 'Lower Old Andesite' volcanic activity in Bayah area. Soc. Jakarta. Bayah area.Rare elements distribution in Cirotan epithermal gold deposits. Y. 2-12. (Bayah High area of SW Java (W of Pelabuhan Ratu) with outcrops of Eocene-Oligocene rocks. Jawa (1408-6).West Java.vangorselslist. Jakarta. (On corals from M-L Miocene Jonggrangan Fm reefal limestone. 11th Ann. (Melandong Field in onshore NW Java Basin seismic reservoir characterization of fluvio-deltaic channels of Talang Akar Fm and carbonates of Batu Raja Fm) Sulaeman. Lunt 2013. The Leading Edge 25.Sukiman. S. Indon. (1957). S (1977). Santoso. L. D. 532-538. & I. 5. Jakarta. C. GPS data suggest left-lateral strike slip along SW-NE trending fault) Sulistyo. Samodra. Indon. probably erosion after Late Pliocene orogeny) Sumarso & N.Contribution to the stratigraphy of the Jiwo Hills and their southern surroundings (Central Java). p.E Miocene volcanoclastics. Petroleum Assoc. Ed. 2. Indon.A contribution to the stratigraphy of the Bumiayu area. Indon.B-Field Reservoir simulation. 40th Ann.5 earthquake epicenter 10 km E of Bantul. (Yogyakarta May 2006 magnitude 6. in Capar Area..0 140 www. W. M Miocene angular unconformity between Semilir beds (up to N9. Simatupang & B. Tjiptoharsono (2006). Geol. Conv. Conv. (IPA). ('Carbon dioxide gas in the NW Java oil basin. p. p. & D. 2.. ('On two fossil woods from the deposits in Pacitan region of Java') Sukmono. West Progo Area.Integrating seismic attributes for reservoir characterization in Melandong Field. D. Jakarta 1991.com Sept 2016 . Indon. p. Conv. (IPA). Reich et al. Geologi Indonesia 3. Sinambela (1993).characterization of carbonate fracture permeability using single and dual porosity models. W Progo Mts. (Geologic history in Jiwo hills and adjacent Southern Mountains in C Java begins with Mesozoic deposition. Soc. Akbar (2011). p.. 6. D. p. Indonesia.Karakterisasi sumber gempa Yogyakarta 2006 berdasarkan data GPS.. Comptes Rendus 102nd Congres Nat. Sumosusastro. Limoges. late E. 9p. 19-26. Potential volcanoclastic hydrocarbon play) Sulistyoningrum. 115-134. Conv. 37th Ann. Wahju (eds. Ismoyowati (1975). Indon. Western Slope of Kucir Hill. Proc.R. Sumantri.vangorselslist.Sur deux bois fossiles du gisement de la region Pachitan a Java. (Kumbang Fm Late Miocene submarine volcanoclastics in Bogor Trough.') Sumarso & T. basal M Miocene) and overlying Wonosari beds (N12). 9p. IPA16-3-G. p. Petroleum Assoc. S Central Java (age should be Tf1. Eocene transgressions and regressions followed by Oligocene orogenic phase with diorite intrusionsfolding pre-Tertiary-Eocene complex. S.. Late Miocene-Pliocene absent. (2016). 197-209. Proc. 3rd Conv. uplifted during Late Cretaceous or E Eocene orogenic activity. Proc. Mining Assoc. J. Triyoso (2008). 1. 1. M. Volcanic activity in lower Miocene time followed by M Miocene transgression. Assoc. Mio-Pliocene uplift and E Pleistocene basalt extrusions. 275-301. West Java. p.A contribution to the geology of eastern Djiwo Hills and the Southern Range in Central Java. 213-236. (IAGI)..M Miocene. Assoc. (IPA). 12p. Proc. Jakarta. Jakarta. Y. 34th Ann. (Bayat area M-L Eocene clastics overlain by latest Oligocene. Cendekia Dewi & W. Sourced from proto-Ciremai volcano and interfingering with (upper?) Halang Fm. Petroleum Assoc. IPA10-G-056. Conv. (Banyu Urip Field excess permeability due to karst and fractures) Bibliography of Indonesia Geology. Yogyakarta Special Province.N.. Collapse of geanticline along E-W faults to form rift zone was last tectonic event) Sun.H. & Wartono Rahardjo (2010). Z. (1982). Indonesian J. 2014)) Sumanagara. Savantes. sediments. A. Proc. Kucir Hill.The discovery of the Gunung Pongkor gold deposit. Kuningan: implication to potential volcano-clastic play in West Java Basin. 4th Ann.Volcanostratigraphy of submarine volcano Kumbang Fm. Indon.) Proc.R. Waluyo & S. Geol (IAGI). Indonesian mineral development Conf. 49-56. IPA11-E-237.Gas karbondioksida didalam cekungan minyak Jawa Barat Utara (suatu pandangan mengenai genesanya). Suparyono (1974). In: M. Petroleum Assoc.A. Proc.Identification and paleoecology of coraline fossils (Cnidaria: Anthozoa) from Jonggrangan Limestone. Natural Science (Majalah Ilmu Alam untuk Indonesia) 112. Ryacudu (2001).Temporal chemical variations of the late Neogene volcanic rocks around the Bandung Basin. 15p. M. p.Sedimentology of Wonosari carbonates Southern Yogyakarta: outcrop study and petroleum implications. T. Min. (E Miocene Jampang Fm oldest volcanogenic deposit on Java.Middle and Late Pleistocene lavas at Sunda (0.W. & S.0. West Java. (2004). Setiawan et al. p. (IPA). Ed. Indonesia: an inferred timetable resolving the evolutionary history of the upper mantle.. Jakarta 2001. Gold in epithermal.G. (online at: https://www. Early Tertiary coal and shales likely source rocks. Adhiperdana. IPA08-G-083. West Java. 103-128. E. E.0. p. (Abstract only) (Datung of ~4-1 Ma old volcanic rocks around Bandung using radiometric ages and magnetic polarity) Sunardi. Kumai (2001).vangorselslist. Publ. Geochemical results from 200-400 m well samples of Paleogene sediments indicate mature and oil/gas prone source rocks. 2n FOSI Reg.18-0. Jakarta. Satyana (2006). deepening to N. Suharto (1989). E. Sudarmawan & A.jst.com Sept 2016 . Depositional environments from shallow S to deep N: (1) back reef-shelf with patch reef and algal foram packstones.jstage. W Java. 6.) Proc.3-2. p. Sudirman & T. Potential for significant petroleum accumulations appears greatest in E part) Sunardi. Conv. Survey Japan. Pliocene lavas dated by K-Ar as 4. Gondwana Res 4. p. Spec. 3. Bayah Dome. 107-111. Conf. lithic tuff. B.Stratigraphy review of Kuningan area in relation to the petroleum potential.H. Kosasih (1992). Nurdrajat. Base Tertiary ranges from >2000 meters depth to PreTertiary exposure at Ciletuh. N. and Geol. J. In: Epithermal gold in Asia and the Pacific. Hyodo & H. E. (2) reef zone with boundstones and Bibliography of Indonesia Geology. SW Java. Muchsin. (UNPAD) 9. & J. S. Breccias clasts mainly basalt.1. E.6 Ma. poorly known.S. Sedimentologists Forum.04 Ma) volcanoes) Sunarya. Amir. Kunto & R. Economic Geology 93. Bull.1 Ma and 3.. In: Stratigrafi Pulau Jawa. West Java. (S mountains of W Java largely consists of inverted sub-basins. Mineral Concentrations and Hydrocarbon Accumulations in the ESCAP Region series.. D.Facies analysis of the Cisubuh Formation outcrops analogues at Brebes-Tegal-Pemalang District. Central Java.unpad. AAPG Int. also skeletal limestone.. p. Resources Div.5.Magnetic polarity stratigraphy of the Plio-Pleistocene volcanic rocks in and around the Bandung Basin. Y.ac.pdf) (Kuningan area of Bogor Trough. Seminar.8 Ma at W and SW side of Bandung Basin.. UN ESCAP. Deep-Water Sedimentation of Southeast Asia. Indonesia. Resurgence in melting with 'Old Quaternary' lavas between ~1. ripped-up tuffaceous sandstone) Sunardi. E. ESCAP.id/wp-content/uploads/2012/07/2-Edy-Sunardi-STRATIGRAPHY-REVIEWOF-KUNINGAN-AREA.The epithermal gold deposits in the Cikotok area. simultaneous with uplift of Sunda Arc. Kimura (1998). Petroleum Assoc. Indonesia. shallow oil wells of Indonesia were drilled on oil seeps near Maja in N part of area by Reerink in 1871. Indon. (Abstract only) (Wonosari reefal carbonates rimmed shelf platform. E of Bandung and S of Cirebon. (Gold mined since 1936 Cikotok area. Dev.0 141 www. 43-47.Sunardi.jp/article/ganko/93/4/93_4_103/_pdf) (Bandung Basin underlain by late Cenozic volcanics. 30. sulpide-bearing quartz veins. 12p. West Java. Perth 2006. First. (Extended Abstract) Sunardi. (online at: http://ftgeologi.G. Hosted by propylitized Oligo-Miocene 'Old Andesites') Sunjaya. Tsukuba 1989. Indon. Stratigraphy and hydrocarbon plays of offshore NW Java Basin may extend to Kuningan area) Sunardi. & B. mainly in N-S trending fractures. 32nd Ann. 793. Petrol. In: First workshop on epithermal gold mineralization. Adhiperdana (2008). In: A. 125-138. 54-59. A. Y.The epithermal gold deposits in Cikotok area. with deformed Tertiary sediments and dissected arc remnants. Centre (GRDC). (eds. Scientific Contr.2 Ma) and Tangkuban Perahu (0. E. Sunarya.An account for the petroleum prospectivity in the Southern Mountains of west Java: a geological frontier in the west? Proc. Res.Lithofacies stratigraphy and characteristic of Jampang Formation. 6. (2011). Bandung. Geol.go. 4.S. packstones-grainstones cut by surge channels; (3) reef slope with packstones and rudstones; (4) toe to slope with planktonic packstones and wackestones. Diagenetic processes: micritization, dolomitization, and dissolution. Locally good porosities. M Miocene Sambipitu Fm may provide source rocks but distribution limited. Mio-Pliocene Kepek limestones and marls may partly seal Wonosari reefs. Oil seeps absent in area) Sunjaya E.S., M.I. Novian, E. Biantoro & A.H.Satyana (2006)- Exploration challenge on Kendeng zone: outcrop study and petroleum indication. Proc. 35th Ann. Conv. Indon Geol. Assoc. (IAGI), Pekanbaru, p. (Poster abstract) Suparka, M.E. (1988)- Studi petrologi dan geokimia kompleks ofiolit Karangsambung utara Luh Ulo, Jawa Tengah, Evolusi geologi Jawa Tengah. Doct. Thesis, Inst. Teknologi Bandung (ITB), p. 1-181. (Unpublished) (‘Study on petrology and geochemistry of North Karangsambung ophiolite, Luh Ulo, geological evolution of Central Java’. Karangsambung area (C Java) ophiolite consists of harzburgite, serpentinite, lherzolite, gabbro, diabase and pillow basalt. Originated from tholeiite magma from N-type mid oceanic ridge basalt. Radiometric ages of basalt and diabase 85.0 ± 4.3 Ma and 81.3 ±4.1 Ma.Mica schist ~85 and 102 Ma. Ophiolite result of thrusting part of mid oceanic ridge from Indo-Australia oceanic plate onto Eurasian continental plate in Late Cretaceous-Paleocene) Suparka, M.E., S. Martodjojo & R. Soeria-Atmadja (1990)- Cretaceous- Early Tertiary magmatic belt in Java: and its surrounding areas. In: Pros. Persidangan Sains Bumi and Masyarakat, Univ. Kebangsaan Malaysia, Kuala Lumpur 1990, p. 81-91. Suparka, M.E. & R. Soeria-Atmadja (1991)- Major element chemistry and REE patterns of the Luk Ulo ophiolites, Central Java. Proc. Silver Jubilee Symposium on the dynamics of subduction and its products, Yogyakarta, LIPI, p. 204-218. Suparka, S., K.H. Thio, S. Hadiwisastra & S. Siregar (1979)- Suatu tinjauan mengenai batuan metamorf di daerah Cihara, Bayah, Jawa Barat. J. Riset Geologi Pertambangan (LIPI) 2, 1, p. 1-6. (online at: http://pustaka.geotek.lipi.go.id/wp-content/uploads/2016/02/Riset-Vol.2-No.1-2-2-.pdf) ('A review of the metamorphic rocks in the Cihara area, Bayah, West Java'. Actinolite chlorite schist, hornblende schist, micaschist and granodiorite gneiss N of Cihara granodiorite, W Of Pelabuhan Ratu. Interpreted as cataclastic metamorphics of E-W transcurrent fault) Supriatna, S., L. Sarmili, D. Sudana & A. Koswara (1992)- Geologic map of the Karangnunggal Quadrangle, Java, Quad. 1308-1, 1:100,000. Geol. Res. Dev. Centre (GRDC), Bandung. Supriyanto & A.M.T. Ibrahim (1993)- Model pertumbuhan sembulan karbonat akibat progradasi sesar naik di bagian Selatan cekungan Jawa Barat Utara. Proc. 22nd Ann. Conv. Indon. Assoc. Geol. (IAGI), Bandung, 2, p. 1162-1174. (Onshore NW Java Miocene Upper Cibulakan and Prigi Fm carbonates development) Suratman (1997)- Iodiom di Cekungan Jawa Timur. Proc. 26th Ann. Conv. Indon. Assoc. Geol. (IAGI), p. 140152. ('Iodine in the East Java Basin') Suratman, R.P. Koesoemadinata & E. Suparka (1994)- Stratigraphic sequence and carbonate diagenesis of the Paciran Formation, Northeast Java basin. Proc. 23rd Ann. Conv. Indon. Assoc. Geol. (IAGI), Jakarta, p. 19-32. (Pliocene Paciran Fm limestone on Tuban High unconformable on early M Miocene Tuban Fm. Two caliche horizons subdivive formation into three sequences. Discussion of diagenesis) Suratman & S. Musliki (1996)- Anggota Ngrayong sebagai endapan regresif yang berprogradasi kaerah selatan. Proc. 25h Ann. Conv. Indon. Assoc. Geol. (IAGI), Bandung, p. 262 - 274. ('The Ngrayong member as regressive deposit of a south prograding system'. NE Java Middle Miocene sands) Bibliography of Indonesia Geology, Ed. 6.0 142 www.vangorselslist.com Sept 2016 Surono (1992)- The stratigraphic relationship between the Punung and the Wonosari Formations, Central Java. Geol. Res. Dev. Centre (GRDC), Bandung, Bull. 15, p. 31-37. (M Miocene Punung and Wonosari limestones of S Mountains of C Java can not be differentiated and proposed to be united in one unit) Surono (2005)- Sedimentology of the Paleogene Nanggulan Formation, West of Yogyakarta. J. Sumber Daya Geologi 15, 1 (148), p. 75-82. (M-L Eocene Nanggulan Fm 250m outcrop section in Kunir River, Pendoweredjo Village, 21km W of Yogyakarta. Middle part delta plain environment, upper 30m shallow marine. Volcanic materials most common in Nanggulan Fm sandstones) Surono (2008)- Sedimentasi Formasi Semilir di Desa Sendang, Wuryantoro, Wonogiri, Jawa Tengah. J. Sumber Daya Geologi 18, 1, p. 29-41. (‘Semilir Fm sedimentation in Sendang village, Wonogiri, C Java’. Volcanic Semilir Fm widely exposed in S Mountains. Overlies Butak Kebo Fm and overlain by Nglanggran Fm. Composed of sandstone, lapilli tuff and pumice breccias. Calcareous clays with nannofossils of E Miocene age. Zircon fission track in pumice breccia suggest ~16-17 Ma age, end of E Miocene. Depositional environment shallowing upward) Surono (2008)- Litostratigrafi dan sedimentasi Formasi Kebo dan Formasi Butak di Pegunungan Baturagung, Jawa Tengah Bagian Selatan. J. Geologi Indonesia 3, 4, p. 183-193. (online at: www.bgl.esdm.go.id/dmdocuments/jurnal20080401.pdf) (Oligocene- E Miocene ‘Old Andesite’ volcanics outcrop E-W along N foot of Baturagung Mountains, S Central Java. Early Oligocene Nampurejo basaltic pillow lava overlain by Late Oligocene Kebo Fm sandstone, siltstone, tuff, and shale and E Miocene Butak Fm polymict breccia with sandstone, shale, siltstone. Volcanics all deposited in marine basin. Volcanism most active during upper Kebo and Butak Fms) Surono (2009)- Litostratigrafi Pegunungan Selatan bagian timur daerah istimewa Yogyakarta dan Jawa Tengah. J. Sumber Daya Geologi 19, 3, p. 209-221. (online at: http://isjd.pdii.lipi.go.id/admin/jurnal/19309209221.pdf) ('Lithostratigraphy of the eastern part of the Southern Mountains in the Yogyakarta area and East Java'. Southern Mountains of C Java intensive volcanic activity in Late Oligocene- E Miocene. Middle-Late Miocene widespread carbonate platform deposition) Surono M & R. Fakhruddin (2014)- Sedimen pasang-surut di Kali Keruh, Desa Lor Agung, Kabupaten Pekalongan. J. Geologi Sumberdaya Mineral 15, 1, p. 41-53. ('Tidal sedimentary rocks at the Keruh Creek, Lor Agung village, Pekalongan Residency'. Documentation of 194m thick measured section of Late Miocene- E Pliocene (N17-N19) age in N Central Java (Halang Fm equivalent?). With tidal flat sedimentary structures (but apparently also rich in planktonic foraminifera, suggesting open marine setting?; HvG)) Surono, U. Hartono & S. Permanadewi (2006)- Posisi stratigrafi dan petrogenesis intrusi Pendul, Perbukitan Jiwo, Bayat, Kabupaten Klaten, Jawa Tengah. J. Sumber Daya Geologi 16, 5 (155), p. 302-311. (‘Stratigraphic position and petrogenesis of the Pendul Intrusion, Jiwo Hills, Bayat, C Java’. Intrusive microgabbro into Gamping-Wungkal Fm with Late Eocene calcareous nannofossils. K-Ar analyses of diabase and diorite of Pendul Intrusion of Bayat/ Jiwo Hills suggests two intrusive ages, M Eocene- E Oligocene (39.830.0 Ma) and M Miocene (17.2- 13.9 Ma). Nearby Tegalrejo Basalt 24.3 ± 0.7 Ma) Surono & A. Permana (2009)- Lithostratigraphic and sedimentological significance of deepening marine sediments of the Sambipitu Formation, Gunung Kidul residence, Yogyakarta. Proc. 38th Ann. Conv. Indon. Assoc. Geol. ( IAGI), Semarang, 16p. (On latest E Miocene (N8) Sambipitu Fm at Ngalang River section, S Mountains SE of Yogya. Thickness 223m, overlies E Miocene Nglanggran Fm volcanic breccias and grades upward into marl-dominated M Miocene Oyo Fm. Lower Member dominated by sandstone and siltstone, alternating with breccias; Upper Member siltstonemudstone intercalated with sandstone, marl and conglomerate. Lower Member deposited on tidal flat, affected Bibliography of Indonesia Geology, Ed. 6.0 143 www.vangorselslist.com Sept 2016 by sedimentation of volcanic material, deepening to inner shelf in Upper Member (NB: generally viewed as deeper water turbiditic series?; HvG)) Surono & A. Permana (2011)- Lithostratigraphic and sedimentological significance of deepening marine sediments of the Sambipitu Formation, Gunung Kidul Residence, Yogyakarta. Bull. Marine Geol. 26, 1, p. 1530. (online at: http://ejournal.mgi.esdm.go.id/index.php/bomg/article/view/31/31) (Same paper as above) Surono M., H. Samodra & Sidarto (2013)- Hubungan lembah Sadeng, cekungan Baturetno dan teras Bengawan Solo, Jawa bagian Tengah. J. Sumber Daya Geologi 23, 3, p. 153-161. ('Relations between the Sadeng valley, Baturetno basin and Solo River terraces, Solo, Central Java'. When Old Lawu erupted blocked Solo River and flooding of Baturetno basin S of Wonogiri in S Mountains) Surono, B. Toha & I. Sudarno & S. Wiryosujono (1992)- Geological Map of the Surakarta- Giritontro Quadrangles, Jawa. 1: 100,000. Geol. Res. Dev. Centre (GRDC), Bandung, 2 sheets. Suryantini & S. Ehara (2005)- Geothermal gradient study of onshore North West Java basin from petroleum wells. Proc. 3rd Int. Workshop Earth Science and Technology, Kyushu University, Fukuoka, p. 29-40. Suryantini, S. Ehara & J. Nishijima (2006)- Preliminary geothermal gradient and heat flow compilation from Western Java, Indonesia. In: Ann. Mtg. Geothermal Resources Council, San Diego, Geothermal Resources Council Trans. 30, p. 699-704. (Geothermal gradients and heat flow data calculated from 67 oil-gas and 3 geothermal wells. Heat flow in NW Java basin slightly higher than normal, from 60.8- 135.2 mW m-2. Temperature gradients 3.7- 6.6° C/100m. Very high heat flows in S part of basin. In volcanic area heat flow ~186.5 mW m-2. High heat flow outside volcanic area at border between gravity highs and lows, interpreted as faults) Susanto E.E., K. Mano, Sudijono, T. Sihombing & F. Aziz (1995)- Geology of the middle course of the Solo River between Sambungmacan and Ngawi. In: Sudijono et al. (eds.) Geology of Quaternary environment of the Solo-Madiun area, Central-East Jawa, Geol. Res. Dev. Centre, Spec. Publ. 17, p. 39-44. Susilohadi (2008)- Atlas seismik refleksi Selat Sunda. Marine Geol. Inst., Bandung, 14p. ('Atlas of seismic reflection in Sunda Straits') Susilohadi (1995)- Late Tertiary and Quaternary geology of the East Java Basin, Indonesia. Ph.D. Thesis, University of Wollongong. Australia, p. 1-169. (online at: http://ro.uow.edu.au/theses/1973/) (Study of M Miocene- Quaternary geology, stratigraphy and paleogeography of NE Java-Madura area. During M Miocene and before, the NE part of E Java Basin controlled by NE trending halg-grabens along sutures between Late Cretaceous- E Tertiary subduction systems. Little is known about basin configuration in S part of basin before M Miocene. Since Late Miocene E trending anticlinal zones developed, with Rembabg anticlinal zone between Blora and Madura as dominant structure) Susilohadi, S., C. Gaedicke & Y. Djajadihardja (2009)- Structures and sedimentary deposition in the Sunda Strait, Indonesia. Tectonophysics 467, p. 55-71. (Sunda Strait opening initiated in early Late Miocene following M Miocene onset of Sumatra fault system. Three major graben systems/ pull-apart basins: W and E Semangko and Krakatau. Prior to Late Miocene most of Sunda Strait and surroundings probably developed in non-marine environment.) Susilohadi, S., C. Gaedicke & A. Ehrhardt (2005)- Neogene structures and sedimentation history along the Sunda forearc basins off southwest Sumatra and southwest Java. Marine Geology 219, 2-3, p. 133-154. (20 seismic lines in SW Sunda arc margin between Manna and W Java show fore-arc basin structures and stratigraphy since Late Paleogene. Paleomorphology of Cretaceous continental margin persisted until Bibliography of Indonesia Geology, Ed. 6.0 144 www.vangorselslist.com Sept 2016 Oligocene and paleoshelf margin extended NW off Sumatra. Two structural events between Late OligocenePliocene. Back thrust-faulting along S border of fore-arc basin and initiation of Cimandiri FZ in Late Oligocene; Sumatra and Mentawai FZ initiated in Pliocene. Four Neogene sedimentary cycles. Volcanic activity abundant since late M Miocene. Turbidite deposition common along and seaward of basin slope during sea level lows in late M Miocene and L Miocene) Sutan Assin, N.A.D. & A.N.S. Tarunadjaja (1972)- ‘Djatibarang’, the discovery and development of a new oilfield. Proc. First Ann. Conv. Indon. Petroleum Assoc. (IPA), Jakarta, p. 125- 137. (1969 onshore waxy oil discovery 170km E of Jakarta. Reservoir Eocene- Oligocene Jatibarang Volcanics Fm, composed of >400m of sandy lithic tuffs with intercalations of andesites, red clay and basaltic intrusives) Sutanto (1993)- Evolutions geochimiques et geochronologiques du magmatisme Tertiaire de Java (Indonesie). Memoire de DEA, Universite de Bretagne Occidentale, Brest, p. 1-89. ('Geochemical and geochronological evolution of the Tertiary magmatism of Java') Sutanto (2000)- Batuan vulkanik daerah Kulon Progo, geokronologi dan geokimia. Bul. Tekmira 14, p. ('Volcanic rocks of the Kulon Progo area, geochronology and geochemistry') Sutanto (2003)- Batuan volkanik Tersier di daerah Pacitan dan sekitarnya. Majalah Geol. Indonesia 18, 2, p. 159-167. ('Volcanic rocks of the Pacitan area and surroundings'. Eocene- U Miocene volcanic edifices around Pacitan, S coast of C Java, Common island arc andesites. K/Ar ages 42-9 Ma. M-U Miocene volcanics from adakitic magma, from melting of young and hot lithospheric plate) Sutanto (2004)- Distribusi spasial dan temporal batuan gunung api Tersier di Jawa Tengah dan Jawa Timur. Jurnal Teknologi Mineral (ITB) 17, 2, p. 65-71. ('Spatial and temporal distribution of Tertiary volcanic rocks in Central and East Java') Sutanto (2008)- Geologi dan prospek geowisata Perbukitan Jiwo, Bayat, Jawa Tengah. J. Teknologi Technoscientia 1, 1, p. 111-121. (online at: http://technoscientia.akprind.ac.id/wp-content/uploads/2009/11/Sutanto_111_121-okbgt.pdf) (C Java Jiwo Hills near Bayat one of three places on Java with exposures of Pre-Tertiary and Paleogene rocks. Oldest rocks pre-Tertiary metamorphics, unconformably covered by Eocene Gamping-Wungkal Fm with Nummulites limestones. Cut by Late Eocene- E Oligocene (39.8, 33.2, 31.3 Ma) basaltic dykes. Unconformably covered by Oyo Fm calcarenite and marls. Proposal to preserve Jiwo Hills geotourism sites) Sutanto, R. Soeria Atmadja, R.C. Maury & H. Bellon (1994)- Geochronology of Tertiary volcanism in Java. Proc. Seminar Geologi dan Geotektonik Pulau Jawa, sejak Mesozoic hingga Kuarter, Jurusan Teknik Geologi, Universitas Gadjah Mada, Yogyakarta, p. 53-56. Sutarso, B. & P. Suyitno (1976)- The diapiric structures and relation to the occurrence of hydrocarbons in Northeast Java Basin. Proc. 5th Ann. Mtg. Indon. Assoc. Geol. (IAGI), Yogyakarta, 20p. Sutarso, B. & Suyitno Padmosukismo (1978)- The diapiric structures and their relation to the occurrence of hydrocarbon in North-East Java Basin. Geologi Indonesia (IAGI) 5, 1, p. 27-43. Sutomo, H. (1983)- Pengaruh tektonik pada batuan metasedimen di Sungai Lukulo sebelah timur Gunung Sipako. Proc. 12th Ann. Conv. Indon. Assoc. Geol. (IAGI), p. 255-262. Sutomo, H. (1984)- Penentuan asal-usul kuarsa pada konglomerat kuarsa di Gunung Cakaran, Bayat, Jawa Tengah. Proc. 13th Ann. Conv. Indon. Assoc. Geol. (IAGI), p. 455-461. Sutoyo (1994)- Sikuen stratigrafi karbonat Gunung Sewu. Proc. 23rd. Ann. Conv. Indon. Geol. Assoc. (IAGI), Jakarta, p. 67-76. Bibliography of Indonesia Geology, Ed. 6.0 145 www.vangorselslist.com Sept 2016 10 p. Petroleum Assoc. Geol.Klasifikasi stratigrafi Pegunungan Selatan.X. Conv.Carbonate reservoirs in North West Java onshore area.Sedimentological study of Gembong subdelta of Citarum delta complex.Middle Miocene carbonate sequence stratigraphy. Wonosari. (IAGI). Jakarta. Dev. (1991). Petroleum Assoc.000. p. Geol. (IAGI). Geol. Quad. dearah istimewa Yogyakarta dan Jawa Tengah. Jakarta. Jampang Tengah and Jampang Kulon. Yogyakarta. Chaniago & R. Late Miocene Parigi Fm) Suyanto. p. Proc. Proc. NW coast of Java. On Miocene carbonates of Southern Mountains SE of Yogyakarta. (Overview of 5 stages of oil-gas exploration of onshore NW Java since 1871. Wikarno (1992). ('Stratigraphic classification of the Southern Mountains.Geology of the Kudus Quadrangle. 6. Jakarta. 1:100. Geol. Conv. & Suharsono (1993). 237-252. Proc. Jakarta.(Southern Mountains late Early. B.R. p.Preliminary study on Tertiary depositional pattern of Java. P. (Unpublished) ('Carbonate facies model of Gunung Sewu.Sc. A.Model facies karbonat Gunung Sewu. 6th Ann.Notes on the carbonate outcrops in Krawang Selatan. Mudjito & Hastowidodo (1984). Proc. Bandung. 11th Ann. Res. Suwarti. Santoso (1986). Suyanto. Geol. (IAGI). (IAGI). 1409-3 & 1409-6. 267281. Indon. Java.. efforts to maintain reserves growth. & I. Conv. 3rd Ann. (IPA).000. Surabaya 1982. 13th Ann. Suyanto. 30th Ann. Prasetya (2005). F. Indon. (Modern Citarum River Delta.X. Middle Miocene Zone 15 and Zone 14. 1:100. (IPA).X. Geol. (Five gas-bearing carbonate reservoir horizons in NW Java: E Miocene Baturaja Fm and Zone 16. R. R.0 146 www. Jakarta 1982. & Y. Suyanto. F. Yogyakarta. Quad. Indon. K. Wonosari. (Unpublished) Suwardy. Thesis University of Wollongong.X. Dev. 61-71. Baharuddin (1992). Bandung. 15th Ann. Conv. Indon. Indon. Geol. p.The basement configuration of the Northwest Java area. Sahudi & I. Conv. Proc. T. Jawa. Suyitno.Geology of the Lumajang Quadrangle. Sumantri (1977). onshore northwest Jawa Basin. Assoc. Not much technical info) Suyoto (1992). Radiometric dates of youngest igneous rocks ~58. Res. Conv. Centre (GRDC). 507-532. Petroleum Assoc.Geology of the Turen Quadrangle. F. 11th Ann. 8 p. & R.65 Ma (Paleocene). Suyanto. Proc. T.vangorselslist. Indon.The geology and hydrocarbon aspects of southern Central Java. Kusnama. 1:100. F. shows different delta types at each of four tributaries). Assoc. 237-252. Jawa (Quad.Note on the carbonate outcrops in Krawang Selatan. (NW Java basement: igneous rocks intruding into older metamorphic rocks. A. (IPA). 13 p. Not much detail) Sutoyo & K. Centre (GRDC). Master Thesis Inst. 1607-4). p. 4th Ann. oldest metamorphic argillite dated as 213 Ma (Triassic)) Suyono. Indon. Jampang Tengah dan Jampang Kulon.Source rock distribution and evaluation in the Talang Akar formation. Jakarta. Suyanto. Hadisantono. Teknologi Bandung. Proc. 129-152.com Sept 2016 . M. Res. Assoc. Situmorang. Indonesia. Indon. present and future. Proc. Joint ASCOPE/ CCOP Workshop on hydrocarbon occurrence in carbonate formations.000. p. Ed. p. Bandung. 1. Conv. Assoc. Centre (GRDC). Sambipitu Fm spans zones N7-N9) Sutrisman.X (1983). 183-213. Conv. (1982). (IPA). Yogyakarta'.Exploration in West Java: play concepts in the past. p. C Java) Bibliography of Indonesia Geology. & Roskamil (1975). Suwarti. F. 35 p. 1607-5. Petroleum Assoc. Yogyakarta special region and Central Java'. Dev. p. p. Yahya (1974). Proc. (1982). 3.Klasifikasi stratigrafi Pegunungan Selatan daerah istimewa Yogyakarta dan Jawa Tengah.com Sept 2016 . 8p.id/publication/index. S5= N 13 S6= N14-N15.The evolution of Gajahmungkur paleovolcano. S4 = N11/N12. Proc. Wonogiri.Characteristics of gold mineralization at the Ciurug vein. ('Tertiary pollen zonation of Java') Syafri. West Java. 1. S2 = N8. and S9 = N20-Recent. (IAGI). A. SE of Yogyakarta.vangorselslist. as the reference to the revized terminology of "Old Andesite Formation". (also in J. I. Extensive karst topography indicates study area has been tropical since early U Miocene) Suyoto. I. Proc. Y. Indon. Lombok 2010. Conv. Sudradjat (2013). Mountain building of Kulon Progo not solely dominated by vertical undation force. A. Early M Miocene onset of first regression with deposition of S3 and widespread caliche in Gunungsewu area.. Motomura & K. S8 = N18-N19. (4) declining activity. Watanabe (2005). Budiadi & A. Indon. (Carbonate sequence stratigraphy of the Southern Mountains'. Polhaupessy. A. highest in latest mineralization stage in sulfide band in vein quartz) Bibliography of Indonesia Geology. 39th Ann. p.php/dir/article_detail/282) (Same paper as above) Syafrizal.T. E.B. Lelono (1994). W Java. (IAGI). second with S6 (Late M Miocene). but related to three regional tectonic stages: Meratus.esdm. Bornite only in S part of Ciurug vein at 515 m. (online at: http://ijog. p. Correlation with global sealevel changes prove no age similarities. p. 4. C. p. Indon. Assoc. W of Bogor. Geologi Indonesia 8. Central Java. (3) self-destruction by formation of caldera. I. (online at: www. Identified volcanic facies and location of paleovolcano vent. 6. Geol. Gold grades in Ciurug vein vary from 1. Resource Geology 55.Geotectonic configuration of Kulon Progo Area.87. 23rd Ann.2 to 100's of ppm. In Pacitan area angular unconformity between Oligocene volcanics and overlying quartz sandstones. Nugrahaningsih & E. still occurring today. S Mountains. Geol. Ed. A. Wiyono.Zonasi polen Tersier Pulau Jawa. S1= N7. 4. Proc. with SW-NE. Yogyakarta Special Region and Central Java') Suyoto (1994). Teknologi Bandung (ITB). p. N. Doct. p. with more basaltic rocks) Syafri. Central Java.The evolution of Gajahmungkur paleovolcano. Assoc. Indonesia.Suyoto (1992).esdm. Java) Suyoto (2005). (IAGI). Imai. Ciurug vein four main mineralization stages. 225-238. Geologi Indonesia 5. 67-76. Two major transgressions and regressions: first transgression with S1 (late E Miocene). Assoc. Assoc.Stratigrafi sekuen cekungan depan busur Neogen Jawa Selatan berdasarkan data di daerah pegunungan Selatan Yogyakarta. Geol. S. Conv. Conv.bgl. N.Sekuan stratigrafi karbonat Gunungsewu.0 147 www. Thesis Inst. Four stages: (1) submarine volcano with pillow lavas. Conv. sphalerite. (2) emergence above sea level forming volcano island. Pongkor gold-silver deposit.bgl. 4. Sunda and Java trends. Hartono (2010). 23rd Ann. Sulaksana & G. (IAGI). S7 = N 16/N 17. Sudrajat.go. Main metallic minerals pyrite. 185-190. 472-485. Second regression in early Lt Miocene with deposition of S7 and diagenesis resulting in karst topography. p. (S Mountains S of Yogyakarta nine Neogene sequence boundaries. NNW-SSE and E-W directions respectively) Syafri. 263-268. 23rd Ann. ('Stratigraphic classification of the Southern Mountains. J. with alternating lavas-pyroclastics.. Rahardjo. Geol. S3 = N9-N10. J. as a reference to revize the terminology of “Old Andesite Formation”. L.php/IJOG/article/view/168/168) (Kulon Progo Mountain elongated dome W of Yogyakarta. Proc. Geologi Indonesia 5.A. Structural elements mainly radial pattern. Sulaksana & G. dominated by pumice. Wonogiri Regency.id/index. chalcopyrite and galena. A.. PIT-IAGI-2010-231. in paprallel N-S trending epithermal veins in basaltic-andesitic breccia and lapilli tuff with andesite lava. 77. 263-268) (Evolution of Gajahmungkur E Miocene 'Old Andesite' paleovolcano in Wonogiri area. (Pongkor gold-silver mine. Hartono (2010). Yogyakarta.go. Sudrajat. p. Indon. ignimbrite breccias. indicating Early M Miocene arid climate. may have caused mud eruption) Tan Sin Hok (1934).com Sept 2016 . Wide range of zircon ages. Lagona & Nadila Novandaru (2014). p.D. W Kendeng Thrust Zone M Oligocene sandstones are volcanic arc-derived lithic arkoses. A.Miospores from the Eocene Nanggulan Formation in the Yogyakarta region. (On Pongkor young (~2Ma) epithermal gold. Shimamoto & O. p. 6. Masters Thesis. fluid inclusion microthermometry and stable isotope study of the Ciurug-Cikoret veins. Indonesia: evidence from mineralogic. East Java. Central Java.Fluid transport properties and estimation of overpressure at the Lusi mud volcano.S. p. Engineering Geol. Geol. R. K. P. High overpressure below mudstone almost lithostatic levels. Minimum depth of vein formation below the paleo-water table is ~90-130 m) Takahashi. Phoumephone. (1982). Watanabe (2007). Indon. Assoc. Y. M Miocene quartz arenites from Rembang Uplift Zone most mature sands in basin and derived from craton. hosted by M Miocene volcaniclastics. p. Harijoko. Late Cretaceous (60-92 Ma). S Mountains M Eocene-E Oligocene lithic subarkoses and lithic arkoses with detrital zircons from Eocene (37-46 Ma). 73-85. also Triassic (204-252 Ma) and Proterozoic (1754-2385 Ma). in andestic and dacitic host rocks. T. 303-326. Imai & K. (Unpublished) (E Java Basin sandstones volcaniclastic to lithic subarkose to quartzose. like Yogyakarta earthquake. Resource Geology 57. Trans. 2. 1.Provenance of quartz-rich sandstones deposited adjacent to the Tertiary Java Arc. 100km E of Pacitan. p. Small stress fluctuations. Japan. (2006). I Wayan Warmada. Late Miocene Upper Halang Fm facies associations of deep-sea fan. Palaeont.T. East Java Basin. Kumbang breccia above Halang Fm massive and disorganized fragments derived from volcano.Evolusi stratigrafi. 17 of which are new) Takahashi.jp/dspace/bitstream/10069/16852/1/tpps126_303. Schersten & L.Epithermal gold mineralization in the Trenggalek District. M Triassic (224-240 Ma) and Proterozoic (1084-1998 Ma). ('On microspheric Lepidocyclinas from Ngampel (Rembang. with immature sands. Page (2014). Soc. and with low salinity. University of Wisconsin.0 148 www. Conv. Jakarta.S.E Pleistocene U Kalibeng Fm source of mud at Lusi mud eruption. Plugs are subalkaline tholeiitic basaltic-andesite to calc-alkaline andesite in composition. Gold mineralization in N prospects took place in shallow marine to subaerial transitional environment (130-165 m below paleo-water table at Sentul prospect)) Tampubolon. A.volcanics. A.S. Permeability of U Kujung Fm limestone two orders of magnitude larger than Lower Kujung Fm limestone. Indonesia..lb. 126. (online at: http://naosite.silver deposits at NE flank of Bayah dome. A. R. Mitteljava). Tampubolon. (Mudstone of Late Pliocene.. Tadai (2010). (Gold-mineralized quartz veins at Trenggalek district of S Mountains Range in E Java. C Java)'. J.Syafrizal. p.W.E Miocene sandstones volcaniclastic litharenites with zircon ages mainly Late Cretaceous (70-85 Ma). Overlain by Pliocene Tapak Fm with limestones and siliciclastics of shelf and tidal flat facies) Tang. facies analysis and geochemistry of Mio-Pliocene sediments in the Banyumas basin'. Shingo. Early Mesozoic. H. (Stratigraphic evolution.pdf) (Palynology study of 48 palynomorph types in M Eocene lignite at Nanggulan.Origin of ore-forming fluids responsible for gold mineralization of the Pongkor Au-Ag deposit. Overpressure mainly caused by thick low-permeability sediments Upper Kalibeng Fm and high sedimentation rate. with some Tertiary.E. E Miocene sandstones are lithic subarkoses with recycled orogenic signature from uplift of local basement and older sandstone. K.O. 149-166. 43rd Ann. West Java.3 Ma. 1-299. De Ingenieur in Nederlandsch-Indie (IV). 136-148. A. analisis fasies dan geokimia dari sedimen Mio-Pliosen di cekungan Banyumas. and Proterozoic ages) Tanikawa. 2-3-211. suggesting input from volcanic arc and distal cratonic source.nagasaki-u. Indonesia. with zircons mainly Cretaceous (73-141 Ma). Mineralization of precious metal ore zone at fluid temperatures between 180-220°C. L. Ar-Ar age of vein ~16.6 Ma. A. mainly Cretaceous (64-128 Ma).vangorselslist. 12. Watanabe. located near andesitic plugs of 200-300m diameter.ac. Imai. Setijadji. Late Oligocene.A. Large microspheric Lepidocyclina from Lusi River near Ngampel. Resource Geology 64. 116. Madison. R. Proc.collected by Ter Haar. Paleozoic. 10p.Uber mikrosphare Lepidocyclinen von Ngampel (Rembang. Baskoro. N. 2. PIT IAGI 2014-245. assigned to Lepidocyclina papulifera Douville) Bibliography of Indonesia Geology. Sakaguchi. with lowest permeability of all samples. Idrus. crystal tuff in limestone-pyroclastic rock sequence ~15. (IAGI). indicating minor cratonic input to arc-dominated sediments.. Proc. A. M. Ed. Wibowo. pilow basalts).000. 136138. p. (1935). magnetite). also zircon. Miocene sandstones from Tegal. Scale 1: 100.. 9-18.E.Geologische kaart van Java. Java 1929. 6th Ann. Sumadirdja & P. Heavy minerals of Eocene quartz sst of Bayah.Note on the occurrence of Miogypsinoides Yabe and Hanzawa in Oligocene deposits. C. but those from NW and E Java mainly detritus from old rocks in N (Sundaland). Batavia.go. Imperial Academy. Petroleum Assoc.Heat flow measurements in the Tertiary basin of northwest Java. Co-ord.Zwei neue mikrosphare Lepidocyclinen von Java. M Miocene sandstone from N Bantam with zircon.vangorselslist. 11 p. C. 1:100. p. Res. Thamrin. Prayitno (1982). C.W. Richards (1975). M. & S. Fourth Pacific Science Congress. Dienst Mijnbouw Nederlandsch-Indie. Said. ('On Leidocyclina gigantea Martin from S Priangan (W Java). a stellate form from W Java) Tan Sin Hok (1943). brookite). metamorphic rocks (including glaucophane schist.com Sept 2016 .Geologic map of the Magelang and Semarang quadrangles (11-XIV-B. Bumiayu district of Tegal Residency. De Ingenieur in Nederlandsch-Indie (IV). Conv. volcanic breccia zone and Turritella Marls (mammal fauna now interpreted as E Pleistocene Satir 'island fauna'. Indon. hypersthene. which contain rhinoceros. C Java..The status of the melange complex in Ciletuh Area. 6. p. De Ingenieur in Nederlandsch-Indie (IV). gabbro. staurolite. Excursion Guide E4. Jakarta. ('Notes on the sediment petrography of Java'. 50 p. Bone beds dip 25-40° (therefore believed to be possibly of Pliocene age) and underlain by thin-bedded Late Miocene marl.Aanteekeningen over de sediment petrografie van Java. (Geologic map and description of Bumiaya area SW of Slamet volcano. H. Tokyo. age of folding in this area is therefore post ~1. 18th Sess.jstage. Cervus. This demonstrates that Miogypsinoides made its appearance in Oligocene time (Td)) Ter Haar. Joint Prospecting Mineral Resources in Asian Offshore Areas (CCOP). from N Rembang area mainly 'old rocks' provenance (zircon. 9. andalusite. Elephas. (1933). 1-8.limestone (with Lepidocyclina (Trybliolepidina). Lep. ('Two new microspheric Lepidocyclinas from Java'. p. Proc..jp/article/pjab1912/19/9/19_9_585/_pdf) (During exploration in 1942 of Cimandiri coalfield. Comm. Proc. brookite and rare augite (mix of 'old rocks and volcanic source). Indonesia.Uber Lepidocyclina gigantea Martin von Sud-Priangan (West-Java). 1-15. anatase. (B) omphalus. De Mijningenieur 14. (1929). a sample was collected N of mouth of Tjibeuleungbeung that contains both Camerina fichteli. and a Miogypsinoides sp. accompanied by isolepidinenephrolepidine and eulepidine Lepidocyclines. Etc. Geol. Two M-L Miocene new species described. C Java and S Mountains. Dev. collected by Bothe and Lep. C. Prijomarsono (1977). Centre (GRDC). p. + map. 241-253. Java. HvG)) Ter Haar. 1996?) Thaden. 585-586. phyllite) and sheared sediments (probably Upper Cretaceous Bibliography of Indonesia Geology. SW Java rich in tourmaline.. E. 11-XIII-E). Siswoyo & S.jst. anatase. (online at: www. Bandung. 2. hippopotamus. R.) Ter Haar. E. (IPA). partly remapped as Majenang Quadrangle by Kastowo & Suwarna. tourmaline. showing complexly folded NE-directed thrusts involving Miocene rocks.. 2.000. p. (Fieldtrip guide to locality of Pleistocene fossil vertebrates in Kali Glagah. Tegal (C Java) and Bengkulu (S Sumatra)'. 19. Ed. hornblende. suggesting erosion of 'old' acid plutonic rocks. Toelichting bij blad 58 (Boemiajoe). etc. etc. W Java. rutile. 2. Proc. (B) stratifera from Pasean village. (Structurally complex mixture of ultrabasic rocks (partly serpentinized peridotite. New work confirms view of Rutten (1925) that Neogene sediments of S Java are composed of detritus from volcanic arc of S Java. staurolite. of andesitic origin (augite. South-West Java. 8.5 Ma. p. Large microspheric Lepidocyclinids) Tan Sin Hok (1935).Tan Sin Hok (1935). Thayyib S.Boemi-Ajoe District. 224-235.L. 1. Tegal (Mittel-Java) und Benkoelen (Sud-Sumatra).0 149 www. Seoul 1981. 1. Bandung. displaced 40000 people and caused >US$2. and interpreted as Holocene sea level highstand episode) Thompson..P. 51-56. p. Davies & R. E Java’.X. Possible continuation of Luk Ulo melange.. p. 385-405. Geochem. M. 24p. (Terrace of presumed beach deposits with marine fossils 1. Jaarboek Mijnwezen Nederlandsch Oost-Indie 58 (1929). Search and Discovery Art. Indon. Exhib. D. 1-13. (1930).W. Thommeret (1978). 41791. (3-D model of anomalous density for Merapi and Merbabu by inversion of gravity field) Tingay. 6. Evaluation of 5-6 thin (<1m) coal horizons in what is now known as M Miocene Ngrayong quartz sandstone Formation.. (Liptinitic kerogen yield oil at earlier level of maturity than sapropelic kerogen. (Abstract + Presentation) (Lusi mudflow S of Surabaya. (‘Report on geological investigations in Rembang Residency.5.Anatomy of the ‘Lusi’ mud eruption. Detailed descriptions of Miocene stratigraphy of area around Ngandang-Lodan anticline.Thermal maturity and oil generation with reference to the CMS-1 (Java) and Susu Selatan-1 (Sumatra) wells.searchanddiscovery. Major oil generation at vitrinite reflectance 0.4 m above present sea level along N coast of Java at Jepara. 6p.. Yangon 2015. Blowout in Banjar Panji-1 hydrocarbon exploration well was most likely mechanism for triggering Lusi mudflow) Tingay.Early Oligocene Ciletuh Fm quartz sandstones) ‘T Hoen. Optimum oil generation at vitrinite reflectance ~0. Verhandelingen.Suyanto (1979).14C datings of some Holocene sea levels on the north coast of the island of Java. Arpandi & F. In Susu Selatan-1 well (N Sumatra). C. Toelichting bij Blad XVI (Midden Java). has been erupting continuously for 9 years. Heidbach. 150m away). Tingay. Indonesia. Modern Quaternary Research in Southeast Asia 4. & Y.G. ASEG Conf.8%/ spore colour index 7.P. p.pdf) Bibliography of Indonesia Geology.) Thommeret.CMS-1 well (onshore NW Java) heavy waxy oils generated from liptinitic kerogen. Similar coal-bearing series in Panowan-Kadjar anticline WSW of Lodan) ‘T Hoen. light oils generated from sapropelic kerogen. O. Ed.35% and spore colour index 3-3. p. O.Triggering of the Lusi mud eruption: earthquake versus drilling initiation. This study suggests drilling kick. R.shales) probably melange complex. M. No heavy oil accumulations in this area) Tiede.55%/ spore colour index 5. R.W. Jaarboek Mijnwezen Nederlandsch Oost-Indie 45 (1916). Geoph..vangorselslist. 6.P. Swarbrick (2008).5. or natural event induced by 2006 Mw6.The Lusi mud eruption of East Java. Davies & R. Gerstenecker & J. 250km away). E Java.0 150 www. (2016). C. Indonesia. Rel. A. Geosys. 639-642. with detailed crosssections across Ng-Lodan anticline. 9. East Java. (G3). C. Fernandez (2005). Dated as 5000. Jakarta.3650 years B. M.A. Heidbach.000. Ongoing debate whether the disaster was triggered by drilling kick in Banjar Panji-1 well (1 day earlier.Geologische overzichtskaart van den Nederlandsch-Indischen Archipel 1:1. not earthquake.A.. Onset of oil generation at vitrinite reflectance 0. (IPA). 370 km to E. Proc. M. (Lusi mud volcano in E Java unlikely to be triggered by Yogyakarta earthquake. Petroleum Assoc. J. Proc. AAPG Int. 8. caused catastrophic shear failure of borehole wall and subsequent reactivation of Watukosek fault) Tingay.7 billion in damage. (2010). 33p. p.net/documents/2009/50187tingay/ndx_tingay. (1918).000. via the inverse gravimetric problem.3-2.com Sept 2016 . (Extended abstract and presentation) (Online at: www.3 Yogyakarta earthquake (2 days earlier.What caused the Lusi Mudflow disaster in Indonesia? In: 2nd AAPG/EAGE/MGS Conf.Modelling the density at Merapi volcano area. Verhandelingen 2.. Camacho. S.. Sydney 2010. Geology 36. C. 1-72.Verslag over de uitkomsten van een geologisch-mijnbouwkundig onderzoek in een gedeelte der Residentie Rembang. NW Rembang zone. 8th Ann. (Explanatory notes for 1929 1: 1 million scale geologic overview map of Central Java. 202-254. p. Swarbrick (2009). Conf. Cape Town 2009. Overlain by M Eocene. Innovation in geoscience: unlocking the complex geology of Myanmar. Conv. Trybliolepidina. 2. Wang (2015). Bull.Paleo-current and initial slope indicators in the Subang area. H. p. West Java. Dept. p. p. H.D. p. To N uppermost limestone beds overlain by and interfingering with beds of Marl-tuff Mb of Tertiary f3. Mining Institute of Japan 58. K.php?li=article_detail&id=847) ('Notes on the stratigraphy of the Karangbolong Mountains. Dept. Oldest rocks 'Old Andesite Fm' composed of Oligocene.Aquitanian andesitic eruptive and intrusive rocks. Km-long linear ridge are relics of paleo-breaker zones.D.Origin of Tjongkang Hill near Tomo. Bibliography of Indonesia Geology. Contrib. with horizontal displacement of ~140 m. H. H. West Java. C Java'. M. Teknologi Bandung (ITB) 1. Technology Bandung (ITB).450m) Tjia. 63-74. 7. H. p. 75-88. M. 75.). (1962). engulfing 8 villages) Tingay.(‘Lumpur Sidoarjo’ mud eruption probably triggered by drilling of Banjar Panji 1 well in May 2006.jp/article/shigentosozai1885/58/685/58_685_309/_pdf) (Brief review of NE Java basin stratigraphy and oil fields)) Tjia. Geologi Indonesia 8.id/index. Geol.Structural analysis of the Pre-Tertiary of the Luk-Ulo area.Initiation of the Lusi mudflow disaster. C Java) Tjia. (online at: http://idci.go.D. 6. Pleistocene S-ward tilting of island (<4°).php/IJOG/article/view/157/157) (Review of landforms in karst hills in Miocene limestone of Southern Mountains SE of Yogyakarta. (online at: http://journal. H. Djawa Tengah.J. (1961).jstage. (2013). (1968). 309-316. W. probably of Late Miocene age.Tjatatan mengenai stratigraphy Pegunungan Karangbolong. W of Tjikapundung valley. Survey Indonesia 1. 60p. 683-686.go. in accordance with paleomagnetic data) Tjia. etc.itb.Oil-fields in Java.Morphostructural development of Gunungsewu karst. East Java. After this time marine sedimentation in this area came to halt) Tjia. Cycloclypeus spp. J. M. America (GSA) Bull.vangorselslist. Geology 63.Y. 89-98. 126-130. Jawa Island. 57. H. (1964). Proc.Topographic lineaments in Nusa Barung. (In Japanese) (online at: www. 10 km N of Bandung.D. R. N-ward facing scarp exposed over 22 km. Geology Inst. 3.id/index. J.jst.bgl. 685. Mud flow now covers >700 ha of land to depths of up to 17 m. (Lembang fault. 2.D. (On slickensides in Lokulo area. Davies & C. (1964). unconformably overlain by Karangbolong Lst (Tf1-3. Java. Also circular and spiral landforms. & V. (online at: http://ijog. Tjia. cone-and sinoid-shaped.esdm.com Sept 2016 . Geol. parallel to Java's longitudinal axis.Slickensides and fault movements. Ed. E part of fault between Maribaja and Mount Pulusari is dip slip fault with exposed throws of 130. Karangbolong Mts part of Java S Mountains. (Repeat earlier conclusions that 'Lusi' mudflow eruption S of Surabaya was not triggered naturally but was consequence of Lapindo drilling operations) Titani.000 m3/ day. Expelling mud up to 170. (1966). Geologie en Mijnbouw 47. Former investigators attributed mainly dip slip displacements to this fault.id/pdf/JURNAL/ITB%20Journal%20of%20Science/ ) (Nusa Barung island off Puger at S coast of E Java mainly N-S trending karsted limestone ridges. Inst.The Lembang Fault.D.ac. Tjioe (1964). 110p. Proc. H.. Teknologi Bandung (ITB) 2. 18-22. Inst. Technology Bandung (ITB).dikti. similar to most of S Mountains) Tjia.go.D. Some arenites of Lower Pliocene unit deposited by turbidity currents) Tjia. (Pliocene deposits of Subang area with sedimentary structures indicating currents mostly longitudinal. Changes in orientation of inland and coastal ridges interpreted to reflect progressive CCW rotation of Gunungsewu microplate. Contrib.D. 493-494. but W part of fault.0 151 www. Central Java. (1942). Rudolph.L. latest development sinistral strike slip in nature. p. Nature Geoscience 8. Soc. Inst. p. 2. Manga. p. with Nephrolepidina. suatu kontribusi. Tuban. Twnenty-one coral species. 19-36. Agustiyanyo & M.1. Seminar Jurusan Teknik Geologi Fak. Centre (GRDC). p. Three main layers. Mededelingen 3.J. Zones (veins?) of pyrite and sphalerite in rel. Samples from Oligocene Kujung Fm marls near Tuban suggest poor source rocks: low TOC and immature) Turkandi. Percentage suggests Cisande limestone older than coral-bearing localities in Pliocene Sonde beds (Th). (GPS surveys on Christmas Island and Cibinong.esdm.E Miocene Gabon Fm andesitic-basaltic volcanics.000 barrel oil) Toha. IATMI. Kebumen Regency.K. Yogyakarta.com Sept 2016 . & K.65° to W-NW. dipping 7. 340-344. 21p. ('Geology of the Southern Mountains: a contribution') Tregoning. Jawa Tengah. J. Akademie Wetenschappen.H. Subarya (1994). Puntodewo.M.Inventarisasi bitumen padat dengan 'outcrop drilling' di daerah Ayah. Geologi dan Geotektonik Pulau Jawa sejak akhir Mesozoik hingga Kuarter. J. (online at: www. Letters 21. F. (1945). pada lintasan Kali Wungkal. J. (1921).id/kolokium%202003/batubara/Prosiding%20Ayah. Geophysical Res. TS-03. Dev.naturalis.DIM. W. 4.. steeply dipping Miocene clastics and limestones) Umbgrove. 10 km S of Balong.50 liters/ ton. Assoc. S. Quads.Guidebook of Southern Mountains: Turbidite system excursions. p.F._UPNVY.Tobing. N of Lurahgung. mainly reef limestone. Geol. p. Datun & Widiasmoro (1986). C Java. Small zinc mining operation in E Java near Kerpoe village.dim. S. R. Simp. TA. D. 0. Jawa.000. P. Amsterdam.D. Twiss. enclosed by circle of volcanoes) Umbgrove. Genrich. unconformably overlain by M Miocene Kalipucang Fm.pdf) (‘Source rock potential and quality of Kujung Fm rocks in the Kali Wungkal section. 2003.knaw. Sriyono.3.nl/document/549786) ('The origin of the Dieng Plateau'. E Java’. Tuban. E. T. Santoso (2007). Teknik Universitas Gadjah Mada. 2.15 could be identified.F.dwc.0 152 www. Rahardjo & P.First geodetic measurement of convergence across the Java Trench. Late Miocene.35. near S coast of C Java. Purtyasti.vangorselslist.. Leidsche Geol..H. Rais.or. Bandung. Bock. Calais. 48. Purbo Hadiwdjojo (1992).5km NE of Slahoeng. 26.nl/DL/publications/PU00017948.Het ontstaan van het Dieng Plateau. 3. (IAGI). Kabupaten Kebumen. Stratigraphy in area Late Oligocene.iatmi.id/uploads/IATMI_2007-TS-03_Bambang_Triwibowo. 1210-1. Toha. Soetoto. UPN. 131-149.Potensi dan kualitas batuan Formasi Kujung sebagai batuan induk. 1:100. Kolokium Hasil Kegiatan Inventarisasi Sumber Daya Mineral. Jawa Timur. The elevated Dieng Plateau of C Java is not caldera formation or crater bottom. 14p. Indon. Associated with Aceratherium boschi rhinoceros tooth (oldest land mammal fossil known from Java). (online at: www. Res. Proc. 1209-4. Ayah area. 47% still living.26. (online at: http://elib. Sidarto.90m thick. B.pdf) (Reefal limestone lenses in U Halang Beds along Cisande River. Y. ('An occurrence of zinc-ore in South Madiun'. Subagyo (1994). McCaffery. (online at: www. Geol. 44-51. Ed. W Java. but floor of an old mountain lake. 2135-2138. Oil content 7.Geology of the Jakarta and the Thousand Islands Quadrangle. M. maybe around Mio-Pliocene boundary) Bibliography of Indonesia Geology. p. Proc.Geologi daerah Pegununungan Selatan. J.repository. De Mijningenieur 2. p.E Pliocene Halang Fm turbidites and Late E Miocene. & C. In: Proc.F. B. Kon. Brunner. R. Bitumen resources is ~ 830. (1930). suggest convergence at 67 ±7 mm/year orthogonal to trench) Triwibowo.3.M.O. 6. Java.. Nas.M Miocene andesitic intrusives Solid bitumen/oil shale deposits in Kalipucang Fm.pdf) (Investigation of solid bitumen/oil shale in M Miocene Kalipucang Fm. W. B. 13p.O. Nederl. p.go.Een zinkertsvoorkomen in Zuid-Madioen.Corals from the Upper Miocene of Tjisande. (2003).A. C. Central Java. Geol. Setiawan (2001).vangorselslist.nl/DL/publications/PU00018197. Publ. Teknik. Klaten. p. 1-11. 87-93.com Sept 2016 .E. T. 2. Geol. 1. p. J. Conv. Ann. Geol. p. W Jiwo. Unusual erosional features on limestone plateau) Umiyatun Choiria. M. Discocyclina spp. Ruswandi (1973). M. ('Structural pattern of Java and Madura as a result of preliminary interpretation of gravity data') Uruma.pdf) (35 coral species from Late Pliocene Upper Kalibeng Beds at Sonde in W part Kendeng zone. A. 1-207..Gravity survey in the Yogyakarta. Paleontology 20. collected by members of Geological Survey) Umbgrove. Proc. (1950). Java'. Untung. 6. Udjang & E.F. Survey Indonesia and Geol.The claystone age of Wungkal Formation based on calcareous nannofossils in Gunung Pendul area. Pekanbaru. Geol. Geol.. Sato (1978). Verhandelingen Kon. PIT IAGI2006-072.Foraminifera besar pada satuan batugamping Formasi Gamping. 5th Int. Untung. Nederl. IAGI) 9. Sekarbolo. 49. Proc. Ed.Pola struktur Jawa dan Madura sebagai hasil penafsiran pendahuluan data gayaberat. & Y. p.Gravity and geological studies in Java. Watanabe.preserved coral fauna of 70 species) Umbgrove. is Lower Pliocene patch reef in marly Tapak Beds. Geologi Indonesia (IAGI) 2. 2.. p. Publ.0 153 www. Yogyakarta. N. 521-542. Res. E Java..Wungkal Fm. Bayat. (Small hill of Gunung Linggapadang near Prupuk. Bibliography of Indonesia Geology.. 6. Imai. Survey Indonesia. Serie 9.Sebuah rekonstruksi paleogeographi Pulau Jawa. Indonesia. Indon. Kon. Conv. L. Geol. 15-24. E Java. 637-651. ('Larger foraminifera from limestones of the Gamping. ('Java's south coast near Tji-Laut Eureum'. Bayat. & G. K. p.H. J. p. Dev. Cosijn (1931). C Java. Prastistho.000. M.Corals from the Upper Kalibeng beds (Upper Pliocene) of Java. 30th Ann. Setijadji & A. (Forty species of corals from lower Pleistocene Pucangan beds of Kendeng zone. Reef comparable to patch reefs in Bay of Jakarta. pengaronensis. (1974). Central Java. J. M. 6.Java's zuidkust bij Tji-Laoet-Eureum. Spec.H. Y. Geol. J. with only 49% living species. Geofisika 3. (1982).Corals from a Lower Pliocene patch reef in Central Java. Untung. Well. K. Geologisch Mijnbouwkundig Genootschap (KNGMG). and Spiroclypeus vermicularis) Umiyatun Choiria. p. M. 133-134. p. Assoc. This abnormally low percentage probably due to special character of fauna which consists mainly of solitary 'deep water' corals) Umbgrove. p. Assoc.H. Proc. Indon.F. Indon. Survey Japan.000 (2 sheets). J. Bandung. Jawa Tengah. N. Bayat Klaten. Nederl.Wonosari area. Assoc. S. 15-24. Fukuoka. 377-384.Corals from the Putjangan beds (Lower Pleistocene) of Java. Workshop Earth Science and Technology. 6. Harijoko (2007). Untung.Bouguer anomaly map of Jawa and Madura. Jiwo Barat.dwc. & J. Ser. Jati Kurniawan & Surono (2006).. J. 1. (online at: www. Pellatispira orbitoidea. S. (IAGI) and 10th GEOSEA Conv. Untung. Amsterdam. & J.F. (1946). Scale 1:1. M-U Eocene (zone Ta3) larger forams from classic Jiwo Hills locality include Nummulites javanus. (1946). Centre (GRDC). Kohno. Akademie Wetenschappen.Umbgrove.H.Wungkal. Paleontology 24. R.Migration of subduction in Central Java. Itya. (IAGI). Assilina spp. Wiriosudarmo (1975).F. djokdjakartae. In: Proc. Geologi Indonesia (J.knaw. R. Indonesia. 13p. B.D. Sadirsan (2011)Strike-slip systems on Tanjung-Brebes area and their implication for hydrocarbon exploration. Y. In E Miocene growth of carbonates in NW Java Basin. W.Preliminary study on geothermal gradient and heat flow in Java. I. No figures) Utoyo. On young. limestone intercalations and volcanics. Pekanbaru 2006. Subang. Spec.. 35 th Ann. Yuliandri. Sadirsan & D.J. 6. related to subduction. linked extensional and compressional structuring in mountains N of Bandung) Van Bemmelen. (IPA). Presence of molybdenum suggests basement rock possibly of continental granitic type) Utoyo. I.K. Hilmawan. 15. Eguchi. Sumber Daya Geologi 17. Bandung. D. Makassar. UN-ESCAP CCOP Techn. Proc. Bunyamin. Kaspar (2004). A. HAGI. Maja 1) Usman. JCM2011-473.W. Indon. dacitic to basaltic in composition. Volcanics of Late OligoceneE Miocene Mandalika Fm (= 'Old Andesites?) of Ponorogo area. E. 33rd Ann. M. below Talang Akar Fm and interfingering with U Jatibarang Fm. Late Oligocene termination of volcanic system in NW Java and start of lacustrine deposition. Proc. 4. Geol. 1: 100. Rundschau 25. Of calk-alkaline affinity. 7p. Bibliography of Indonesia Geology. 3. Late Miocene. with active volcanic sedimentation in Bogor Basin in S. Assoc. Proc.Examples of gravitational tectogenesis from Central Java (Karangkobar region). Geol. T. JCS2005-G084.B. 8p. Assoc. Proc. Dienst Mijnbouw Nederlandsch-Indie. Panguriseng. A.K-Ar age of volcanic rocks in Cipunegara. Conv.S. p. Fahrudi. Astono (2005). Geol. p. 34th Ann. Ed. (1934). J.vangorselslist. H. 1: 100. Conv. S.Geologische kaart van Java.W.H. M. (2007). Purnomo & I. (‘An example of secondary tectogenesis on Java’. West Java. Assoc. Fajar. In E Eocene-Oligocene NW Java Basin was back arc system with shallow marine clastics. East Java'. Joint 36th HAGI and 40th IAGI Ann. rhyolitic. Priambodo (2011).. 15-28. (IAGI). (On N Central Java basin (N Serayu Basin) pull-apart basin evolution and oil seeps) Usman. ('Source rock potential in the Majalengkah area and implications for hydrocarbon rock potential of the Bogor Basin'. Jakarta. 3. M.Ein Beispiel fur Sekundartektogenese auf Java. (Unpublished Report) (Explanatory notes to Geological map of Java. (1937). Toelichting bij Blad 36 (Bandoeng). Panguriseng & W. Issue (163)... with dykes. Surabaya. 55-65. 35-46.sheet 36 (Bandung)) Van Bemmelen.K. Modjo (1982).New concept of Paleogene basin evolution of northern West Java. T. p.000. S. ('The Cisubuh Formation as hydrocarbon reservoir rock in the NW Java and North Central Java basins'. R. H.J.S. 7p. Bull. T. NE of Pacitan near C-E Java border. 81-87. M. De Ingenieur in Nederlandsch-Indie (IV Mijnbouw en Geologie).0 154 www. Bronto & L. R.Potensi batuan induk di daerah Majalengka dan implikasinya tehadap keberadaan hidrokarbon di daerah cekungan Bogor. 35th Ann.000.W.Petrologi dan geokimia batuan gunung api terubah daerah Ponorogo. Prasetya (2006). pillow lavas..Formasi Cisubuh sebagai batuan reservoir hidrokarbon di cekungan Jawa Barat Utara dan Jawa Tengah Utara. Indon. T. ('Petrology and geochemistry of volcanic rocks in the Ponorogo area. Kamal & W.K. etc. 5p. 175194. (Andesites from NE of Bandung show Late Paleocene (59± 2 Ma) and Late Eocene (37± 4 Ma) ages. Van Bemmelen.. (IAGI). PITIAGI-026. Conv. Dirk. Purnomo & P. Naskawan. R. Indon. Geochemical/ biomarker study of rocks and oils from area near first oil well on Java. Conv. mainly andesitic. (1934). Yuliandri. Conv.Early Pliocene Cisubuh Fm oil bearing in wells Jatirarangon 2 and 3 and Klantung-1) Usman.. Late Oligocene Rajamandala Fm is equivalent to Pondok Makmur Fm in NW Java. possibly oldest volcanic rocks in region) Uyeda. IPA11-G-116. Proc. p. (NW Java Basin basin evolution tied to S-ward shift of position of Indian Ocean subduction system from Jurassic to present-day. (IAGI) and 30th Ann.com Sept 2016 . p. Jawa Timur.J. Indon.Usman. Conv. E. Geol.K. T. Petroleum Assoc. S. De Ingenieur in Nederlandsch-Indie (IV). large Lepidocyclina. Volcanic necks probably of Late Pliocene age. converted into fine-grained marble. The Hague.The volcano-tectonic structure of the Residency of Malang (Eastern Java) (an interpretation of the structure of the Tengger Mountains.000. (1941).Geologische kaart van Java. as known in late 1940's) Van Benthem Jutting. Four small areas with Eocene outcrops) Van Bemmelen. (1937).. (Discussion of E Java between Madura Straits and Indian Ocean and the Arjuna. 9.nl/document/149951) Bibliography of Indonesia Geology.). 6.knaw. etc.com Sept 2016 . became connected with mainland. 9-18. p.659. De Ingenieur in Nederlandsch-Indie (IV) 7. 1-116.W. 171-194. Toelichting bij Blad 73 (Semarang) en 74 (Oengaran).W. (1937). (1938).Java. 50.De Ringgit-Beser. Volcano grew above sea level. (‘Granitic intrusions in the Southern Mountains of West Java’. p. Ringgit-Beser volcanic complex originated in shallow sea at N coast of E Java during Plio-Pleistocene. (1941). een geplooide alkali-vulkaan in Oost-Java. Van Bemmelen. Zoologische Mededelingen 20. 2. p. (online at: www. C.W.W. T. p.Tengger and Lamongan volcanic complexes) Van Bemmelen. Proc. belonging to (M Miocene) Rembang layers) Van Bemmelen. (1940). Nijhoff. Toelichting bij Blad 66 (Karangkobar). Government Printing Office. 7. R.W. Semeru.Geologische kaart van Java 1:100. Kon. p. 3. Amsterdam..Bromo. 50 p. with 1-2 cm reaction rim with secondary minerals) Van Bemmelen. R. 115-135. at N foot of Ciremai volcano~ 20 km W of Cirebon. (Major review of Java geology. (1947). (1937).Non marine mollusca from fossil horizons in Java with special reference to the Trinil Fauna. 4. 1. (Kromong Mountains formed by complex of volcanic necks up to 587 m high. R.repository.A limestone block in hyperstene dacite from the Koeda-neck (Kromong Complex. (online at: www. R. Natuurkundig Tijdschrift Nederlandsch-Indie 98. Dienst Mijnbouw Nederlandsch-Indie. De Ingenieur in Nederlandsch-Indie (IV). Nederl. 8.At SE side large limestone inclusion on top of dacitic Koeda-neck. p.nl/DL/publications/PU00018362. p. 4. Volcanics of Rahtawu cauldron large inclusions of contactmetamorphic limestones with Katacycloclypeus annulatus. with original descriptions of Penyaten Fm. Probably part of 'Old Andesites' complex) Van Bemmelen.000. 6. R.dwc. Limestone with Miocene foraminifera exposed as uplifted blocks at NE and SE side of complex. 159-172. (Explanatory notes for Semarang and Unguran 1: 100. 1:100. etc. Bandung. Akademie Wetenschappen. In: The geology of Indonesia. 653-658. Two examples: quartz-dioritic intrusion in Tjilajoe River.W.W.The Muriah volcano (Central Java) and the origin of its leucite-bearing rocks. and was subjected to folding in younger Pleistocene (Beser Ridge anticline)) Van Bemmelen. R. Ed. intrusive in Miocene limestone and MioPliocene marine sediments (Kaliwangoe-series). R. Java) Van Bemmelen. R. 83-180. 37-41.vangorselslist. (1937).Igneous geology of the Karangkobar region (Central Java) and its significance for the origin of the Malayan potash provinces. p.000 Geologic map sheets.W.W. 60 km S of Bandung and Tendjolaoet Ridge granodioritic intrusion 40 km SSW of Tasikmalaya.pdf) (‘Mediterranean-type’ leucite-bearing rocks of Muriah volcano formed from limestone assimilation by ‘Pacifictype’ magmas.Van Bemmelen. near Cheribon. p. (1949).Granitische intrusies in het Zuidergebergte van West Java. Western Java).0 155 www. 545. a folded alkali-volcano in East Java’. (‘Ringgit-Beser. (C Java Ungaran region. R. De Ingenieur in Nederlandsch-Indie (IV).naturalis. Dienst Mijnbouw Nederlandsch-Indie. East Java. introduced for specimens with multilepidine embryon) Van den Hoek Ostende. I. D.Oligo-Miocene Lepidocyclinas and planktonic foraminifera from East Java and Madura. (1923). 5. p. Bringin and Gegunung oilfields. mainly subgenus Nephrolepidina. J.Cenozoic Molluscan types from Java (Indonesia) in the Martin Collection (Division of Cenozoic Mollusca). Indonesia. Geophys.B. var. Lepidocyclinas 'grade of enclosure' increases systematically from 36% to 65% up section.knaw.Variation in forearc basin development along the Sunda Arc.De stratigrafie van het Tertiair van Java.W. followed by basin and slope sediments derived from evolving magmatic arc. Burton.E.. Geochem. Forearc basins initially with submarine fan deposits. Contains 5700 type specimens of 912 species) Vanderkluysen.P.knaw. Lepidocyclina wanneri n. Proc.Smekens (2014). Akademie Wetenschappen 52.repository. (LUSI mud volcano in E Java erupting since 2006. L. Wesselingh & C. Elbert and Selenka and Bandung Geological Survey. no stratigraphic context) Van der Vlerk.Lepidocyclininae from Rembang (Java) with a description of L. 4. M. H.P.Composition and flux of explosive gas release at LUSI mud volcano (East Java.5% CO2. (online at: www. Kon. Southeast Asian Earth Science 14.com Sept 2016 . Leiden. 53-56. Nederl. Last few years of activity characterized by periodic shortlived eruptive bursts.)) Van den Abeele.dwc. Techn. Seven Lepidocyclina species. Leloux. p. J. Indonesia. wanneri n. Akademie Wetenschappen. p. Java: Lepidocyclina rutteni n. 5.vangorselslist. De Ingenieur in Nederlandsch-Indie 4.0 156 www. Wetenschappelijke Mededeelingen Dienst Mijnbouw Nederlandsch Oost-Indie 1. Martin collection at Naturalis Museum. 760-765. Mus.R.naturalis. Kon. Kon.F. from Nyalindung beds near Sukabumi) Van der Vlerk. L.pdf) (129 species of mainly deeper marine foraminifera in Pliocene marls.M.Young Tertiary smaller foraminifera from the neighbourhood of Ngimbang. S of Java. In Miocene. National Museum of Natural History.A. Viviparus. 392-399. 331-349.5% methane) Van der Sluis. Geosystems 15. 70. Nat. p. Nederl.R. p. etc. Leiden.sp. SE of Rembang. (1996). de Vletter (1942). p. (Composite section of Oligo-Miocene sediments of E Java and Madura with Lepidocyclinas and planktonic foraminifera. (1949). I. (online at: www. (Online at: www. Winkler Prins (2002). 7. A. Molluscs from same samples described by Wanner & Hahn (1935). Present forearc basin configuration initially controlled by extension and differential subsidence of basement blocks in response to Late Eocene India-Asia collision. F. Natuurhist.. 6.. p. (1924).M. Proc. 16-35. collected by Wanner. Thiara.nl/DL/publications/PU00017817. W. mainly from Java. Samples collected by Rutten in SW corner of 109-Lamongan map sheet. (Sunda Arc fore-arc areas between Sumatra and Sumba. mainly from Latest Pliocene-Pleistocene of Kendeng zone/ Trinil area. Postuma (1967). & D. sp.nl/document/45042) (Listing and re-descriptions of Tertiary mollusc type specimens in K. Ed.nl/DL/publications/PU00018695. Hartnett & J. 2932-2946. from Tji Lalang beds and Lepidocyclina/ Miogypsina/ Cycloclypeus and Rotalia beccarii atjehensis n. N and NW of Bojonegoro. & J.sp. 0. (Miocene larger forams from W. 1010-1015. Indonesia). Late Oligocene increase in convergence between SE Asia and Indian Plates associated with new pulse of subduction resulted in basement uplift and formation of regional unconformity along entire Sunda Arc. Proc. OligoMiocene boundary placed above Globigerina ciperoensis ciperoensis zone) Van der Werff. Van der Vlerk. Lymnaea. 1-130. Incl..dwc. B. 7.(Monograph of fresh water molluscs from collections of Dubois. No location map. Corbicula.M. Gases sampled 98% water vapor.F. Bull. 1. J. I. Incipient collision between Australia and W Banda Arc caused back-arc thrusting and basin inversion. Clarke. p.pdf) (Lepidocyclinids from E-M Miocene 'orbitoidal limestone (OK)' of Rembang Beds near Sumberan. Sumba and Savu forearc sectors characterized by forearc extension. Akademie Wetenschappen 45. Bibliography of Indonesia Geology. Nederl. 10.Foraminiferen uit het Tertiair van Java. some Multilepidina. De voorhistorische verhoudingen van land en zee in den Oost-Indischen Archipel. L. 5-76. Along Sumatra W coast uplift along inner side of forearc along older transcurrent faults.0 157 www. Jaarboek Mijnwezen Nederlandsch Oost-Indie 12 (1883).J. (1873). L. West Java. Bantam). De Mijningenieur 7. Ed. (1884). assistentresidentie Grobogan. Common andesitic intrusions) Van Es. (‘Additional data on the Bojongmanik coal field’.Geologische waarnemingen op Java. Wetenschappelijk Gedeelte 2. (‘Contribution to the knowledge of the stratigraphy of the Tertiary in the Banten Residency’ West Java. (1883). Initial forearc basin subsidence relates to age of subducting oceanic lithosphere.Geologische overzichtskaart van den Nederlandsch-Oost-Indischen archipel (schaal 1:1. Jaarboek Mijnwezen Nederlandsch Oost-Indie 1872. Jaarboek Mijnwezen Nederlandsch Oost-Indie 45 (1916). (‘Survey of the occurrence of natural oil near Purwodadi. (1918). Jaarboek Mijnwezen Nederlandsch Oost-Indie 44 (1915). 133-234. Coals thought to be too thin and poor quality for commercial exploitation) Van Es. ('Coal in the Semarang area') Van Dijk. 9. (‘Description of the marble in the assistant-residency of Pacitan’. p. (1918).C. Attempt to compare S Banten and S Sumatra stratigraphies (but poor age control). Verhandelingen 2. (1926). (1917).Bijdrage tot de kennis van de stratigrafie van het Tertiair in de Residentie Bantam. non-volcanic part of the Residency Surabaya'. Grobogan region'. 55-140. (Overview map and explanatory notes off southernmost Sumatra and W Java) Van Es. 2.C.J. 151-192. p.Over de geologie van het noordelijke. 150-153. (1872). P. (Early paleogeographic map of Indonesia at end Pliocene and its implications for migration of animal species) Van Es.C. L.C.000). Wetenschappelijk Gedeelte. Details on coal thickness and composition.Beschrijving van het marmer voorkomende in de assistant-residentie Patjitan.000. (1872). P.Nadere gegevens over het Bodjongmanik kolenveld.vangorselslist.J. Djiwo en Zuidergebergte. p. Verhandelingen 2. p.com Sept 2016 . P. Hill near Ngemba village in Lusi River valley near Purwodadi with steeply dipping Tertiary sediments. Bibliography of Indonesia Geology.J. I. (1920). 359-369. On 1992 GRDC map this is shown as E Miocene Campurdarat Fm in area with common andesitic intrusions) Van Dijk. en de invloed daarvan op de verspreiding der diersoorten. p. Jaarboek Mijnwezen Nederlandsch Oost-Indie 1873. ('On the geology of the northern. Investigation of suitability as building stone of ‘marble’ (crystalline limestone) at East side of Panggul Bay. Flexural loading of evolving accretionary prism and across arc strike-slip faulting may result in additional forearc subsidence. NE Java. P. p.Toelichting bij Blad XV (Lampongs. p. Verhandelingen 2.J.C. 193-215. L. p. 255-304. L. 164-174. Verhandelingen 1. including limestone breccia with salt water with oil seeps) Van Dijk.) Van Dijk. P. Jaarboek Mijnwezen Nederlandsch Oost-Indie 45 (1916).Steenkolen in het Semarangsche. 153-157. 6. Partly based on data rom 700+m deep well near Gresik) Van Es. p. 1.increase in size of accretionary prism and convergence rates resulted in folding/ uplift of distal forearc basin strata.Geologische beschrijving der residentie Djokdjakarta.Onderzoek naar het voorkomen van aardolie in de nabijheid van Poerwodadi. niet-vulkanische gedeelte van de residentie Soerabaja. Straat Soenda. Jaarboek Mijnwezen Nederlandsch Oost-Indie 1884. p. Jaarboek Mijnwezen Nederlandsch Oost-Indie 47 (1918). (‘Geological description of the Residency Jogyakarta’) Van Dijk. Jaarboek Mijnwezen Nederlandsch Oost-Indie 1. Southern Mountains of SE Java. Orbulina. 183-209. Discocyclina.Gastropoda. Bandung. p.repository. De Ingenieur in NederlandschIndie IV. Part II (Families Planaxidae-Naticidae inclusive).nl/document/549598) (First of series of paleontological papers on molluscs from Plio-Pleistocene Kendeng Beds W of Surabaya. etc. because more erosion on N flank of anticline) Van Es. 1987. Cerithiidae. Early Miocene volcanic breccias. Mededelingen 13. (1938).1925). suggesting Jiwo Anticline was already folded in Middle Miocene. 37. zinc).Oude exploratiewerken in Zuid-Madioen. and formed from bat excrement) Van Gorsel. 1-86. Mainly quartz veins with chalcopyrite in volcanics.T. (1942).naturalis. Paleoclimate signal inferred from fluctuations in cooler-climate planktonic forams used to correlate with Mediterranean Miocene-Pliocene boundary stratotype) Van Regteren Altena. Bibliography of Indonesia Geology. 2. Kadar & P. Van Gorsel.The marine Mollusca of the Kendeng beds (East Java).The marine Mollusca of the Kendeng beds. East Java. L.O. Van Gorsel. (Field guide to Trinil hominid site. 11. Java 1929. ('Old exploration works in South Madiun'.The marine Mollusca of the Kendeng Beds (East Java) Gastropoda.C. Gastropoda. dealing with gastropods belonging to families Planaxidae. (Reprint of Van Regteren Altena (1938) above) Van Regteren Altena. Mey (1989). personnel during Kendeng zone mapping survey (Duyfjes et al. Ed. p. Triphoridae. Kadar. Indonesian Petroleum Association (IPA) Field Trip Guidebook. 5. Troelstra (1981). sandstones. Mededelingen 12. p. (Late Miocene-Pleistocene planktonic foram biostratigraphy of deep water deposits of Kendeng zone in Ngawi section. (online at: www. L.J. ('The significance and occurrence of phosphate on Java'.R. Part.47. E Java. Small phosphate deposits found at many localities on Java. C.The marine Mollusca of the Kendeng Beds (East Java). J. 1-29. 89-120. Molluscs mainly from Pucangan Fm. (1926).C. Material collected by Geological Survey. 2. 1-67. most of it probably draining North. D. Early description of classic JiwoSouthern Mountains successions N of Gunung Pendoel Miocene andesite intrusion (not much different from Verbeek and Fennema 1996): Pretertiary chlorite schists and crystalline limestones. Soenarto. overlain by Eocene conglomerates (mainly quartz pebbles). p.nl/document/549625) (Systematic study of marine molluscs from Plio-Pleistocene Kendeng beds of E Java. C Java) Van Es. Budianto Toha et al. (online at: www. Fourth Pacific Science Congress.Central Java Fieldtrip 27-30 October 1989. (1938).Central Java Fieldtrip June 18-21. J.vangorselslist. Calyptraeidae.O.O.. Brief review of small mining exploration/ exploitation concessions S of Madiun.naturalis.De beteekenis en het voorkomen van fosfaat op Java. (= Lower Tf.T. Possibly 2000m of erosion prior to deposition of M-L Miocene limestone. Excursion Guide E5. D. 6.) and by Cosijn. claystones and limestones with Nummulites. Xenophoridae. 205-210. (1987). Marine Micropaleontology 6. (2) Kali Teloe (1908. Pellatispira. Indonesian Petroleum Association (IPA) Field Trip Guidebook. L..Late Neogene planktonic foraminiferal biostratigraphy and climatostratigraphy of the Solo River section (Java. Strombidae. Dienst Mijnbouw. J. (1929). part IV (Families Cassididae-Ficidae inclusive). C.. Gastropoda. p.O.J.com Sept 2016 . Leidsche Geol. Amaltheidae.('Geological observations on Java 1: Jiwo and Southern Mountains'. Epitoniidae.C. 1. N and W of Tegalombo (copper)) Van Es. Leidsche Geol. p. I (Families Fissurellidae-Vermetidae inclusive). Pyramidellidae. & S. All formations unconformably overlain by near-horizontal 'young-Miocene' limestones with Lepidocyclina rutteni.Trinil. p. all in present or former cave deposits. and Naticidae) Van Regteren Altena. etc.0 158 www. p.repository. (1935). HvG). p. Mining concessions: (1) Kesihan (19081925) S of Tegalombo (copper.T. p. Potamididae.H.J. (1943). Miogypsina. Mededelingen 10. Bandung. 217-320. C. 1-14. Eulimidae. Leidsche Geol. Wetenschappelijke Mededeelingen 27. De Mijningenieur 7. C. some Upper Kalibeng Fm) Van Regteren Altena. Indonesia). Enkele aanteekeningen omtrent het Zuidergebergte (G. orbitoiden en alveolinen in Java en over den ouderdom der gesteenten waarin zij optreden. (1883). East Java. 205-240. p. 6. Assilina. & J. Garut. Relatively high T (216-320 °C) and salinity 2-5 wt% NaCl at formation) Verbeek. Musgrove.html?id=uFoYAAAAYAAJ) ('Preliminary note on Nummulites. (1932). 5 of which have Eocene sediments unconformably overlying Pretertiary metamorphics. ('On the thickness of the Tertiary deposits on Java'. (IPA). Indonesia: a case study from the Jambaran Field.0 159 www. Zeiza. & C.Eine Neogene Molluskenfauna vom Tji Gugur (Priangan). Geographic-geological observations in Southern Mountains (Gunung Kidul) SE of Yogyakarta) Vanessa. 7. 1.. Conv. Jakarta. Tall gas column in steep-flanked Oligocene carbonate buildup with ~1000 m of relief relative to platform. C. (1950). Stephens. Akademie Wetenschappen. R. Verhandelingen Kon.com/books/about/Natuurkundig_tijdschrift_voor_Nederlands. 23.naturalis. Includes first descriptions of Eocene Nummulites (Nummulites javanus. 1-9. A. Batavia. part V (Families Muricidae-Volemidae inclusive). Verdiansyah (2014).The marine Mollusca of the Kendeng beds. Verhandelingen Kon. Ed.com Sept 2016 . ('The Jampang-Kulon District'. (IAGI). East Java (part III of this series is by Schilder 1941)) Van Regteren Altena.(www. (Rich Neogene mollusc faunas from Priangan. 132-134. 43rd Ann. N. Garut.O. 5p. C Java (smaller species than those known from W Kalimantan)) Bibliography of Indonesia Geology. J.geological observations in SW Java) Van Valkenburg. Amsterdam. High sulfidation epithermal gold deposits in volcanic rocks of Miocene Jampang Fm. S. Gastropoda. Proc. Assoc. 2.D. Sekti.nl/document/549261) (More taxonomic descriptions of Plio-Pleistocene gastropods of East Java) Van Regteren Altena. bagelensis. S.M. IPA11-G-205.naturalis.Chattian sea level fluctuations. W. Leidsche Geol. West Java'. S.O. PIT IAGI 2014-256. Jawa Barat. Conv. Geol. (Jambaran Field discovered in 2001. Batavia. NW of Jakarta)) Van Valkenburg. & O. Unconformities recognized on well logs and seismic coincide with global Rupelian. (http://books. 3-16. p. Indon. R.repository. R. (1891).vangorselslist.google. Mededelingen 15. Weidmer. Only 6 areas of Java with Early Tertiary in outcrop.T. ('Fluid inclusions in high sulfidation epithermal gold deposit Cijulang. Alveolina javana) from Java. 3767. F. Jaarboek Topographische Dienst 1924. No maps or stratigraphic context info) Van Simaeys. SW of Bandung. p. A. Petroleum Assoc. p. Geographic. Jakarta.D. p. Simo (2011)Early carbonate growth in the East Java Basin. N. orbitoids and alveolinids in Java and on the age of the rocks in which they occur'. (online at: www. p. Derewetzky & T. 13p. p.repository. Main buildup ~10 km long. Kidoel). Natuurkundig Tijdschrift Nederlandsch-Indie 51. also Timor. De Mijningenieur 13.nl/document/549495) (Taxonomic descriptions of Plio-Pleistocene gastropods of families Cassididae and Ficidae from Upper Kalibeng and Pucangan formations of Kendeng zone. White (1924). (‘On the alignment of the Thousand Islands’ (Pulau Seribu.Het district Djampang-Koelon. Geologisch Mijnbouwkundig Genootschap 14 (Gedenkboek Tesch).Voorloopig bericht over nummulieten. Nederl. 101-138. Indon.M. Beets (1944). (1924). Mention of Cretaceous larger foram Orbitolina from Luk Ulo. Jaarboek Topographische Dienst 1923. C. Java.Over de rangschikking der Duizend eilanden. A. A. Discocyclina. ('Some notes on the Southern Mountains (Gunung Kidul)'. In Cirebon area Tertiary ~5000m thick) Verbeek.Inklusi fluida pada endapan emas epitermal sulfidasi tinggi Cijulang. subaerial exposure and meteoric diagenetic events) Van Tuyn. 1 km wide. Proc.Over de dikte der Tertiaire afzettingen op Java. 35th Ann. archive. (UNPAD) 12.A.T.G. Fennema (1882). Mitteilungen 44. 173-186. Stemler. with 1:2. Amsterdam.M.M. p. (1954). (1898).D. Bogor. With beach ridges. Brief overview of the geology in German. + Atlas.org/20/items/descriptiongol11verb/descriptiongol11verb.vangorselslist. & R. R. (1953). ('Geological description of Java and Madura'. 5-48.M.Het kustgebied van Noordelijk West Java op de luchtfoto.T. J. during lowering of sea level of 5-6m. Akademie Wetenschappen.M. Doct. & R. p. Not much on geology. Nur (2014). (‘New geological discoveries on Java’.Petrologi dan petrografi satuan breksi vulkanik dan satuan tuf kasar pada Formasi Jampang. R. daerah Cimanggu dan sekitarnya. steeply dipping. Amsterdam. p. which formed in last 5000 years.ac. Natuurkundig Tijdschrift Nederlandsch-Indie 41.us. p. First to recognize Paleogene sediments and Pre-Tertiary schists in Central Java. comprehensive geologic description of Java and Madura.Die Geologie von Java. 21.Nieuwe geologische ontdekkingen op Java. 3. Yuniardi & A.M. Stemler. ('The geology of Java'. (Online at: http://openlibrary. & R. 47-90. roughly E-W strike (Junghuhn had called these Tertiary. Cimanggu and surrounding areas. s-Gravenhage. R. H. R.Geologische beschrijving van Java en Madoera. First report of Pre-tertiary rocks on Java.D. with oversized atlas of geologic maps. 1-1135.000 scale map) Verbeek. (online at: http://jurnal.R. Trio. ('Brief geological overview of Java') Verbeek. 2. p.. Geomorphical study of alluvial plain along N coast of W Java. Amsterdam. Bull.org/works/OL1558191W/Description_geologique_de_Java_et_Madoura) (or at: http://ia600508. p. 1-101. Common travertine terraces in rivers of (Pliocene?)Marl Plateau.Kort geologisch overzicht van Java. Same paper as 1881 paper above) Verbeek.Nieuwe geologische ontdekkingen op Java. Also first record of leucite-bearing volcanics of Muriah volcano. at border of Bogor and Bantam Residencies. Verhandelingen Kon. Jawa Barat. and locally great thickness of Tertiary sediments) Verbeek. p. p. in three areas: (1) metamorphic rocks of S Serayu Mts/ Lok Ulo. Y. N coast of C Java) Verbeek.pdf) ('Geological description of Java and Madura'. P. 146-152. Ed. & R.M.D. Verbeek notes similarities with Sumatra old slates). 12. p. Penggemar Alam 36. river levess. etc.D. 71. (1956).) Verstappen.250. Natuurkunde. (1897).Djakarta Bay. Fennema (1881). H. Nederlands Aardrijkskundig Gen. West Java') Verstappen. ('New geological discoveries on Java'. Rijksuniversiteit Utrecht. J.D. 37-51. Tijdschrift Kon. 25-34. R. 1-1183. Classic. Thesis.M. N of Kebumen. ('The coastal region of northern West Java on air photos'. associated with serpentinite and red chert. Fennema (1896). Afd. 2.Description geologique de Java et Madoura. (2) metamorphic rocks on three of 'Zutphen islands' in Sunda Straits and (3) Gedeh Mt near Jasinga. R.Landscape development of the Udjung Kulon Game Reserve.unpad. (Geomorphology study of poorly studied Ujung Kulon peninsula of SW Java. Nederlands Aardrijkskundig Gen.G.Verbeek.com Sept 2016 . a geomorphological study on shoreline development. 171-179. (Unpublished) Verstappen.D. which appears to be tilted to NE) Bibliography of Indonesia Geology. 2 vols. Petermanns Geogr. Fennema (1896). p.id/bsc/article/view/8378/3894) ('Petrology and petrography of volcanic breccias and coarse tuff of the Jampang Formation. H. 6. Tijdschrift Kon. French translation of Verbeek and Fennema Java book above) Verdiana. Scientific Contr.T.0 160 www. Belmont. A. E Miocene Nyalindung beds and Late Miocene Tjilanang beds in Bandung survey collections) Wachjudin. Boyce (2006). I. Aftershocks mostly in Gunung Kidul Mountains. etc. C Java. (2008). K. In upper mantle beneath volcanoes a lowvelocity anomaly inclined towards slab. Kopp et al. Descriptions of otoliths from Late Eocene of Nanggulan. collected by Selenka 1907 expedition) Vorstman. H. Martono (1985). p. 635-657.G. 739-749. Five ore/ alteration stages. Indonesia.G. Blankenhorn. Collision exhumed high-P metamorphics from deeper part of pre-existing Bibliography of Indonesia Geology. Walter. H. Williams-Jones & A.. Selenka & M. 923-932. A. Jurassic shallow marine allochthonous formation emplaced by collision of continental blocks. Jakarta. In: M. Rabbel. ('Some Neogene sea urchins from Java'. Also comments of geology of Timor. 339-352. Ed.Bericht uber einen Ausflug in Java. (130 seismographic stations onshore and off C Java and operated for >150 days. probably paths of fluids and melted materials in mantle wedge. 18. Star Publishing.2. (2000). 170. Metallogenic model explains enrichment in Sn and W by increased recycling of slab-derived sedimentary material during Pliocene subduction) Wahab. California.. Leipzig.Tertiaire vischotolieten van Java. (2007). Wagner. Kopp et al. Echinoids from Pliocene? marls in Trinil area.Application of oil geochemistry for hydrocarbon exploration in Northwest Jawa. Geological fieldtrip to W Java volcanoes and South coast by famous German geologist Von Richthofen with F.Joint inversion of active and passive seismic data in Central Java. p. (Cretaceous accretionary-collision complexes formed by accretionary or collision processes. and was likey epicenter of 2006 earthquake. Engelmann. D. p. 6. (Analysis of source rocks in NW Java shows Lower Cibulakan (Talang Akar) sediments are main source in area. p. Conv. W. 1-16. Kuhnel & S.L.. Pramumijoyo et al. Junghuhn. (eds.R. 14th Ann. siliceous shale.com Sept 2016 .J.Stable isotope-based modeling of the origin and genesis of an unusual Au-Ag-Sn-W epithermal system at Cirotan. p. 2. Int. 41-45.1.0 161 www. Inversion images show strong low-velocity anomaly (−30%) in backarc crust N of active volcanoes. p. D. S. Karnawati.Cretaceous accretionary-collision complexes in Central Indonesia. Wassermann. Applied Clay Science 5. Accretionary wedge with fragments of oceanic crust (chert. (IPA). Gesellschaft 14. 237-260. Die Pithecanthropus-Schichten auf Java. Reck (1911). In: D. one at foot of volcanic arc. back arc spreading. 2006. p. on NE-SW trending zone that separates forearc in two rigid blocks. J. Zeitschrift Deutschen Geol. S. B. Crust in forearc appears strongly heterogeneous. (1862). Koulakov. Asian Earth Sci. Distribution of mature source rocks delineated by applying Lopatin method) Wakita.vangorselslist. & H. Wittwer. pillow basalt).) The Yogyakarta Earthquake of May 27. arc volcanism. Focal strike slip mechanism consistent with orientation of this contact) Wagner. 2. limestone. Sulawesi.J. 327-356.E. Indon. T. Luehr. (1929).11.G. (Report on a trip on Java'. forearc sedimentation. p. Oceanic plate subducted under Cretaceous arc from S. Indonesia. A. W.Von Richthofen. 4.The characteristics of bentonite from the Karangnunggal deposit. West Java. carried microcontinents from Gondwanaland. A. Chemical Geology 219.A. Onshore part two high-velocity blocks separated by narrow lowvelocity anomaly. & D. van der Gaast (1990). Recent Java earthquake at lower edge of this zone. in zone semi-parallel to and 10-15 km E of Opak River fault) Wagner. Proc.Einige neogene Seeeigel von Java.Seismic structure of Central Java. Rabbel. interpreted as weakened contact zone between two rigid crustal bodies.) Von Staff. famous Java naturalist. Wetenschappelijke Mededeelingen Dienst Mijnbouw Nederlandsch-Indie 5. T. Luehr. F. J. Petroleum Assoc. H. Geophysical J. B. (Pliocene Cirotan low-sulphidation epithermal gold deposit in W Java complex polymetallic assemblages and progressive enrichment in Sn-W and Au-Ag in late stages of mineralization. ('Tertiary fish otoliths from Java'. R. p. (C Java tomographic data reveals two low velocity anomalies. Java.0 162 www. Ebinger (2008). Formed in Pliocene (2. und seine Epoke aus dem Altmiocaen der Insel Madura. H. and its…from the Early Miocene of Madura Island'.W. Ed. More than nine subparallel quartz-adularia-carbonate veins. Katacycloclypeus (= more likely Middle Miocene?.argillaceous rocks were deposited throughout Cretaceous time.Cretaceous radiolarians from the Luk-Ulo Melange complex in the Karangsambung area.Late Cretaceous (Late CampanianMaastrichtian). Atkinson (1983). P. (2006).05 Ma).E. Soc. Munasri & B.D. p. Density contrast between arc and underlying crust required to produce arc basins means they are unlikely to form in young intra-oceanic arcs) Wanner.vangorselslist. p. p. J. (’Miocene molluscs from the Rembang area (Java)’. Draut. Scholl (eds.early Late Cretaceous. Media Teknik 28.Nature and age of sedimentary rocks of the Luk-Ulo melange complex in the Karangsambung area. p. Good fit of model to Halmahera Arc and E Java. Richest mollusc localities on Dermawu-Mahindu and Gegunung anticlines. Late Cretaceous age of radiolarite above pillow basalt at ) Wakita. Eavis & T. eulepidinid Lepidocyclina. Ngandong and Lodan). Central Java. D. Indonesia.Middle Cretaceous (Barremian-Albian?). Spec. Geol. if plate is broken. Geol. Survey (USGS) Prof. 64-79. J.J. Molluscs mainly gastropods. D21-D23.Basin formation by volcanic arc loading. New crinoid species from blue-grey marls. Bambang (1991). A. Paper 436. Molluscs from area N and NNW of Bojonegoro (Sedan. 9. (On caves in C Java Southern Mountains M Miocene Wonosari Limestone) Waltham. (1938). LIPI.R. Mainly from M Miocene orbitoid-Cycloclypeus Lst (later called OK Limestone and Ngrayong Beds) and some from overlying Globigerina Marls series (later subdivided into Wonocolo. Southeast Asian Earth Sci. (Brief review and map of folded Miocene clastic sediments with andesitic intrusions at Jatiluhur damsite. Smart. Paper 450-D. Zeitschrift Deutschen Geol. M. Bogor zone. Smyth & C.. Beilage Band 79 B.Geology of Djatiluhur damsite and vicinity. Central Java. & E.M Campanian) and V. 29-43. Wanner notes N to S facies changes. half of them new) Warmada.Balanocrinus sundaicus n.Miocaene Mollusken aus der Landschaft Rembang (Java). Cave Science 10. ('Balanocrinus sundaicus n..sp. Associated with Miogypsina thecidaeformis.com Sept 2016 . p..W. and accreted at subduction trench in M.The caves of Gunung Sewu. 68 species. (Pongkor epithermal gold-silver deposit in W Java largest low-sulfidation deposit on Java. Proc. Ledok and Globigerina Marls Fms. 11-26. 222-273.C.accretionary wedge.L. Yogyakarta. J.) Formation and applications of the sedimentary secord in arc collision zones. II.. 55-96. P. IV. H.C. Jawa Barat. 385-403. Loads generated by arc sufficient to account for subsidence in basins within ~100 km of active volcanoes at subduction plate boundaries. I. Geol. Munasri & W. Gesellschaft 87.Late Cretaceous or earliest Paleocene. Cretaceous tectonic units rearranged by Cenozoic thrusting and lateral faulting during successive collision of continental blocks and rotation of continental blocks in Indonesian region) Wakita. Clift & D. Siliceous. (Incl. K. Friederich. Basins will be asymmetrical with coarse volcaniclastic material close to arcand volcaniclastic turbidites farther away. (Five assemblages of Cretaceous radiolarians in shale and chert of Luk-Ulo Melange in Karangsambung area: I. Indonesia.. America (GSA). Palaont. Neues Jahrbuch Mineral.H.sp. p. K. R. HvG)) Wanner. W Java) Waltham. 4. III. H. 4. West Java. (1962). (Paper quantifies flexural subsidence from loading by volcanic arc. Hahn (1935). p.Late Cretaceous (Coniacian. Fragmentation and mixing with schist and quartz porphyry must have occurred in Paleocene) Waldron. A. Ngampel. Hall. northern C Madura. Silver Jubilee Symposium on Dynamics of subduction and its products. In: A. Butak. Widoyoko (1994). kotoi. Formation T ~220°C) Bibliography of Indonesia Geology. p.S.Karakteristik mineralogi dan proses pengendapan emas pada endapan emas-perak epitermal Gunung Pongkor. 6. Indonesia.). collected by Weber near Bawarukem River. 32-36. U.Early Cretaceous ('up to Barremian'). carbonates. Carbonate deposition on buildups progressively terminated through time fromW to E) Bibliography of Indonesia Geology. Jakarta.com Sept 2016 .Petrology and geochemistry of intrusive rocks from Selogiri area.Geologi dan fasies batuan metamorf daerah Jiwo Barat. Sudarno & D. Central Java. I.. and short period of hydrothermal activities but did not create economic ore deposit) Warmada. p.W. serpentinite and amphibolite Intrusive rocks mainly diabase dikes. Petroleum Assoc. ('Geology and facies of metamorphic rocks in the West Jiwo area. Lehmann.Warmada.T. (Pongkor gold. Selogiri deposit formed during one or two intrusion periods.5. Bayat area with metamorphic rock outcrops. Symp. L.K. Watanabe (2006). Bayat. Resource Geology 57.7 Ma (microdiorite.silver deposit near Bayah. Spec. A. 549559. is largest low-sulfidation epithermal metal deposit in Indonesia. I. Five high-relief carbonate buildups drilled in Cepu area of E Java: Sukowati. C Java'. Nine major subparallel quartz-'adularia'-carbonate veins with low sulfide content) Warmada.N. Thick Miocene section. Proc. G. Interpreted protolith of metamorphic rocks was melange. Proc. 124-135. Conv. Derewetzky. Cendana and Kedung Tuban. Indonesia. B.T. Simandjuntak & H.. SEED-Net Symposium on Geo-Hazard and Earth Resources Management. Sinomiya. light paraffinic oil from Upper Rembang and Lower Wonocolo sands in Ledok and nearby fields. Weeks (ed. Lehmann & M.G. I. Klaten. p. The Canadian Mineralogist 41. Wijonarko (2008). 2.W.W. J. Bayat. Jogmec) and ~12. Media Teknik (UGM) 30. 113-118. probable E Oligocene carbonate platform. and is of Late Pliocene age (2 Ma). schist. rare-earth element and stable isotope study of carbonate minerals from the Pongkor epithermal gold-silver deposit. Indonesia. Soe. Indon. B. 163-169. (Selogiri gold prospect near Wonogiri in S C Java S Mountains probably formed during single intrusion periods from calc-alkaline intrusive and is not economic. Intrusions dated as ~21. Simandjuntak (2003).. Petrol.D. Banyu Urip. p. peliticrocks. Imai & K.M. C Java. 2nd Int. Liu. Hohensee. overprinted by low sulfidation epithermal gold quartz deposits. Jawa Tengah. (2) rel. Ages of intrusives Early Miocene and Late Miocene) Warmada. Setijadji. 1359-1364. Publ.Polymetallic sulfides and sulfosalts of the Pongkor epithermal gold-silver deposit.and quartz sandstones) Weeda. West Java. 2nd Int. HvG) Strontium isotope dating program. I. M.11. and (3) heavy paraffinic oil in M Mocene Ngrayong sst at Kawengan) White. expected to be porphyry copper gold deposit.0 163 www. ~N-S trending quartz -adularia -carbonate veins with low sulfide content. Geol. American Assoc.vangorselslist. In: L. (In E-W trending E Java Tertiary basin 132 MBO produced since 1888 from 20 fields. broad. gneiss and metasandstone widespread. Setijadji. Three oil types: (1) asphaltic oil from shallow Lidah and Kruka fields S of Surabaya from Pliocene U Globigerina Fm. Sinomiya. A. L. Jambaran. 2.05 Ma) and largest low-sulfidation epithermal precious-metal deposit in Indonesia.W. Soe. 185-200. (1958).C. Gross differences despite having all grown from a common. J. Watanabe (2005). (Selogiri gold prospect in W part of S Mountains. J. Timing of deposition of buildups established through robust (turns out to include bad dates.. Central Java. p. M. (Pongkor gold-silver deposit Pliocene age (2. A. E. Ed. HvG). Earth Resources Engineering and Geological Engineering Education. (AAPG). Imai & K. West Java. J. C. I.163-169. Indonesia: examples from the Cepu area. p. p. Hemes (2007). folded into 2 E-W trending zones in Plio-Pleistocene. 18. 31st Ann. A. Indonesia.. (IPA). p. Bulk of oil produced from M Miocene Ngrayong Sst (this was before Cepu oilfield discovery in Oligo-Miocene Kujung Fm Limestone.W. Three main metamorphic facies: greenschist.D. Stevens (2007). Geary.C. SW Java.V. blueschist with transition to glaucophane greenschist and amphibolite facies. V.Petrology and geochemistry of intrusive rocks from Selogiri area. intruded by igneousrocks: phyllite. Proc.Fluid inclusion. Indonesia. composed of mafic/ultramaficrocks. locally also glaucophane schist. Pierce & J. Nine subparallel.S. M.9 Ma.. 6.Oil basins of East Java. Fluid inclusions indicate temperatures of 180-220°C and meteoric water origin) Warmada. Bangkok 2005.Temporal controls and resulting variations in Oligo-Miocene carbonates from the East Java Basin.) Habitat of oil. I. Johnstone. Conv. 6p.The structural geology at Lusi mud volcano. Enschede.A. Not much detail on sample localities or stratigraphic succession) Widarmayana. (2006). 1-968.Banyu Urip and other Cepu Block fields. shallow water carbonate on horst blocks and deeper water carbonate in graben areas. Hadisaputro (2011). Prasetyo.Spatial data analysis and integration for regional-scale geothermal prospectivity mapping. 'mid-Main') coral reefal buildups along W-E trend in S part of basin.nl/library/papers_2006/msc/ereg/wibowo. D.Neogene planktonic foraminifera from Kawengan. Rapid deposition of thick organic rich sediment as part of Brantas delta. Jakarta.com Sept 2016 . Ed. E. marking transition from oblique subduction along Sumatra to nearperpendicular subduction along Java. A.Constraints on upper mantle structure and seismicity beneath the Sunda Strait from teleseismic data. B. Conv. 1-19.W..B. Sidoardjo.. Seismic tomography and seismicity pattern under Krakatau suggest (1) mantle plume ascending toward Krakatau volcano. West Java.. Santoso. (Cepu Block early carbonate growth in Rupelian in two main depositional environments. Mineral Res. Publ. Indonesia. 5p. Proc.0 164 www. Porong District. Reef sizes between 4. Musgrove (2014). Inst. at E end of Kendeng Zone in S part of E Java inverted back-arc basin formed in Oligocene. Proc. B.. Brief review Nannofossils from 26 samples of Eocene. & H. p. 32nd Ann. p. T. (Sunda Strait area of active extension. IPA14-G-336.X. 185-194.Whitten. E Java. I. Syukur. A. PIT-IAGI-2010-187.Sc.Epithermal gold-silver tellurides-deposit of Cineam. Geol.Miocene of Rajamandala area. Periplus Ed. (IAGI). Makassar. Anggraini.. Yogyakarta. p. Conv..G. (IAGI) and 28th HAGI Ann. F.N. Kadir (2004).P. Lemigas Scientific Contr. (in Indonesian) Widiyantoro. North West Java basin. East Java.40 km2 and 50-200m thick) Wibowo. Indon. Tasikmalaya District. 41st Ann. and (2) columnar cluster of earthquakes below Krakatau trending almost vertically from Wadati-Benioff zone) Widiarto. 6. Jawa Timur. Coalesced buildups tend to be located along larger fault systems. N. E.nucleation of early carbonate buildups into isolated platforms. Soeriaatmadja & A. West Java.W. Setyoko. (2003). Indon.. resulting in dominant ENE-WSW orientation of fields) Widi.T. Geo-Information Science and Earth Observation (ITC).Study of early-Mid Miocene carbonate facies and distribution: implications for exploration opportunities in southern Cipunegara sub-basin. H. Petroleum Assoc. Makalah Ikatan Ahli Geologi Indonesia (IAGI) 33. Assoc.P. 38th Ann. Geol. Kapid (2014). Indonesia. Indonesia. (online at: www..vangorselslist. (IAGI). Lombok. ('Nannoplankton biostratigraphy of the Rajamandala area'. p. Proc. 1. p. 4p.E. W. & R.Basin boundaries determination in West Java using 2-D gravity modeling. Direct. Somantri (2012). Proc. Indon. Singapore. NE-SW fault can be interpretated as oblique-sinistral strike slip fault or NW-SE fault as dextral strike slip. 12p. Wibowo & H. Mulyawan. Conv. Assoc. Wibowo. Conv. 22p. 4 (203). H. (Lusi Mud Volcano in Renokenongo village. 96. Assoc.itc.A. Bibliography of Indonesia Geology. The ecology of Indonesia Series II. Matsueda (1998).Sidik jari hidrokarbon dalam lumpur Porong. Jakarta. Humaida & A. M. Geologi Sumberdaya Mineral 15. Thesis Int. (IPA). 39th Conv. Stephens & F. Geol. Continuous topographical changes along active fault zone) Wibowo.T. A. p. 1-106. Widianto. S. Indonesia. I. Taib & W. JCM2011-013. Proc. J. Indonesia.pdf) Wibowo.A. R. (Onshore NW Java Cipunegara Sub-basin with small E-M Miocene (Upper Cibulakan Fm. Jakarta. J. N. 2012-GD-06. Joint 36th HAGI and 40th IAGI Ann.E Miocene.A. Indon. U. Wibisono (1972). Suraya (1996).A. Zaennudin (2010). West Java..The ecology of Java and Bali. Spec. 1-69. H. Early carbonate mounds coalesced into larger carbonate platforms that then rapidly grew vertically to become Cepu Block oil-gas fields. Istadi & W.Biostratigrafi nannoplankton daerah Rajamandala. Tectonic zones of East Java well imaged by gravity anomalies. Conv.rich pore fluids in sediment. S-wave tomographic model suggests buried fault also exists below E Java) Widiyantoro.Hubungan beberapa parameter sedimen dengan populasi foraminifera bentonik pada Formasi Ledok. Geoph. Jawa Tengah. Gas non-associated gas from marine source rock.Anomaly gaya berat sebagai salah satu petunjuk keterdapatan gejala struktur geologi daerah Jogjakarta dan sekitarnya. Indon. Weiss (2006). Blora. 5p. (2002). Conv. Harjono. Mentawai FZ) in NW fore arc of Sunda margin) Wiedicke. Assoc. (1987).Anomali gayaberat dan mendala tektonik Jawa Timur dan sekitarnya. (Shear-wave seismic tomograms to explore buried structural features beneath Java.. Epifauna mainly Pyrgo murrhina. Oridorsalis umbonatus. & B. Changes in seismic wave properties of subducting slab in E-W direction across Java and seismic gap below Central Java region) Wiedicke. Publ. Proc. Workshop Geologi Pegununungan Selatan.P. Norht Java offshore 25-50 MGal) Widijono. S. p. J.. B. 105-122. M. 121-141. Indon. Kedung Planangan. Jalur Kedung Planangan. Lianto. vent-macrofauna. kegempaan serta kelurusan struktur geologi daerah Jogjakarta dan sekitarnya.Learning from the May 27. Sumber Daya Geologi 21. (Extended abstract).vangorselslist. 6. E. p. S. C Java') Bibliography of Indonesia Geology. 11. 2 (158). Bandung. with water methane anomalies. Proc. Cibicidoides wuellerstorfi and Sigmoilinopsis schlumbergeri) Wijono. with variable amounts of CO2) Widijono. H. (2011). 6.Stable carbon isotope records of carbonates tracing fossil seep activity off Indonesia. Uvigerina peregrina and Bulimina striata. Faber. Geophys.P. 321-333. Sidoardjo.Characteristics of an active vent in the fore-arc basin of the Sunda Arc.S. & W. In: Proc.com Sept 2016 .Seismisitas dan struktur kecepatan gelombang seismik di sepanjang Pulau Jawa. Yogyakarta 2007. Fauzi & Wandono (2004). Kendeng Zone 0-40 mGal. Oil biomarkers suggestive of restricted marine or lacustrine source. 38. & Subagio (2009).S. Ed. and lack of BSR below vent suggests perforation of hydrate-stability zone. Spec. ('Seismicity and velocity structure along Java island'. Sahling. M.Rembang Zone 0-25 mGal.. Proc. ('Gravity anomalies. J. Setyanta (2007). Semarang 2006. 16th Ann. ('Gravity anomalies and tectonic terrains of North Java and its surrounding area'. Indonesia. Ann. H. ('Relations between some sediment parameters and the benthic foraminifera population in the Ledok Formation. Well-documented paper on analysis of oil and gas traces from mud of LUSI mud eruption S of Surabaya. p. Position on structure linked to oblique subduction suggests venting may be common along compressional /transpressional zones (Ujung Kulon FZ. Delisle. (Stable isotopes of carbonates in 20m long sediment cores from 1690-2995 m water depth in forearc basin off SW Java (Ujung Kulon) and SW Sumatra (Bengkulu) display significant 13C depletion. Marine Geology 184. Sumber Daya Geologi 17. seismicity and geological structure lineaments of Yogyakarta and surrounding areas') Widijono. elevated heat flow. Seep activity most intense between 3-7 kyr B. Pusat Survei Geologi. Benthic foram infauna at seep sites dominated by 5 species: Chilostomella oolina. interpreted to be caused by methane seepage and associated authigenic carbonate precipitation near seafloor.. p.. F.S. (HAGI). Blora district.Anomali gaya berat. Geosystems 7. p. Neben et al. 74-90.0 165 www. (IAGI). Bottom-simulating reflectors (BSR) rise steeply towards vent. Hoeglundina elegans.. 2006 Yogya-Central Java destructive earthquake. Yogyakarta. B. B. 31st HAGI Ann. and 27-33 kyr B. (Gravity anomalies and geological structure of Yogyakarta and surrounding areas) Widiyantoro. Southern mountains zone anomalies 100-130 mGal. Conv. Probable tectonic control of seepage.('Hydrocarbon fingerprinting from Porong mud. (Fluid venting at anticlinal structure at ~2910m water depth in forearc basin SW of Java. East Java'. (2006). Geochem. p. p. Globobulimina pacifica. Kab. Randublatung. Assoc. Geol. Quaternary volcanoes zone 0-100 mGal. S. carbonate precipitation at sea floor and methane. G. S. ('The limestone mountains of Kuripan'. 33p. Banten. (IAGI). S. 1. B. 39th Ann. 31st Sess. (In W Indonesia Eocene shale generally considered as potential source rock. Lombok. Indon. P. (2010) paper) Wirasantosa. In adjacent Yogyakarta Low Nanggulan Fm modeled to be late mature. Cape Town 2008.H. Kuala Lumpur 1994. 101-118. Cilograng Area.A. Tijdschrift Kon. Conv. 6.4 Ma) Winardi.H.39%. Ringis (ed. p. Petroleum Assoc. S. based from petroleum geochemistry. Proc. Eocene Ngimbang clastics Fm in Rembang-1 good source rock richness. Exhib.esdm. gas generating since 0. p. C27-C28-C29 ternary plots from four oil seeps and source rock from three wells show correlation between oil from terrestrial source and Ngimbang clastics Fm) Wiloso. M.net/documents/2009/10195wiloso/images/wiloso. SW Java. 417-423.I. E.searchanddiscovery. B. Karta (1995).Een voorkomen van granodioriet in Zuid-Priangan. D.vangorselslist. (Aabstract and presentation) (online at: www. Geologi Indonesia 8. 1. W Java are sinter cones formed by hot spring activity) Witkamp. Fore-arc basins with 0.. Subroto & E. Assoc. Nederlands Aardrijkskundig Gen. W of Parung.High-quality volcanoclastic sandstone reservoirs in East Java..A. Hermanto (2009).De kalkbergen van Koeripan. & N. Indon. 7p. Comm. Joint Prospecting Mineral Resources in Asian Offshore Areas (CCOP).Confirmation of the Paleogene source rocks in the Northeast Java Basin. Basuki (2010).The potency of Nanggulan Formation shale as hydrocarbon source rock.go. 638-653.) Proc. (online at: http://ijog. B. Tijdschrift Kon.Seismic reflection study of a fore-arc basin and accretionary prism South of West Java. Along Tjilajoe (Cilayu) River. Maturity level of samples immature (highest Ro 0. Search and Discovery Article 10195. Hermanto (2008). Indon. 11 samples of Eocene Nanggulan Fm shale with Nummulites and Discocyclina. Imron & D.Willumsen. Toha. Jakarta. Petroleum Assoc.id/index. In: J.2. Tmax 422°C and TAI 2). Bandung. Seubert. (2) 56. 2. 34rd Ann.. 3. and potential to produce oil and gas from Types II and III kerogen. ('Study of hydrocarbon source rocks in the W part of the E Java basin'. early mature.0 166 www. 261-266. 1. Ed.. M. Lebak District.W. Seven samples TOC >1%. Fore-arc sediments normally faulted adjacent to Sunda Strait and Pelabuhan Ratu Bay) Witkamp. Bibliography of Indonesia Geology. IPA10SG-029. S. (1939). 13p.The potential of Eocene shale of Nanggulan Formation as a hydrocarbon source rock. Group of three 30m high limestone hills near Ciseeng. 13-23. (IPA). Assoc. (IPA). Amijaya (2010). analyzed.>1. Proc. S. J.pdf) (Geochemical analyses of sediments from 5 exploration wells. Nederlands Aardrijkskundig Gen. p. p. Geol. organic-rich Late Eocene Ngimbang Fm) Winardi. 33. H. including Rembang 1 and Padi-1 and four oil seeps indicate correlation between oils and thermally mature. PIT-IAGI-2010-310. (1916). Imron & D.5 sec of sediment. Amijaya (2013). D. p. Proc.. & D.M.Studi batuan induk hidrokarbon di cekungan Jawa Timur Bagian Barat. (‘An occurence of granodiorite in South Preanger’. with two sequences separated by Late Miocene unconformity. (IAGI). Indonesia.A. Indon. Schiller (1994). Co-ord. Kerogen type III amorphous-humic. & K. H.bgl. 476-489.A microfacies study of carbonate rocks of the Citarate Formation. 23rd Ann. Subroto & E.A. Proc. Conv. (Late Pliocene-Pleistocene volcanoclastic reservoirs in 1993 Porong 1 and WD 8 wells and in outcrops good reservoir qualities) Wiloso. p.php/IJOG/article/view/152/152) (Similar to Winardi et al. Geol. Conf. 60km S of Bandung) Wiyoga.A. 37th Conv. outcropping at Nanggulan/ Kulonprogo 25 km W of Yogya. AAPG Int. Conv. E. (Single channel seismic profiles off SW Java. Indonesia. At higher levels of maturity Nanggulan Fm shale has source rock potential.com Sept 2016 . Jakarta. Toha. (Description of small Miocene and Pliocene corals (Heterocyathus. 69-79. Tuban Block. Indon.jstage. Support for presence of ophiolitic basement in center of island related to Meratus suture zone comes from shallowing of Moho to ~30 km (or less) under Kendeng zone. Part I. amphibolic tuff breccia and quartz diorite porphyry 17. Cilograng area. & D.On some simple corals from the Neogene of Java. Proc. W Java) Bibliography of Indonesia Geology. NE Java basin) Wolbern.) 19. (Stanvac 1938 survey report. Geological Survey. p. Rumpker (2016).New occurrence of Rotaliatina in the Pliocene of Java. F. Susilo & A. Ed. Banten. Fungia). & K. 523. Indon. 87-127. West Java. (Earthquake data recorded in C and E Java suggests average crustal thickness of ~34 km.M. Lombok.5. p.F. Yao (2014). Andriyani. Jakarta. With stratigraphic columns of NW Java Mio-Pliocene. Asian Earth Sci. Ten anticlines mapped in marine Tertiary section in S Central Java. Regional M Miocene deformation formed NNE-WSW trending faults and E-W folds. Petroleum Assoc. dolomitization. Geol. Basuki (2010).Diagenetic pattern in the Citarate carbonate rocks. C. 31st Ann. Indonesia.go. Ser. South Central Java. E. Japan) 44. dissolution to form moldic porosities. Eguchi (1941).com Sept 2016 . Asano (1937). Asano (1937). p. Derived from Rotalia schroeteriana and named Rotaliatina globosa (now assigned to Asanoina Finlay 1961)) Yabe. and its geological significance.Characterization of carbonate reservoir at “X” Field using attribute and seismic inversion: examples from the Cepu area. F. 115. 269-273. precipitation of equant-grained calcite cement in phreatic environment. dacite and andesite rocks similar compositions. H.vangorselslist. Banten. (Miocene quartz diorite porphyry from Ciemas area. 1-11. S. Geology Review 57.jp/article/geosoc1893/44/523/44_523_326/_pdf) (Brief note describing new Pliocene rotalid foram species from Bojong and Cilegong. In Kujung Fm carbonate buildup. J. 7. Masdar (2007).N. (IPA). 9-10. aragonite dissolution. SW Java. (online at: www. Bandung.. Open File report E39-57. p. Assoc. I. Observed thick anomalies W and NW of Kendeng zone line up along hypothetical boundary between continental SW Borneo fragment and Meratus suture and may indicate crustal thickening caused by overthrusting in former collision zone. SG-12. Zircon ages of andesite. Tit (1939).Crustal thickness beneath Central and East Java (Indonesia) inferred from P receiver functions. Minute foraminifera from the Neogene of West Java.Contributions to the paleontology of the Tertiary formations of West Java. Imperial Academy (Japan) 17. No locality details) Yabe. 6. 39th Ann. & G.. No clear evidence for postulated Muria-Progo lineament) Woolfolk. formation of stylolites and fractures.I. belongs to calc-alkaline-high K calc-alkaline series and formed by M Miocene arc magmatism. 16. (E Miocene Citarate Fm limestones 10 km NW of Pelabuhan Ratu.W. J. HvG). Rakhmanto. Z. Proc. Geol.0 167 www. Soc.Q. Zheng & J. Diagenesis include early marine cementation by fibrous aragonite. C. Int.Mid-Miocene (~17 Ma) quartz diorite porphyry in Ciemas.(Outcrop study of ~180m thick Early Miocene Citarate Fm limestone 10 km NW of Pelabuhan Ratu) Wiyoga.1 Ma) Yabe. Zhang. 326-328. while to N and W Moho at anomalous depths to 39 km.A. and precipitation of late ferroan calcite during burial) Wiyono.jst.Pliocene.Geological report on the oil possibilities of the Banjoemas and Kedoe districts. Chishitsugaku Zasshi (= J. & M.R.H. Proc. 1294-1304. Lebak District. Conv. Two main volcanic breccia horizons and several unconformities. H. 1. compaction. & K. 13p. p. A. collected by Chitani in Banten and Bogor areas. p. Porphyry. H. (Seismicinterpretation study of X Field (= Sukowati Field. in Banten and Bogor areas. No surface oil or gas seeps encountered) Wu. & N. W Java. (Shallow marine benthic foraminifera from samples collected by Chitani in 1935 in M Miocene. Science Reports Tohoku Imperial University. 8p. (IAGI). Conv.9 and 17. 2 (Geol. Three major structural trends. Jawa Tengah (Kendeng Barat) dan daerah Ngawi. Assoc. Indon. p. Petroleum Assoc.Gas exploration in Parigi and pre-Parigi carbonate buildups.P. with English summary. Major Late Pliocene uplift period. Late Eocene movement on Wdipping NNE-SSW normal faults formed Ujungkulon Low. Conv. Conv. West Java. Proc. Makassar. Li (2011). Geol. 13 p. Nazhar (1970).com Sept 2016 . Reefal limestone build-ups on highs in Late Oligocene. 48. pt. at ~15 Ma caused inversion structures and formation of major oil traps. (IAGI). Jia. inducing 2nd phase of E-W extension and rifting. Proc. L..Structural and stratigraphic evolution of the offshore Malingping Block. causing 2nd phase of compressional deformation in basin) Yohanes. 27th Ann. (IAGI). Bandung. Conv. 1. Bukhari (1991).. p.. Bandung. E Miocene volcanism suggested to have terminated carbonate deposition. 2. 11p. Prasetyadi (2011).. F. R. followed by renewed subsidence) Yulianto.edu. 2. 22nd Ann. (SW Java offshore Malingping Block series of extensional basins and highs.vangorselslist. Seismic evidence for N-S trending incised valleys at Late Miocene Ledok Fm level) Bibliography of Indonesia Geology. Bull. F. Ujungkulon Low.N.Sikuen stratigrafi dan potensi reservoir air Beryodium di Zona Kendeng bagian Timur. Collision of Roo Rise ocean plateau. Assoc. Luo.Y. p.Lembah torehan Miosen Atas dan perennanya dalam terbentuknya perangkap stratigrafi di daerah Cepu dan sekitarnya. C-E Java) Yulihanto. 31st Ann. Geol.Karakteristik sesar Anjak dan pemodelan struktur geologi menggunakan metode Balances cross section daerah Kedungjati. Clements & C. 159-173. Surjo & B.Z. B. interpreted to be thermogenic and sourced from deeper Talang Akar shales and coals. I.P. Migration of gas through vertical fault migration from Talang Akar into higher sections.0 168 www. Hall. (1993). Conv. 319-346. 240-248. p. NE-SW faults parallel to Cretaceous subduction margin in Java interpreted as interaction between E-W extension and basement fabric. (Cepu area M-U Miocene sequence stratigraphy. B. Yokoyama. 6. Musliki & Nahrowi T.E Miocene. Joint.Volcanological survey of Indonesian volcanoes. Part of Australian continental slope collided with Banda Arc at ~3. Indon. (IAGI).shtml) (In Chinese.. In shelf edge area. Assoc. M. Reservoirs uniformly distributed vugular.Q. Indonesia. NW Java Sea. Zhu. W Malingping Low.. (IPA). Jakarta. Ambismar & T. (online at: http://geology.5-2 Ma. S. causes and responses between stable Rembang and active Kendeng zones. Indon. E Java Basin two rift phases and two compressional events. M. Elders (2007). JCM20111305. mouldic and intragranular porosity. Proc. Yulianto.nju. Subduction changed direction to NE-SW in Oligocene. resulting in regional unconformity. (Structure restoration in W and E Kendeng zones near Kedungjati and Ngawi. Acta Metallurgica Sinica 17. Ed. Inst. Absence of oil implies heavier hydrocarbon fractions either stripped during migration or prevented from accumulating in buildups due to presence of earlier migrated gas) Yang.cn/EN/abstract/abstract9358.. S of E Java. Indon. E Miocene movements on E-dipping faults created full-graben geometry of Ujungkulon Low. Eocene backarc rifting basin resulted from N-ward subduction of Indo-Australian plate under Sundaland. E-W trending normal faults active in Late Eocene and Early Oligocene. IPA07-G-036. 22nd Ann. Yohanes. Geol.Yaman. R. Minor inversion in E Miocene but little other evidence for contraction. p. D. Proc. Honje High. Cekungan Jawa Timur Utara. Conv. L. 1. Indon. Galena & C. Gas is dry. 4. Tokyo University Earthquake Res. Wu & X. Proc. (1998). 135-. p. Indonesia. Conv. from W to E: Ujungkulon High.Cenozoic tectonic evolution of the East Java Basin.Sea level changes and tectonism. (M Miocene Parigi and Pre-Parigi buildups with large quantities of gas. 20th Ann. 303-315.K. T. M. Jawa Timur (Kendeng Timur).. I. A gravity survey in Central Java. Koesoemo & Soejono Martodjojo (1993). 36th HAGI and 40th IAGI Ann. 770-781. Petroleum Assoc. H. Proc. sourced from upper mantle with low Neubium (Nb.. Setyaraharja & M. (IAGI). Int. Indonesia: gold-silver selenide-telluride mineralization. Sukabumi District. Ed. Rosana (2014).F. Indon. Plio-Pleistocene carbonate platform. (IAGI). p. Petrology characteristic of Mid Oceanic Ridge. Three main stages of ore mineralization in quartz-illite-calcite veining) Yuningsih. dominated by silver-arsenic-antimony sulfosalt. Indon. Rembang. p. Indonesia. Matsueda. Sriwahyuni (1994).Compositional variations of Au-Ag Telluride minerals of Arinem deposit. stutzite (Ag Te). S. Assoc.go.11 ppm) Yuningsih. Cibaliung. Oligocene. In outcrop mainly as blocks up to dozen meters in base of flaky clays. part of ophiolite complex. Indon. 21st Ann.jp/article/jmps/109/2/109_130118a/_pdf) (Arinem epithermal gold-silver-base metal deposit near SW Java coast S of Bandung hosted by Arinem vein system which cuts Late Oligocene. (Outcrops of mainly Miocene clastics around Semarang. Also radiolarian chert and basalt in area.com Sept 2016 . Matsueda (2014). West Java. Indon..esdm. Proc. Cepu. Conv.T. 123-132. Jawa Barat. Rembang. B. thrusted over continental l metamorphic and sedimentary rocks. Jakarta.M Miocene volcanic rocks. Kendeng zone) Yuniarni. B. & H.T.Peranan tektonik tarikan pada perkembangan runtunan pengendapan Tersier di bagian Barat Kawasan daratan cekungan Jawa Timur Utara. (IPA). 140-158. 2. Symposium Sequence Stratigraphy in SE Asia. R. (Epithermal gold-silver veins system in Arinem area in SW Java contain Te bearing minerals (hessite (Ag Te).0 169 www. Proc.T.P. Cikidang. Two types of mineralization: Wmost W Java (Pongkor. Mineralogical Petrological Sci. B. p. E. J. Petroleum Assoc. altaite (Pb Te)) Yuningsih. Proc.6 Ma) andesitic volcanics and overlain unconformably by Pliocene-Pleistocene andesitic-basaltic volcanics) Yuningsih. 1-65. Jawa Timur. West Java. p.jstage. Tuban.Miocene. & H. 487-506. E. petzite (Ag Au Te). Geol. Situmorang & L.F. ('Reefal limestone facies of the Paciran Formation. E. Sumber Daya Geologi 21. (online at: http://ijog. 71-81.Yulihanto. p. Ultramafic rocks in Cikepuh River at Cibenda Village.4 Ma) gold-silver-base metal vein system. i. NE Java) Bibliography of Indonesia Geology. J. E. (IAGI).vangorselslist.php/IJOG/article/view/180/177) (Gold-silver ores of W Java reflect major Mio-Pliocene metallogenic event. Indonesian J. Rosana (2012). Bandung. (online at: https://www. NE-SW wrench faults and regional uplift) Yulihanto.bgl. Kabupaten Sukabumi. Tuban. 17p. 0. etc.E Miocene extensional phase created NE-SW trending half-grabens. H.Karakteristik petrologi dan geokimia ofiolit Cikepuh. Cineam) dominated by silver-gold tellurides) Yuwono. ('Geochemical and petrologic characteristics of Cikepuh ophiolite.The Arinem Te-Bearing gold-silver-base metal deposit. (2014). (Arinem area. 49-61. Geoscience 1. Late Pliocene basin inversion. Arinem vein hosted by Latest Oligocene-M Miocene Jampang Fm (23-11. 23 rd Ann. M Miocene quartz diorite-andesitic intrusions most likely source f metals. Post-symposium fieldtrip.T.8–9. PIT IAGI 2014-067. 151-161. Musliki (1995). p. W Java'.go. Late Miocene (8. Assoc. N. 2.07 and 6. 6. SW Java. ('The role of extensional tectonics on the development of Tertiary depositional sequence in the western part of the onshore NE Java Basin.id/index. in melange. Assoc. E.Pliocene Northeast Java Basin sequence stratigraphy. Geol. Second extensional phase in M Miocene.Fasies batugamping terumbu Formasi Paciran. Ophiolite rocks within tholeite series.. Conv. p. tetradymite (Bi Te S).Epithermal gold-silver deposits in Western Java. Geol. (1992). 43rd Ann. Sofyan & S.jst.e. Conv. Indonesia. East Java'.Genesis and origin of Te-bearing gold-silver-base metal mineralization of the Arinem deposit in western Java. SW Java. E part of W Java (Arinem. 109. 3. Resource Geology 62. Matsueda & M. Jakarta. Ciemas Subdistrict. (2011). Cirotan. overlain by deeping-upward facies clastic succession. (Unpublished). Proc. Au deposition primarily during late magmatic activity and belongs to metallogenic system from porphyry to epithermal type) Bibliography of Indonesia Geology.0 170 www. 6. Y. Hakiki (2012). IPA16-G-585. Yao (2015). IPA12-G-026. Ore Geology Reviews 64. 1. Wertanen (2016). Petroleum Assoc. without marine fauna.5 Ma. 53.The impact of differential subsidence rates in shallow water carbonate reservoir quality: an example from the East Java Basin. Jakarta. p.. vol. Central Java. F. Wu. X. 53.The trinity pattern of Au deposits with porphyry.. Y.. 54-56. Reservoir quality correlated to subsidence rates: high rates in U Oligocene and U Burdigalian meant less time for fresh water lens to leach carbonates and enhance reservoir quality) Zhang. & Suratman (1990). Indon. Exemples du sud-ouest de Sulawesi et du volcan Muria (Java): Ph. Maura & S. (Eocene tholeitic island arc volcanics at Karangsambung area) Zacchello. Three major carbonate facies: massive coral-algal reef. Diagenetic leaching controls reservoir quality.A. M. Tanjung.Carbonate mound deposit of Gunung Bodas.1. 377-390. H. A. Petroleum Assoc. With listings of molluscs species and comparison to the 21-level stratigraphy of Oppenoorth & Gerth (1929)) Zamparini. ('Contribution to the study of potassic volcanism of Indonesia. Thesis. (1997). p. (IPA). Indonesia). Zheng & J. 1-285 and vol. p. (Gunung Bodas limestone hill in Bogor zone in Limestone member of M Miocene Bojongmanik Fm. E Java confirmed most predictions of carbonate reservoir.The Eocene stratigraphic sequence of Nanggulan and the levels reported by K. p. Proc. Universite de Bretagne Occidentale. Lowest level NG1 with lignite. N.. Z..vangorselslist.Effects of pervasive hydrothermal dissolution on the giant Banyu Urip Field. S. Indon. Ramadhan (2007). Cepu Block. 152-171. Hakiki.17. Jakarta. Indonesia.. 36th Ann. Proc. IPA07-SG-001.The occurrence of submarine arc-volcanism in the accretionary complex of the Luk Ulo Area.T.P. M. Sekti & F. (M Eocene Nanggulan Fm ~300m thick and subdivided into ten levels. Conv. (Development drilling campaign in Banyu Urip field. Indonesia.com Sept 2016 . 36. 15-25. Kerscher. (Ciemas ore deposit in SW Java associated with E Miocene andesite. Assoc. Ed. Musgrove. Laya & W.Aspek stratigrafi dan petrografi endapan turbidit (studi kasus: Formasi Kerek dan Anggota Banyak daerah Kedungjati.Yuwono. Yuwono. West Java. Memorie Scienze Geol. Padova. Padova. Martin. Host rocks zircon ages ~17. p.D. R.Some molluscs and foraminifers from the Eocene-Oligocene of Nanggulan (Java. Bogor as part of analogue model for prospective mud mound hydrocarbon reservoirs in Miocene carbonates. Petroleum Assoc. 31st Ann. Van Simaeys. Jakarta. More fracture swarms in tight drowning cap facies than in higher porosity Platform Interior Dissolution occurred millions of years after carbonates deposition and drowning as result of hydrothermal fluids) Zeiza. Indon. I. (IPA). p. F. (Carbonate reservoir quality in Cepu fields better in Miocene than in Oligocene. p. Zeiza. Memorie Scienze Geol. 12p. Proc. 1-158. C. p. C. Jawa Tengah). (1984). (IAGI). Padova. Overlying deep water sand units nearly perfectly pressure connected and of high quality. Conv. 1-13. quartz-sulfide vein and structurally-controlled alteration rocks in Ciemas. F.D. examples from SW Sulawesi and Muria volcano (Java)') Yuwono. Indon. dacite and quartz diorite. Memorie Scienze Geol. p. K. I. (2001). Musgrove.The Eocene mollusc fauna from Nanggulan (Java) and its palaeogeographic bearing. A. 49-53. (2001). Geol.19th Ann. except well-test derived average permeabilities and productivity higher than predicted. Conv.Contribution a l'etude du volcanisme potassique de l'Indonesie. M. (1987). back reef and mound facies) Zeiza. A. 40th Ann. Yang.. Zacchello. Conv. 2. Buletin Geologi (ITB) 27.S. 6p.S. (IPA). Jaarboek Mijnwezen Nederlandsch Oost-Indie 45 (1916). Hasil-hasil Penelitian Puslitbang Geoteknologi LIPI. Saygin. 1-46.0 171 www. Nugraha. Int. (eds..D. Jawa Tengah sebagai bahun baku refraktori. (Abstract) (Ciemas Miocene high sulphidation epithermal deposit in Sukabumi province. 1. Jaarboek Mijnwezen Nederlandsch Oost-Indie 47 (1918). C. 852-853. Afdeeling Lebak. I. Ed. Indonesia Geol.) 88. With descriptions of minor oil seeps) Zulfakriza. P. In: Y. Z. (‘Report on the results of mining geological investigations in South Bantam’.Widiyantoro. A. 197. E. as refractory raw materials').Upper crustal structure of Central Java. S Banten. p.. 6. 630-635.G. Verhandelingen 2.J.Karakterisasi batuan serpentinit Karangsambung. (Brief report on the occurrence of granitic rock on Java.J. Zwierzycki. p. Rel. Cimandiri. Zhang. including information never published elsewhere) Bibliography of Indonesia Geology. Indonesia. along Cihara River.G. Geophysical J. J. (1935). Survey Bandung. Bodin (2014). Residentie Bantam. Yao (2014).vangorselslist. Central Java. (Ambient Noise Tomography collected during Merapi Amphibious Experiment in C Java in 2004.Verslag over de uitkomsten van mijnbouw-geologische onderzoekingen in Zuid Bantam. Kumoro et al. Bayah. Strong negative velocity under volcanic arc and Kendeng basin. E. 2. K.Sulfur isotope composition of Ciemas gold deposit in West Java. W Java. suggesting magmatic origin mixture of mantle-type and slab-derived sedimentary components) Ziegler. Cummins. District Tji Langkahan. Open File Report E35-13. Handoyo (1995). Luhr & T. Acta Geologica Sinica (English Ed. (1920).Zheng.com Sept 2016 . p.) Proc. p. Verhandelingen 1. Seminar Sehari Geoteknologi dalam indistrialisasi.. Sumarnadi & R. Wu & J. detailed descriptions of BPM oil fields on NE Java. surrounded by relatively high group velocities that may represent crustal blocks accreted to Sundaland core in Late Cretaceous) Zulkarnain. (1918). Sulfur isotopes uniform and small positive d34S values.G. B.T. ('Characterization of serpentinite rock of Karangsambung. from transdimensional seismic ambient noise tomography. Z. p. (Unpublished) ('Geological description of the oil fields of Java'. Indonesia. 218-228. 40-140.Kort bericht over het voorkomen van een granietgesteente in het stroomgebied van de Tji Hara. SW Java. Tomographic images show shallow structures not evident in previous studies. 48-54. C.R. Suppl.Geologische beschrijving der petroleumterreinen van Java. Interpreted as Neogene intrusive into Eocene sediments) Ziegler. K. p. S. Mainly on Eocene coal fields Bojongmanik. but lithofacies and seismic facies indicate two facies associations: skeletal mound and slope to basin) Aldrich.The Krisna High: its geologic setting and related hydrocarbon accumulations. coalescence into composite platforms.B. Wonocolo Formation.. North Madura Area. & I. Hairunnisa. I. D.I. West Java Sea. L. on Sequence Stratigraphy in SE Asia. W of N Madura High. Smith.Paleogene basin architecture of the Sunda and Asri Basins and associated non-marine sequence stratigraphy. Most differences attributed to faster subsidence rates in E from 12-6 Ma. followed by shift to more asymmetric rift. offshore NW Java basin) Adhyaksawan. 71-84.. (IPA).com Sept 2016 . p. rock type. (IAGI).A. 261-287.Seismic facies and growth history of Miocene carbonate platforms. Proc. C. 1-136. (eds.. 10-23. IPA15-G-038. Reservoir formerly interpreted as reef complex. 289-309. (IPA).. 29th Ann. p. Jakarta. Bibliography of Indonesia Geology. Geol. Jakarta. Sunda Basin. (2) Late Oligocene transgression (drowning) phase without exposure) Armon. Conv. (IPA). (Unpublished) Adhyaksawan. Rinehart. Indon. (1983). Caughey et al. R. M. Hidayat. Banuwati Fm of Sunda Basin records overall transgressive event and culminates in widespread deposition of Banuwati Shale which is main source rock in Sunda Basin. Schuepbach (1995). p.Complementary role of seismic and well data in identifying upper Talang Akar stratigraphic sequences. 163-184. Jakarta. Krisna Field. (IPA). Asri basin. p. Proc. (2000). In: C. Int. p. S. Well log sequence stratigraphy and core study of non-marine Banuwati Fm in Sunda Basin identified alluvial fan.E. 341-382. Bahri (2015). Most porosity is secondary. Petroleum Assoc. Sunda Basin. S. Surabaya 1982. 39th Ann.A. East Java Basin. L. Kuswinda (1982). (2002). SEAPEX Offshore SE Asia 6 Conf.vangorselslist. (Krisna Field 1976 discovery on W flank Sunda basin. 13p.E. Arisandy. Abrar & W. Paper TP/2. development. B.Facies analysis. M. (Oligocene Ngimbang Fm ('CD") carbonates in 'Block P' E Java Sea. Early Sunda Basin fill consists of Banuwati Fm and Zelda Mb of Talang Akar Fm.) Proc. (Miocene Wonocolo Fm in Java Sea N of Madura area numerous isolated carbonate platforms over ~3000 km2 area. North Madura area. B. Indon. IPA14-G-055. Indonesia. production. Techn. backstepping. Common larger foram wackestones. (1995). Conv. Basuki (2014). Five growth phases. and property distribution in upper interval of Baturaja Formation. Ed. Thomas et al. Indon.P. probably related to differential loading by volcanic arc) Ageng. (Nearly symmetric.S.0 172 www. Old basement High fringed by Early Miocene Baturaja reefal buildup)) Ardila. 19p.) Proc. Java Sea (incl. Platforms in W larger than E and record history of platform initiation. D. Eastern platforms: 1) smaller. Thesis. Jakarta. Texas A&M University. (Four parasequences in uppermost Talang Akar Fm in Widuri field). Jakarta. fault bounded extension in Sunda and Asri basins early history. and facilities to maximise return in the Poleng Field.Limestone diagenesis reservoir quality of CD Carbonate Formation East Java Basin. Singapore 1983.Widuri field area.. p.A. Conv.Seismic facies and growth history of Miocene carbonate platforms. (IPA). N of BD Ridge. fluvial.. G.The Rama Field: an oil accumulation in Miocene carbonates. and shallow lacustrine facies) Ardila. R.III. Java Sea. Jakarta. (E Miocene Baruraja Fm carbonates in Krisna field five lithofacies. 38th Ann. p. East Java Basins. 4) largely aggradational stratal geometries.2. Indonesia. Petroleum Assoc. Symposium on Sequence stratigraphy in SE Asia. ASCOPE/CCOP Workshop. J. Symp. Two main diagenetic phases: (1) E-M Oligocene platform aggradation phase (keep up) with multiple times of exposure and dissolution by meteoric water. Mainly stratigraphic trap. and termination. Indonesia. Indon. Proc. Petroleum Assoc. (2003). Indon. 5) slightly thicker than W platforms. 29th Ann. Int. 6. 3) steeper platform margins. Assoc.E. J. Offshore Madura. 2) more widely spaced. Wonocolo Formation. Petroleum Assoc. progradation. Ridwan & M. Proc. (eds. and 6) tops at greater burial depths than W platforms. Proc. some coal floatstone. Petroleum Assoc. In: C. Conv. Harmony. 1. Proc. Indon. W. Caughey et al. Asjhari.Fast track exploration. College Station. Nugroho & N. 14p. W.Pliocene Kepongan Sst. Pre-Talang Akar Fmrelatively underexplored. BField produced 150 MMBO from B28/29 "Main" interval (N13-N14. Jakarta 1998. J. Highest oil rates from wells in elongate. W. p.W. E Tortonian). American Assoc.0 173 www.E Oligocene rifting of S margin of Sunda Platform. Saefullah (2016).Atkins. C. two depocenters with depth to metamorphic basement >4000m. (IPA). Center. (Tertiary Biliton basin.Integrated evaluation of a paleo gas-water contact and residual gas zone in the Sirasun Field. Half-grabens excellent hydrocarbon generation and accumulation systems) Aveliansyah. Indon. (M Miocene Upper Cibulakan Fm reservoirs ~75% of hydrocarbons discovered in ARCO NW Java PSC. S. p. Sunda basin) Atkinson. Petroleum Assoc. 1610-1. Most grabens show hanging-wall blocks dipping E. granites and schists-argillites) Aziz. Renolds. Petroleum Assoc. Triono & U. (eds. Vavra (1993).. Clarke & S. Proc. M. E Java Sea N of Bali. reflecting series of deltaic to nearshore subenvironments. 76. IPA16-146-G. 1088. Caughey & J. p. (IPA).. Dev. Petroleum Assoc. Gaynor & C. (2005). 59-90.000. (IPA). Sinclair (1992). Bandung. C. shales and thin limestones. (Abstract only. Cretaceous basemnt.marine succession. W Java Sea.A. Baturaja and Talang Akar Fms. Main. Sandstone distribution influenced by syndepositional structuring: thickest pay on flanks of field and thin dramatically over crest of structure.D. 30th Ann. Indonesia.L. Mangga (1993). A.Early Tertiary rift evolution and its relationship to hydrocarbon source.C. channel and channel fringe settings. D. reservoirs and seals in the offshore northwest Java Basins.D.. Oligocene largely nonmarine rift-fill deposits overlain by U Oligocene. underlain by E Miocene Gelam Fm limestones and Late Miocene.A.C. Res. KL Field produced 11 BCF gas from Late Eocene carbonate (33-37 Ma date from Sr isotopes). Indon.. Geol. Ten depositional facies. Jakarta. (Strong seismic DHI beneath Sirasun gas field. (Bawean Island in Java Sea widespread Pleistocene Balibak Fm volcanics. Typical EoceneOligocene rift basin on SE margin of Sunda craton. 40th Ann. Sydney. In: R. Offshore NW Java basins originated by Late Eocene.A. channel sandstone bodies off main crest of structure) Atkinson. In: C. ~50 Ma and ~35 Ma.Geological map of the Bawean and Masalembo Quadrangle. AAPG 1992 Int. Wibisana (1999). Sampurno (2004). Ponco.Sedimentological and reservoir characteristics of the upper Cibulakan sandstones (main interval) in cores from the B-Field. offshore northwest Java. B28 interval is interbedded sandstones. 1710-4. Indon. S. Hardjoprawiro & S. Conv. Howes & S.A. Indon. Massive. Deepwater and Frontier Exploration in Asia and Australasia Symposium. 6.D.Pre-Talang Akar Formation: new hopes for hydrocarbon exploration in the Offshore North West Java Basin. p. Noble et al. Howes (eds. East Java. Masalembo and Keramian islands Quaternary volcanics only) Basden. 283-296. G. In: C.. Proc. Ed.Integrating geology and petrophysics into seismic interpretation for reservoir definition and improved field development: a case study from the Banuwati Field. 1710-1. 153-168. (Study of gas-bearing Baturaja Fm carbonate buildup at Banuwati field. mostly mouth-bar. one of the country's last remaining unexplored frontiers. Java. Geol. scale 1:100. Conv. cutting across lithologic boundaries and coinciding with base of residual gas zone 10m below current free water level) Bibliography of Indonesia Geology.) Proc. In syn-rift phase block rotation and truncation episode noted. Petrol. (IPA).A. Indon. Gas habitats of SE Asia and Australasia. NW of Karimundjava Arch. M Miocene erosion-uplift episode) Atkinson. Petroleum Assoc.) Clastic rocks and reservoirs of Indonesia: a core workshop.V.Lower Miocene postrift paralic. East Indonesia.com Sept 2016 . P. Conf. N-S half-grabens fragment low-grade schist and igneous terrane. Jakarta. (Offshore NW Java Basin with mature conventional plays of Parigi. p. NE-SW trending. (AAPG) Bull.) Proc.C.Why look in deepwater when elephants prefer the shallows? The Biliton Basin revisited.vangorselslist.V. (eds. incl. Petroleum Assoc. (IPA). Jatibarang volcanism 3 phases: ~58 Ma. Conf. Jakarta. 225-249. C. Atkinson et al. & S. Yaman. (2000). Indon.1. describing Neogene inversion of Paleogene extensional basins. p. Survey (USGS) Open File report 99-50-R.E. W. Conv. Pakistan J. Conv. Assoc. Widespread uplift/ inversion in Middle Miocene (~N11/N12). p.R. Juliana. Carbonate build-ups developed in each of these times.CSI (Cenozoic Systems Investigation) Kangean . shape and disposition of build-ups. inverted in Late Neogene..5 Ma) and recent inversion of Cretaceous-Oligocene extensional faults after (E?-) M Miocene early inversion) Berger.M. Indonesia. (1996). (eds. Boichard. B. (IPA). Iqbal & M.F.453. U.Multiple phases of tectonic inversion.W. 25th Ann. 27 th Ann. H.The Paternoster carbonate platform. 155-169. Indon.) Carbonate rocks and reservoirs of Indonesia: a core workshop. R. D. 21st Ann. except those developed during late middle Miocene. N Platform is immature.an alternative hydrocarbon charging model for the Pagerungan Field. E Java Sea. (Basin modeling in Kangean area. and potential analogues in Pakistan. corresponding with Central High. Proc. 417. (On log analysis procedures in shaly sands in Miocene Main/ Massive Formations. Proc.Petroleum systems of the Northwest Java province. Northwest Java Sea.Structural history of the Terang and Sirasun Fields and the impact upon timing of charge and reservoir performance.J. p. Singapore 1990. Jakarta.G. (online at: http:// pubs. Petroleum Assoc. Lambert & J. T. overlying Lower Cretaceous? accretionary complex) Budiarso. Petroleum Assoc. M. Conv. 447-458.G. depositional history and local structural features of the basin) Burollet.E.T...0 174 www.Distribusi gas CO2 dan upaya mengurangi resiko eksplorasi pencairan hidrokarbon di Cekungan Jawa Barat Utara.html) (Petroleum assessment NW Java basins) Bransden. SEAPEX Proc. p. more localized deposition during two intervals in lower to middle Miocene. (IAGI). Indonesia. Petroleum Assoc.Structural and stratigraphic evolution of the East Java Sea. a Paleogene extensional structure. & S. (IPA). 1. Hariutama & Heri (2016). (Offshore NW Java Basinwith carbonates at four stratigraphic levels. In: 8th Offshore South East Asia Conf. Siemers et al. Jakarta. M. Williams (1992). Crumb (1990). (IPA). P. Harsian. Proc. p.Batur structure offshore N Bali (E of Madura) with late charge of 0. Widespread carbonate deposition in Oligocene-lower Miocene and late M Miocene time intervals. Indon.usgs. Kaldi. Ed. 2. Geol. 6th Ann. IPA16-49-G. Coaly organo-facies not activated) Bishop. 15th Ann.O.A.com Sept 2016 . J. North West Java. Eight carbonate lithofacies.. p. & R. Proc. (IPA). Hydrocarbon Research 18. Conv. H. 40th Ann. Reservoirs Late Miocene and Plio-Pleistocene sands and globigerinid limestones.Seismic expression of carbonate buildups. M. (1977). Structuring Pleistocene (1. related to tectonic framework. 269-286. Java and offshore Southeast Sumatra.Parigi carbonate buildups. Posamentier & R. Proc. Kakung & D. Conv. Villain (1986).J. Indon. Khan (2008). 9. In: C. H. H. Conv. 239-268. Petroleum Assoc.S. p.A. Petroleum Assoc. Noble (1999). 15. Size. 1-34. R.A. Geol.vangorselslist.gov /of/1999/ofr-99-0050/OF99-50R/index. 65-77. forming N-S trending buildups up to 1100’ thick in NW Java basin onshore and offshore.Basden. (On CO2 gas distribution in NW Java basin) Bukhari. p. p. 6-1 to 6-10.9. Jakarta. P. 6. N. Arjuna basin) Bhatti. East Java Sea Basin Indonesia. Proc. Oldest sediments overmature Upper Cretaceous. Porosity mainly primary interparticle. up to four transgressive marine episodes. (Parigi Limestone Late Miocene zones N17/NN11. Jakarta. F.. 133-142. with local enhancement by dissolution) Burbury. (Terang-Sirasu. (Key E Java sea paper.An integrated approach for the evaluation of shaly-sands reservoirs. followed by tectonic inversion) Bianchi.E. Indon. (IPA).5 TCF biogenic gas. Indon. and Pagerungan Field gas originated from high maturity pod of Paleogene Ngimbang mudstones to S. 15p. Petroleum Assoc. NW Java Basin.. Matthews (1992). (E Java Sea Basin two phases of extension. Jakarta.P. P. Indon. J. Kangean PSC. East Java Sea. Bibliography of Indonesia Geology. molluscs and foraminifera. offshore SE Sumatra.A model for hydrocarbon accumulation in Sunda basin.Seismic interpretation methodology for fluvial sandstone reservoirs in Widuri field. Jakarta. Sequence Stratigraphy in SE Asia. Atkinson (1993). p. Int.A. Lestari & A. Proc 15th Ann. p.D. Carter.J. American Assoc. (Part of series of unpublished multi-client oilfield summaries.Channel and sandstone body geometry from 3-D seismic and well control in Widuri field. Jakarta. 34th Ann. Indonesia. Symp. A. Conv.8 TCF Gas. Harmony.. Indonesia. Indon. 40 p. Java Sea. R. Indonesia. 16 p.G. Indonesia. p. Reservoir evaluation report. East Java. L. Harvidya. Indonesia.Well placement optimization for a thin oil rim development in the Ujung Pangkah Field. (IPA). Felder (2010).Ardjuna-B Field. J. NW Java Basin.) Proc. 909-934. Cahyono. elsewhere sand mainly forams) Bushnell. Trap combination rim shelf morphology and young Madura inversion. 1. Juniarto. Core Workshop. W. Lukito. 20 p. (2003). D. Caughey et al. Ed. P. 27 p. (Java Sea Ujung Pangkah field E Miocene Kujung-I carbonate reservoir with 60-90' oil column and >250' gas cap. two fluvial sandstone reservoirs separated by a 7' shale seal unit (Lower Coal/Shale Member) C&C Reservoirs (2002). Indonesia. 211-229.vangorselslist. W. & A. (AAPG) Bull.C. I.J. Conv. Reservoir evaluation report. Bibliography of Indonesia Geology. IPA10-E079.C. Harmony. Reservoir evaluation report.Pagerungan Field. offshore SE Sumatra.E. Petroleum Assoc. C&C Reservoirs (2002). Proc. Reservoir evaluation report. 311325. Tonkin (1998). 28th Ann. Sunda Basin. 24 p. D. 47-75.(Recents sediment samples from E Java Sea all m-c grained carbonate sand from coral. (Part of series of unpublished multi-client oilfield summaries) C&C Reservoirs (1996).Sequence stratigraphic interpretations based on conventional core data: an example from the Miocene upper Cibulakan Formation. S. Widuri Field. with recoverable reserves of 1.0 175 www. Geol.E. Butterworth. 26p. G. Trap M-L Miocene W-E trending elongate inversion-related anticline. Indonesia. Purba (2001). Butterworth. Sunda Basin. C&C Reservoirs (1998)... Petroleum Assoc. R. Sunda Basin. D. p. Reservoir evaluation report. (IPA).Rama Field. Proc. (eds. Conv. Conv.Widuri Field. producing since 1994. offshore Northwest Java. 155-173.3-D seismic geomorphology: insights into fluvial reservoir deposition and performance. 6. Petroleum Assoc.. Jakarta. Reservoir ~300 ft thick M-U Eocene Ngimbang Clastics Fm. Lower part of reservoir highly porous reefal limestone. p. 1.Krisna Field. 153-183. P. P.C. Corals source of bioclasts on or near reef islands. Indon. 26th Ann. Indon. Syarkawi & P. Petrol. Indonesia. Reservoir evaluation report. In some sheltered lows abundant Halimeda calcareous algae. Indon. Reservoir evaluation report. 7p. red algae. (IPA). p. Sunda Basin. C&C Reservoirs (1996). Clastic Rocks and Reservoirs of Indonesia. West Java Sea. C&C Reservoirs (2001). & C.S. not filled to spill. Armon. Indon. Petroleum Assoc. 87.Cinta Field. Jakarta. D. Proc. Petroleum Association (IPA).C. C&C Reservoirs (1996). In: C. upper part lower porosity red-algal dominated reef) Carter. Sunda Basin. Indonesia. Indon.A. Kaldi (1995). representing 80% of sediment.Bima Field. East Java Basin. (Seismic images of 4 reservoir intervals in Widuri Field show meandering fluvial depositional patterns) Carter. East Java Sea gas field discovered in 1985. 27p. 6.Syn-rift deposits of the Northwest Java Basin: fluvial sandstone reservoir and lacustrine source rocks.C. Petroleum Assoc. Temansja (1986). Himawan.com Sept 2016 . Purantoro & J. & M.. Indonesia.D. R.C.Interpretation methods in the exploration of Oligocene-Miocene carbonate reservoirs. M. Ardana. Conv. In: C. Ed. p. American Assoc. S.E.H..) Carbonate sequence stratigraphy. Petroleum Assoc.Unravel the Oligocene-Miocene depositional architectures in the North Madura Platform using seismic stratal volume. Jakarta. 1018-1021. S Poleng largest discovery and doubled size of Poleng field.J. Geol.E Miocene extension led to development of NE-SW trending tilted horst blocks and grabens. (Salvador 2001). Conv.S.0 176 www. Indon. Birdus et al.C. p. (JavaSpan deep seismic imaging overview) Bibliography of Indonesia Geology. 30 years after discovery) Cornelis.Deep crustal structure of East Java Sea backarc region from long-cable 2D seismic reflection data integrated with potential fields data.W. Petroleum Assoc.A. Offshore Northwest Java. Conv. Java Sea.com Sept 2016 . p. IPA08-G-153. Petroleum Assoc. IPA16-629-G. (IPA).E. wackestone and packstone with porosity up to 40 %. Lee & A..K. 23rd Ann. W. Mandhiri.Carbonate systems tracts of an asymmetric Miocene buildup near Kangean Island. Indon. Petrol. Jakarta. (1924). KE-24 and KE-30 in 2001-2001 followed by discovery of Kujung III interval in KE-40 in 2002. Proc. Clark (1993).The geometry and seismic character of Mid-Late Miocene carbonate sequences. Jakarta. Conv. Late Miocene drowning of reef) Cucci. F.Carter. Indonesia. & M. Late Miocene wrench-associated structures. M. Loucks & J. Int. 291-303. p. meandering channel at end of Tuban stage.) Proc. S. Soc. Fainstein (2001). Conv. 161-208 (Bima Batu Raja carbonate buildup reservoir undercompacted mudstone. M Miocene and younger inversion structures. Caughey. (IPA).W. (Kodeco 2000-2005 oil. channel and delta lobe in Ngrayong Sst. Proc.2004. Java. Jakarta. J. C. 6p. Seven further Kujung I discoveries in 2002. Sarg (eds. Emmet & D.K.E Miocene Kujung Fm carbonate in Kujung I reefal buildups and Kujung II-III platform carbonates. & M. P. p. recent developments and applications. Indon. (Late Eocene Miocene Gunung Putih carbonate complex in E Java Sea WSW-ENE trending asymmetric buildup. (AAPG).A. (IPA). E Pleistocene compressional phase. D.Sequence stratigraphy of a Miocene carbonate buildup. Proc. Petroleum Assoc. Granath. Carter et al. Sequence stratigraphy in Southeast Asia. Natuurkundig Tijdschrift Nederlandsch-Indie 84.A. (M Miocene Paprigi and Pre-Parigi ~N-S trending linear buildups) Carter. Darmawan.Showing small patch reefs in Kujung2 carbonate. M. 2. etc. Central Depression is inverted half-graben. Proc. E Java Sea basin M Eocne. 179-214. Indon.A. Pre-Ngimbang Megasequence mud-dominated with some siltstone-sandstone and rare late Cretaceous marine microfossils) Dinkelman.Overblijfselen van rivierbeddingen in de Java-zee. 30 th Ann. 323-338. Bird (2008). Proc. D. R. Jakarta 1995.W. Symp. 32nd Ann. 1. I. (1989). ('Remnants of river courses in the Java Sea') Crumb. In R. 18th Ann. Java Sea. with aggradational N side inferred to lie on paleowindward side. offshore N. Park. Petroleum Assoc. Indonesia. 12p. (IPA). 40th Ann. Kujung I discoveries KE-23B.. Congress Brazilian Geoph. D. I. Laboratory cut-offs (used to determine net-pay) unusually high at 26% porosity and 10 md permeability because rock believed to contain non-interconnected porosity) Cucci. & M. 115-157. 57.H. D. W. (IPA). Petroleum Assoc.vangorselslist. Hutabarat (1994). p. offshore northwest Madura. & R. Indon. E.H. KE-40.G. (eds. Basyuni. (Extended Abstract. Indon.Tectonics and stratigraphy of East Java Sea North of Madura Island. In: 7th Int. (2005). Late Oligocene erosional event.Petrophysical properties of the Bima Batu Raja carbonate reservoir. Mem. 6. p. SS Area.G.F. (Oligocene-Miocene seismic horizon interpretations N of Madura Island.gas discoveries in Oligocene. 231-251. Wijaya (2016). Clark (1996). Asjhari.) De Oliveira Martins. 6. Hidayat (2011).L. (Ujung Pangkah field in E Java Sea mainly fractured limestone reservoir of E Miocene age that has undergone several stages of deformation. Identified NE trending basement ridges.rice. Deposits historically regarded as alluvial-fan facies including highly anisotropic braided-stream fill and debris flows. Bally (1996). Kusnin. Indon. Uchupi.com Sept 2016 . when compression began to invert extensional faults of half-grabens as thrusts. with field developing northerly tilt as well as inversion of older normal faults. Half-grabens began to form in M Eocene by extensional reactivation of thrusts in peneplained Cretaceous accretionary prism basement complex. (Abstract only) (M-U Miocene (~12-6 Ma) Wonocolo Fm offshore N Madura numerous isolated carbonate platforms. Hutabarat.Seismic lineament analysis of a fractured limestone reservoir in the Ujung Pangkah Field. Petroleum Assoc. with up to five growth phases. (Study of deep water (>200 m) subbasin in E Java Sea.Geological structure and some water characteristics of the Java Sea and adjacent continental shelf.. (1987) global cycle chart) Emmet. Houston. p. E Java Sea) Emery. Neogene depositional sequences determined from seismic stratal patterns and biostratigraphy data compare generally favorably to Haq et al. Salt Lake City 2003. CCOP Techn.Sedimentology and reservoir properties of Eocene Ngimbang clastics sandstones in cores of the Pagerungan-5 Well Pagerungan Field. Petroleum Assoc. 25th Ann. oriented N-S. (IPA).geophysical survey of Java Sea and part of Sunda Shelf. P. (Talang Akar reservoirs in Jatibarang sub-basin along N border fault heterogeneous. Offshore NW Java. IPA11-G-105. East Java Sea. & C. Late Early Miocene NNE-SSW compression seen from seismic isochrons. & R. Adhyaksawan (2003).. (Sedimentological descriptions of Eocene gas-bearing fluvial clastics of Pagerungan field. and largely aggradational geometries.. Bull. 357-373. Pemberton (1996).M.K. 1-277. F. Western Flores Sea. East Java Sea. Indonesia.edu/handle/1911/16969) (Geophysical-geological study of marginal basin in W Flores Sea. Conv. 367-375. (Report on 1971Woods Hole marine geological. United Nations ECAFE. D. (IPA). East Java Basin. Indonesia. p. Jakarta. Indonesia. Yustiana & A. coarse-grained sandstones to sandy mudstones deposited in fluvial-delta setting. (eds. Inversion most dramatic during Late Miocene and Pliocene and continues today. Conv.B. AAPG Ann.A. Paleogene orthogonal extension.D.L. (Abstract only). Conv. Proc. (online at: http://scholarship. A. Petrol Assoc. Sedimentology and ichnology used to re-interpret these deposits as coarse-grained fluvial-deltaic to marginal marine with deposition along N border fault related to changes of base level or relative sea level that includes tectonic movements) Easley.) Emmet. San Diego May 1996. 9-36. Pelitic basement deformed in Cretaceous accretionary prism and uplifted/ peneplained in E Tertiary. p. P.Dorobek S. Proc.Evolution of Cenozoic inversion structures. R. J. N of Ujung Pangkah Fld also E-W trending left lateral strike-slip movement) Ebanks. AAPG Ann. M.G. 197-223.A. Ph. Basin-bounding faults listric and inferred to sole into sub-horizontal detachment at <10 Bibliography of Indonesia Geology.O. Underlying crust transitional between Sunda craton continental crust to W and Banda back-arc oceanic crust to E. Conv. Suchecki & S. & A.J. Indon.D.E Oligocene.P.vangorselslist.Geological reservoir heterogeneity of Talang Akar depositional system in the Jatibarang Sub-Basin.. farther apart. 35th Ann. Extension and regional subsidence continued until E Miocene. p. IPA Core Workshop Notes. Indonesia.. Leeward (E) margins of W-most platforms greatest amounts of progradation and filling of interplatform troughs. W.0 177 www. Atkinson et al. p. 6. A. K. Young (1972).Conditions conducive to coalescence of isolated platforms in the Miocene Wonocolo Formation. In: C. (1996). Uktolseja & E. E. Smaller platforms in E part of study area steeper sided.) Clastic rocks and reservoirs of Indonesia. Thesis Rice University.W. Sunderland. North Madura area. ENE. Paleogene extensional faulting may have lasted throug Kujung Fm deposition.trending half-grabens formed in Sunda back-arc in M Eocene. Indon. H. etc. 2. Ed. In W part of area individual platforms larger in plan view than age-equivalent platforms to E and show initial development of several closely spaced isolated platforms that coalesce at middle of growth history into larger composite platforms.Cenozoic inversion structures in a back-arc setting. Cook (1993). possibly due to faster subsidence rates in E) Dorojatun. Penetrated ~320' of Banuwati Clastics member that overlies granitic basement. with average porosity of 13. Bibliography of Indonesia Geology.com Sept 2016 . In: Proc. including lacustrine coals. Conv.Structure and stratigraphy of AVS Field.. R. horizons defining growth phases of inversion structures correlate with eustatically-controlled unconformities on basin margins) Emmet. presumably Australian margin. Recoverable reserves >20 MBO) Faisal. Expl.0 178 www. E-W orientation of better imaged keels may represent fabric of source terrane. (AVS Field multiple Oligocene Talang Akar Fm channel sand reservoirs. Howes (eds. In: C. Proc. Indon. Fainstein. Gas habitats of SE Asia and Australasia. 15th Ann. Indon. (Deeper play in Asri basin tested in 1995 Hariet-2 well.. Proc.A. offshore NW Java.E Miocene regional sag with aggradation of shallow water carbonates on basin margins. Surabaya 2005. Ed.A. 1. P.C. Vail (1996). No communication between multiple reservoir zones. Paleogene extensional basins progressively inverted as thick wedges of Miocene and younger calcareous mudstone accumulated on flanks. (2005). East Java Sea. Proc.R. J. Joint Conv.G. Twenty oil. Proc. Indon.bearing reservoirs.) Fainstein. (Abstract only. & L Suffendy (1999). & Munji S.W. Int. Granath & M. 169-178. (E Java Sea deep seismic imaged up to 5 km of pre-M Eocene beds below angular unconformity. S8. (IPA).V. 58th Ann. Most inversions trend ENE and grew in bathyal water depth. These 'synformal keels' lie below known inversion structures. 1. R. South East Sumatra. Jakarta 1998. Conv.A.A. uplifted and truncated in latest Miocene. Extensional structures controlled by pre-existing thrusts and shaly bedding planes in basement.Deep reservoir challenge in Asri Basin. Inversion progressed through Miocene and culminated in development of regional basement-involved inversion high (E extension of Kangean high). 6. p. R. Conv.Seismic exploration of the Thousand Islands area. p.. Petroleum Assoc. Mtg Soc.vangorselslist. indicating Eocene extensional basins and Miocene inversions nucleated on pre-existing structures. Geoph. but widespread secondary moldic porosity) Fisher. Anaheim.6%. 14th PERHAPI. In Miocene N margin of basin strongly progradational reflecting tectonic stability and dominant eustatic influence. Conv. & P. p. IPA09-G-046.8 mD. Northwest Java Sea.) Proc. Dinkelman (2009). (1987). Inversion began in E Miocene as basin-bounding faults reactivated and graben-fill sediments displaced towards adjacent horst blocks. & V. locally preserved in faulted synclines 20-50 km wide. Eocene rifting in few deep basins. p. P. Oil is on structural roll-overs confined laterally by growth faults of Thousand Islands Fault System. Late Oligocene. Despite regional compression which continues today at deep structural level. deep-water carbonate mudstone and shale in basin axes. Java Sea. 34th IAGI.Pre-Tertiary sedimentary “keels” provide insights into tectonic assembly of basement terranes and present-day petroleum systems of the East Java Sea. Jakarta. Jakarta. Fainstein. S margin back-stepped due to higher tectonic subsidence related to inversion process. Indonesia: can tectonic and eustatic influences on stratal architecture be distinguished? AAPG Ann. (IPA). Two facies (1) fluvial/upper deltaic and (2) transitional/lower deltaic. Java Sea. Caughey & J. (IPA). Petroleum Assoc. transgressed by Late Eocene shallow-water carbonates on margins of rift basins with shale dominant in basin axes. Conf. 11p. 16th Ann.km. Bintoro W. 30th HAGI. Sandstone heavily compacted. 19-45. permeability 10. Indon.Cenozoic inversion structures.. In deep basin. Pramono (1986). Oligocene rifting more broadly distributed in shallower basins.R. 877-881. p.Exploration of the North Seribu Area.Dim spots and non-bright AVO associated with gas in the South Arjuna Basin. D.7. Checka (1988). Petroleum Assoc. San Diego 1996. Onset of compression in E Miocene reflected by increase in subsidence and sedimentation rates. small-displacement domino-style normal faults ubiquitous at shallow structural level and apparently form on flanks of growing inversions by gravity sliding) Emmet. 191-214. 33rd Ann. R. Petroleum Assoc. SEG. penetrating Eo-Oligocene oil sandstone below 310' thick Banuwati Shale lacustrine source rock. & H. Extensional half-grabens in Sunda back-arc filled by M Eocene non-marine siliciclastics. SE Sumatra.Fletcher. Int. while south correlates to Australian craton) Granath. 1-16. & P. Jakarta 1995. 1. In: R.E Paleogene overlap assemblage.. p. Banda Sea.vangorselslist. likely formed during repetitive sea-level lowstands in Pleistocene. (IPA). p.. T. 4th Ann. offshore Northwest Java. 33rd Ann. Dinkelman (2009). Asia.K. Conv. Original oil-in-place 98.W. (eds. and Neogene inversion.G.0 179 www. 14th Ann. (Unpublished) Gresko. IPA09-G-047. Petroleum Assoc. Bay (1975). IPA10-G-007. Caughey et al. West Madura Block. Conv. p.Talang Akar coals.A.Sc. J. p. Indon. Jakarta. G. 20-30km wide. (IPA). J. 34th Ann. J. Dinkelman (2010).G. P. Located within large erosional valley.A. Suhana & I. Soc. & K. Jakarta. E Java Terrane rifted from NW Australia in Jurassic and accreted onto magmatic arc of SE Kalimantan in Cretaceous) Granath. 91-120. 14p. (1980).L. Indon.) The SE Asian gateway: history and tectonics of Australia-Asia collision.Pre-Tertiary of the East Java Sea revisited: a stronger link to Australia. Sequence Stratigraphy in S.M. 13p. (1985). Jakarta.Pre-Tertiary sedimentary section and structure as reflected in the JavaSPAN crustal-scale PSDM seismic survey. (IPA). A.Neogene clastics and carbonates representing Paleogene extension. 6.5 MMB Oil and 292 BCF gas.Upper Eocene-Lower Miocene planktonic foraminiferal biostratigraphy of wells JS 25-1 and JS 52-1. Suggest departure of E Java Terrane from Australian margin in Late Jurassic and suturing to SE Sundaland in mid-Cretaceous. Jakarta. J. P. Asjhari (2005). p.A. Indon. 2. In: C. 1-112. cratonic sedimentation and inversion similar to Goulburn Graben of Arafura Shelf. (New regional seismic survey in Java Sea and Makassar Strait suggests E Java Sea underlain by continental basement with prolonged multiphase history of deposition punctuated by extensional and compressional events.) Proc. Publ. Christ. From there fluvial systems drained into Indian Ocean through Sunda Straits) Bibliography of Indonesia Geology. W. (Identification of incised-valley complex on 3D seismic. Proc.5 km thick on basement in number of fault blocks. Proc. N part of EJT (affected by Eocene Makassar Straits extension) probably related to E Indonesian islands and Tasman orogenic belt. Indonesia.W. (Seismic lines over Pre-Tertiary in E Java Sea area suggests history of rift-fill.. 21-33.G. Sukmana. Emmet & M. (IPA). (eds.M. Indonesia. producing oil from 1975-1978 the again since 1998. E Java Terrane is major part of SE Sundaland between Meratus suture.A. SPE 93137. (East Java Sea-Makassar Straits. Precambrian-Permo-Triassic sedimentary section (age assumed) up to 8. Emmet & M. Kujung-I oil reservoir.W.Seismic expression and channel morphology of a Recent incised-valley complex. Ed. 355. Indon. 2001)) Gordon.W. NW Java Basin. Conv. Lowry (1996).K. unconformably overlain by thin Cretaceous. 211-240. (IPA).J. M. 53-74.com Sept 2016 . >300 km long and >100 m relief.Ardjuna subbasin oil source.Y. Conv. Thin oil column below large gas cap (see also Welker-Haddock et al. Spec. Java arc and W Sulawesi orogenic belt. It focused drainage from fluvial systems in NW Java. Jakarta 2005. Petroleum Assoc. and its implications regarding the basement terranes in the East Java Sea. and possibly S Borneo into area of present-day Java Sea. M. suggesting main source rocks are in U Cibulakan and Talang Akar Fms) Forrest. Flores (oceanic) basin deep seismic lines) Graetzer. Christ. East Java Basin. (Early ARCO source rock paper. Hall et al.Reservoir simulation challenges for modeling an oil rim with large gas cap in the Poleng Field. (On reservoir simulation model for Poleng field ~30km off N coast of Madura. but is poorly constrained in N under N Makassar Basin and in Kalimantan. Dinkelman (2011).Crustal architecture of the East Java Sea-Makassar Strait region from long-offset crustal-scale 2D seismic reflection imaging. from Miocene Kujung Fm carbonates. Proc. Geol. Emmet & M. unconformably overlain by M Eocene. In: SPE Asia Pacific Oil and Gas Conf. M. Petroleum Assoc. J. Thesis University of Oklahoma.. Symp. Indon. Petroleum Assoc. London. Offshore Eastern Java. Petroleum Assoc.L.E. J.Geochemical evaluation. sag. p. P. Proc. (One of first papers to propose coals as oil source rocks in fields off NW Java) Granath. IPA10-G-072. Hafsari. Int. 6. the Oligocene Talang Akar Fm) Guntoro. 29-41.the Kujung Formation revisited. Indon. Underthrusting plate may extend to negative gravity anomalies of Flores Island. Indon. Proc. B. Harris. Supardi. (1992). Conf. Mesdag. or gravitational instability is pulling it down into asthenosphere. 1-13. 6. Large sag basin over three precursor rift halfgrabens. Ratanasthien & S. Wetar N of Wetar-Alor and Flores thrust N of Flores-Sumbawa. B. Indon. High basement blocks on margins sites for thin clastic deposits and thick shallow water carbonate buildups. with series of sediment filled. Kangean Block. affected by deep marine platform diagenesis and shallow marine platform diagenesis. (Late Eocene extension led to formation of E-W trending rift system in Kangean Block. 34 th Ann.E. S.vangorselslist.Integrated 3-D Static reservoir modeling of Upper Pliocene Paciran carbonate in the Sirasun gas field. Petroleum Assoc. Jakarta. p. In: B. Choiriah (2003). (IPA). S.East Java. (2003). (E-W oriented Tertiary sedimentary basins of E Java-Flores two major zones with back-arc thrusting.Tectonic and structural setting of the East Java-Flores Seas.Time-elapse simultaneous AVO inversion of the Widuri field. (2001). Petroleum Geol. Proc. Jakarta. Assoc.. Indonesia. Rieb (eds.. Crustal loading between Flores and Flores thrust cannot completely explain deflection of Flores Basin lithosphere if bent as elastic plate. Harvidya. Gas biogenic. Jakarta.. Shallow Tethys 5. p. Low average matrix porosity (1.Gresko. Suria & S. Ngimbang Shale blanketed entire carbonate system) Bibliography of Indonesia Geology. Proc. p.) Proc. Hamilton (1979) proposed back-arc thrusts indicate subduction polarity reversal. Conv. Conv.000' Ngimbang carbonate formation uplifted by inversion to 7. Large negative free-air anomalies over accreted wedge 30 km S of deepest part of the Flores Sea suggest underthrusting plate is pulled down. offshore southeast Sumatra. important for development of fracture porosity. Shallow marine platform affected by marine diagenesis. 1-6. RD PSC. Chiang Mai. Late Miocene structural inversion overprinted earlier extensional fabric. After burial to 12. an indication of a new subduction reversal polarity in eastern Indonesia. M.com Sept 2016 . (1999). 148-161. & S. East Java Sea. Choiriah (2002). Alkatiri. with varying amounts of primary hydrocarbon source rocks and reservoir facies.U. Ed. p. p. Conv. Kangean PSC East Java Sea. Surabaya. Proc 29th Ann. Sinclair (1995). SEAPEX Press 4.Oligocene rifting event.Tectono-stratigraphy of a Late Eocene rift system within the Kangean PSC Block-East Java Sea. & S. Asymetric half-graben axes sites for Ngimbang Clastics source and reservoir facies and deepwater Ngimbang Carbonate facies. (Ardjuna Basin on S edge of Sunda craton. (IPA). Offshore Northwest Java. (IAGI). Conv. Van Eykenhof et al. Geol. p. (Eocene Ngimbang Carbonate buildup in core from RD 3 well. Sydney 1992. L.. S. 12p.000'. meteoric subaerial exposure and burial diagenesis. 31st Ann.8%) and permeability (0. >99% methane) Hafsari. (E Java Sea Sirasun Field 1993 discovery with >200' gas column Upper Pliocene Mundu Fm globigerinid foraminiferal grainstones (called 'ramp-type platform facies'). 91015. (Abstract only). 16-25.U. Indonesia.L..Diagenesis and fracture development of the Eocene Ngimbang carbonate RD-3 well. Upper sequence did not develop fracture porosity because of high detrital clay content and has poor reservoir potential) Harmony. Sartika. R. Conv.L. F.1 md). East Java Basin. W of Kangean Island. Indonesia. N. A.W. D. Indonesia.Characteristics of the lithofacies and depositional environment of the Eocene Ngimbang. (Brief review of Kujung Fm Oligocene-Miocene carbonate play and recent hydrocarbon discoveries) Henk. as in subduction zones. Ray-3 Well. Effect of subduction polarity influenced by type of basement) Hadiyanto. C. AAPG Int. Proc.0 180 www. originated during Eocene. P. Deliani & O. M. Search and Discovery Art. Indon. (IPA). facing and non-facing half-grabens. 389-402.W. F. 32nd IAGI and 28nd HAGI Ann.Basin evolution of the Ardjuna rift system and its implications for hydrocarbon exploration. Takano (2010). Symp. Petroleum Assoc. 24th Ann. (2003). p. 1. Jakarta.) Kaldi. Kujung I and II/III carbonates extensively karsted. Northwest Java. mostly flowing from N to S.B. (IPA). Mtg. 2005. Source rock in up to 6 km deep kitchen in SE. Central part of N Madura Platform Kujung I buildups up to 150-250 m high tens of km2 in size. (MB field MMC build-up. Whitaker (2008).New insight into the petroleum system in the East Java. Nusatriyo & C. Situmorang (1994). Three trends (1) S Makassar-Central Deep area. Result of study is retrograding carbonate build-up model) Johansen. 99-117. Proc. 373-393.B. 10p. Build-ups encased in mostly non-permeable sequences. low relief inversion anticlines.. Geologi Sumberdaya Mineral 4. 17th Ann. 1. (IPA). 2003. Geol. J. Jakarta. separated by lagoonal facies. when Java Sea was exposed land area. Inversion several phases through M/U Miocene. Jakarta. Structures in Kujung II/III large. similar to Bukit Tua and Jenggolo fields. D. Delta plain shales and pro-delta shales poor seals due to limited seal capacity (delta plain) or too thin (pro-delta shales)) Bibliography of Indonesia Geology. 1-7. H.S. so carrier beds in Ngimbang or Kujung Fm critical. A. Honda & H. mixed lacustrine. Ilahude. & M. 137-162. Proc.Seismic reflection study on paleodrainage pattern of the Sunda River. Jawa Sea. (2) Sakala-Lombok Ridge. 6. (Numerous prospects along N Madura Platform in Kujung I and II/III carbonates. main faults NE-SW. (Back-arc extension in Paleocene-Eocene formed basins around SE part Eurasian Plate. H. Kujung I play combined stratigraphic/ structural.A. (Study of Pleistocene paleochannels in area near Masalembo. K. In BZZ area best seal delta front shales: high seal capacity. p. p. (Seal potential comprises 1) seal capacity.G.Forward sediment modeling of carbonate platform growth and demise. offshore NW Java. Indon. U. Y.Kujung Fms). East Java basin: example North Madura. T. (in Japanese) (Abstract only). but 'thief-beds' potential risk. (2005). Conv. Simo. (3) offshore SW Sulawesi overall NW-SE fault trends. but proven by discoveries along N Madura Platform) Johansen. Hutapea. Several transgressive-regressive cycles in overal transgressive succession. Sutanto (2010). Proc.Seal potential of the Talang Akar Formation. Kujung II/III carbonates different facies in stable carbonate platform area. J. Nishita.. T. 17 p. Indon. with 3-4 km potentially mature source rocks. Petroleum Assoc. Eocene clastics and potential Late Oligocene carbonate plays in S Makassar. K. Karst breccia facies also recognized. probably extensions of SE Kalimantan drainage.Hughes. formed during several build-up development stages. BZZ area. Petroleum Assoc. Long distance migration main risk. but brittle and prone to fracturing.H. Indon.M.The K-39 reservoir characterization for simulation. EUR ~34 MBO.The dynamic of hydrocarbon migration and accumulation around Kangean Island. Ann. Indonesia. deltaic and marginal marine sediments (Ngimbang. Japanese Assoc. Proc.Present. Proc. as revealed by 3D and 2D seismic data.Depositional model of the MB Field Mid-Main carbonate reservoir Offshore Northwest Java. Important inversion phase. S Makassar Basin little affected by inversion. initiated in E Miocene. Saefulah & T.vangorselslist. Assoc. faults mainly E-W. 2) seal geometry and 3) seal integrity. etc. Indonesia. and merging with W to E orientated channel ('South Sunda River') in S of study area) Isworo. Conv. Ann. Conv.com Sept 2016 . Ardjuna basin. Proc. particularly along Madura/Kangean wrench zone. probably several phases of exposure. offshore.A. (IAGI). Ruf & F. Petroleum Technology. Older extensional faults reactivated and some Eocene basins inverted. Ichimaru. Proc. (IPA). Large number of leads: Ngimbang carbonate and clastic plays over Lombok Sub Basin. Three channel types (horizons). p. thick. Petroleum Assoc. Potential is moderate in upper TAF transgressive carbonates: high seal capacity and continuous. East Java. 32nd Ann. Most traps 10-50 km from mature source.D. 2010. 27th Ann. Atkinson (1993).South Makassar Area. Viable source rock main challenge in area. Indonesia. Conv. Indon. is N-S elongated patch reef complex. J. E. 22nd Ann. SEAPEX Conf. Ed. Prasetyo (1999). (IPA). 29. & C. Conv. Petroleum Assoc.. Wu (1988). Indon. laterally continuous and very ductile. off Southeast Kalimantan around Masalembo waters.S.0 181 www. 2-10. Jakarta.Depositional geometries and hydrocarbon potential within Kujung carbonates along the North Madura Platform. p. producing since 1994 from fluvial M-U Eocene Ngimbang Clastics Fm) Liu. p. Ed. this charge of gas flushed preexisting oil accumulations. 177-192) (Reservoir description for Pagerungan gas field.. Secondary porosity and fracturing produced good reservoirs) Kovacs. but actual gas column is 328 m) Kaldi. 43. p.D.L. with reefs as exploration targets. Techn. Beijing.Seismic expression of Late Eocene carbonate build-up features in the JS-25 and P. Proc. Jakarta.N. Jakarta. X. 120. p. O'Donnell (1997). Noble (eds. breached traps refilled with gas over periods as short as perhaps 2-3 My) Keijzer. (IPA). (2009). thick E Miocene limestone and shale sequence (Kujung Unit I). Australia. In: R. Features grew over basement highs. 85-101.Seal capacity in dynamic petroleum systems: example from Pagerungan gas field. C. (1982). Acta Sediment. 280-288. O’Brien & T.limestones with bioherms (Poleng Field). Offshore Northwest Java. Indon. principally gas. 5. (b) extensive.Rama reservoir model study. Kaldi.V. D. J. (Seals in E Java Basin dynamic rather than absolute barriers to fluid flow.) Seals. Paper 35611.Reservoir characterization constrained to welltest data: a field example. 325-334. Petroleum Assoc. R. Data from largest gas field. p. Geol. Conv. Indon. P.. Main E Miocene physiographic elements (a) deep water. Prod. p. Some uncertainty whether the Bawean volcanics pre-date or postdate Miocene limestones) Kenyon. American Assoc. Bibliography of Indonesia Geology. (1985).pdf) (Bawean island. p. 437-447. suggest dynamically filling and leaking capillary trap. & C.. Akademie Wetenschappen. Conf.C. Petroleum Assoc. Sinica. 73-86.A contribution to the geology of Bawean. Jakarta.vangorselslist. 1. p. Proc. JS25-1 well penetrated >1000’ of recrystallized Late Eocene limestone. Wang H. traps and the petroleum system. (IPA). (online at: www.nl/DL/publications/PU00017446. (Classic paper on E Java Sea. J. Nederl. Petrol. 39. 27.A. Sunda Basin. rel. A. Horne. East Java Sea.. Discovered in 1985. supports maximum gas column of 213 m.G. (1977). (AAPG). Soc.com Sept 2016 .. Howes & R. 2. Java sea. 619-629. 1. with high energy bank along S margin. Indonesia. Petroleum Assoc. East Java Sea. Petrol. whereas subsidence in new depocentres was drive for renewed hydrocarbon expulsion and migration. Denver 2000. Timor Sea Neogene tectonism caused extensional faulting and basin formation. Indonesia. Proc. J. Australian Petrol. Kon. Expl.D. p. Widespread. E Bawean Trough to W of JS-1 Ridge.JS25 area in Kangean block off N Bali. Jenkins (2000). Sepanjang trend. N of Madura Island. 67. (also in Proc. MacGregor & G.Sequence and depositional characteristics in synrift stage.Distribution and morphology of Early Miocene reefs.S.W. G. Indon.Evaluating seal potential: example from the Talang Akar Formation.. Proc. F. p. Int. Kangean Block. Kujung Unit I depositional trends influenced by pre-E Miocene NE-SW structural grain along Asian continental margin) Kohar. which may have been volumetrically larger in past. 4. M.C.P. young ?). Indonesia. (d) NE-SW trending JS-I Ridge NW of C Depression. In: Offshore South East Asia 82 Conference. E-W positive area of shallow water carbonate deposition to N (E Java-Madura Shelf). 6. E-M Miocene/Tf1-2 limestones with Miogypsina and quartz-sandstones. Landa. Assoc. petrographic descriptions of rocks collected by Schmutzer in 1912: volcanic rocks (leucite-bearing.G. (IPA).). Kamal & C.knaw. E Java Sea. 2. Wang S. fine clastics. In other cases. 6th Ann.. Kivior (1999).G. 829-836. SPE Ann.dwc. Atkinson (1997). (1940).M. Deng H. with shoal water carbonates. (APPEA) J. Singapore. Conv. Engineers (SPE) Reservoir Evaluation and Engineering 3.P. (c) Central Depression with open marine. E-W trending open marine clastic basin in S (E Java-Madura Basin). (Over 20 carbonate build-ups at top Late Eocene carbonate shelf sequence. Mem. 14th Ann. Faulting caused breaching of traps. Petroleum System of South East Asia and Australasia. J.S.Kaldi. 215-238. Indonesia and the Timor Sea region. E Java Sea.Seal capacity and hydrocarbon accumulation history in dynamic petroleum systems: the East Java Basin.G.0 182 www. spreading E-W across Sepanjang island. p. Conf. Surdam (ed. Amsterdam. In: J. (Seal capacity measurements suggest Ngimbang Shale top seal over Pagerungan Field. In traps with high seal capacities. Pagerungan. Cui Yi & Di Y. Decker & W. D. Eocene-Oligocene doming and faulting followed by subsidence and tectonic quiescence until E Miocene. delta. Expl. (E Java Sea Basin metamorphic basement. 22p. Proc. Morgan (2005). 1. C. (IPA). & R. p. p.B. Morgan (2005). braided channel delta. S.(Five sequences in syn-rift section of Sunda basin. Main play E-M Miocene Kujung Fm carbonates) Maynard. Barraclough (1994). 12. Indon. Paleogene platforms Neogene depocentres. Jakarta. leaving much of matrix with low permeability that is not expected to contribute to reserves.Thorough data acquisition during appraisal mitigates development risk of a thin karst reservoir. Indonesia. NE-SW trending grabens formed in M Eocene and filled with alluvial clastics. Conv. Prosser (2010). associated with E-W trending. Rubyanto & S.com Sept 2016 . 34th Ann. & P. accreted to Sundaland in Paleocene. Basement onlap began in Late Eocene. p. Buchan & J. Conv..M. 1. Mukti. recording overall transgression. Bukit Tua reservoir. postdate main hydrocarbon generation. 23rd Ann. Jakarta. Proc.J.vangorselslist. 36th Ann. resulting in gradual reversal of depocentre location.A. basin inversion or renewed subsidence from Late Miocene to Recent. Paleogene rift and Neogene reactivation. Most intense deformation in Late Pliocene. East Java Sea.A. Indon.Late Cretaceous and Cenozoic tectono-stratigraphic development of the East Java Sea Basin.J. E Eocene extension reactivated Cretaceous thrusts. M. Geometries similar to positive flower structures evolved by reverse reactivation of geometrically complex extensional fault system) Maulin. Paleogene depocentres became Neogene highs.lowermost Miocene deep water calcareous mudrocks and limestones. (IPA). Conv. p. 2005 (Abstract only) (Early Oligocene carbonate reservoir model discrete thin karst zones <30' thick in offshore N Madura Platform wells.Appraisal of a complex. Marine Petroleum Geol. JS-1 Ridge is basement high on basement that probably is Australia-derived microcontinent 'Argoland'. Bukit Tua discovery. Tertiary structural evolution mainly dip-slip fault movement during extensional and contractional phases. affecting progressively larger area with time. Regional intra-Oligocene unconformity overlain by Oligocene. Depositional systems include fan delta. Indon. (Kurnia-1well near S coast Madura island drilled rel tight (basinal?) Kujung Fm limestones. Petroleum Assoc. Ed. Petrol. Proc. but reservoir potential enhanced by fractures) Manur. coastal plain and shelf clastic and carbonate sediments. Bransden (1995). Late Miocene structures generally dry. Wrench faulting.E Pleistocene.. Continuous regional subsidence during inversion history.Structural control on hydrocarbon habitat in the Bawean area.E. 6.. locally onlapping Eocene rocks. Bibliography of Indonesia Geology. M-Late Miocene uplift in E part of basin. Indon. Great Britain Carbonate Conf. Neogene wrenching and Late Neogene compressional thrust folding. 499-510. Soc. Karst zones exhibit varying degrees of porositypermeability because of dissolution and probable fracture enhancement and flowed up to 4500 BOD at DST) Maynard. Paleogene fault zones reactivated in Neogene. E Oligocene regional subsidence. Contraction and peneplanation of Cretaceous sediments and basement before middle E Eocene produced regional unconformity. Proc. Indonesia. H. down-to-S normal faults. overlain by up to 3 km marine Upper Cretaceous sediments. Pre-Late Miocene structures more attractive targets) Matthews.The Kujung Formation in Kurnia-1: a viable fractured reservoir play in the South Madura Block. Armandita. T. (IPA). Increased permeability associated with karst confined to thin zones. (Bawean area two phases. IPA10-G-005. K. Further uplift/ N-S compression in Late Miocene-E Pliocene. IPA12-G-072. H. Ketapang PSC. Petroleum Assoc. platform carbonate. Nov. sediments dominated by deep marine clastics. fluvial. C. Indonesia. East Java Basin. Petroleum Assoc. East Java. Romi (2012). Paleogene fault-controlled sub-basins with fluvial. Conv.E Oligocene normal faulting pulses. K. Jakarta. nearshore subaqueous fans and beach) Magee. M. 317-330. 1-13. 30th Ann.. 129-144. (JS-1 Ridge in West Madura Offshore area at least three tectonic regimes: Eocene NE-trending extensionrifting. & W. Petroleum Assoc.0 183 www. lateritic clays and lacustrine shales (source rocks). E Eocene. Mandhiri.E Oligocene with transgressive marine sandstones and limestones including reefs.Structural reactivation and its implication on exploration play: case study of JS-1 Ridge. D. with good source potential. p. A.The Krisna lower Batu Raja waterflood: an updated case history. Sr ratios of most Bima samples follow normal Tertiary trend. 441-460. 21st Ann. Proc. (N Madura High E-W trending Ngimbang (M Eocene. Ramos (1998). Jakarta. Many uncertainties remain regarding distribution of facies and porosity. Indon. 559-572. (2002). J. Oil-source correlations suggest oils from center or W margin of Sunda Basin mostly from middle Talang Akar. In: Proc. American Assoc. near-basement carrier beds and Ngimbang and Kujung II/III carbonates. Pagerungan Field. IADC/SPE Drilling Conference. 5.0 184 www.. Indonesia. p. 12p. (IPA). Xu (2015). J.Application of sequence stratigraphic concepts and depositional models for reservoir mapping: an example from the Upper Cibulakan Formation in the L and LL Fields. p.G. Jakarta. Petroleum Assoc. some interpreted as NNE trending tidal ridges) McCaffrey. Jakarta. & J. Smith & S.20 km from fringing reefs. Rusmantoro. Fringing reefs viable play. 728-729. B. Jakarta.Earthquakes. with 1-6 % TOC in Talang Akar Fm. p. Payang 2001). Murtani.(Bukit Tua 2001 N Madura platform. IPA15-G-055. Dallas. Indon. Indon. M. (1985).Exploration of the North Madura platform. (late E and M Miocene Massive and Main sand reservoirs. Mursid (1992). 35th Ann. NW-SE. (Shale source rocks in Oligocene Talang Akar and E Miocene Batu Raja Fms. Petroleum Assoc. 403-430. as indicated by discoveries in Ketapang PSC (Bukit Panjang 2000. 2. Sidayu 2000). Overlying Batu Raja Fm TOC up to 3. 6. 14th Ann. Geol.Strontium isotope chronostratigraphy and diagenesis of the Batu Raja Limestone. 21. (AAPG) Bull.E Miocene) shelf edge carbonates. Proc. Migration of low 87Sr/86Sr early Tertiary marine formation waters up fault and into porous horizons likely mechanism for rock alteration) Molina. Petroleum Assoc. 1. Offshore Northwest Java. KE-24. (Abstract only) (Sr isotope chronostratigraphy from 7 Bima field wells indicates Batu Raja limestone deposition started in Late Oligocene (26-27 Ma) and ceased in E Miocene (21-22 Ma). N. 597-607. Indon. (IPA). Porosity may be from repeated exposure on crest of old Madura Platform. nearby W Madura blocks (KE-23B. (IPA). Petrol Assoc.E Oligocene) and Kujung (Late Oligocene.com Sept 2016 . 74. KE-13. offshore Northwest Java. and in overlying Kujung Fm.Petroleum geochemistry of the Sunda Basin. p.W. rich in amorphous and herbaceous kerogen. 28th Ann. KE-30) and Pangkah (Ujung Pangkah 1998. Eustatic sea level drop at ~21 Ma exposed Batu Raja carbonate platform to meteoric diagenesis and formed reservoir facies. Proc. north of Bali. E Java Sea) with three dominant fracture orientations: NE-SW. Pireno (2002). indicating generation from terrestrial and aquatic kerogen types.G. A. Proc. P. 143-179.S. D. Petroleum Assoc. Conv. produced by thrusting along Flores backarc thrust zone) McChesney. Ed. Nabelek (1987). E Java Sea. New Bukit Tua and Jenggolo oil-gas discoveries targeted layered Kujung platform carbonates on N Madura Platform. Upper Talang Akar coaly. & J. Conv.E. D. Conv. also dominated by woody-coaly organic matter. R.Seismic lineament analysis of a fractured limestone reservoir in the Ujung Pangkah Field. Eight oil families identified. Mudjiono. 2. Oil generation from lower Talang Akar started in M-L Miocene) Moulton..vangorselslist. Miller. Migration pathways via permeable Kujung I carbonates.G.E Miocene Kujung Fm carbonate reservoir in Ujung Pangkah oil field (SW part of JS-1 Ridge. p. With good basement and paleogeography maps). Petrol. (Oligocene. and E-W) Bibliography of Indonesia Geology. Zones significantly affected by early meteoric diagenesis have anomalously low ratios. 10. (IPA). Patria & J. 28th Ann.Optimizing drilling strategies in a tectonic belt. Also. Conv. IADC/SPE Paper 39357. Jakarta. offshore.. Conv.0%. M. Proc. Dwiperkasa.S. Kaldi (1990). East Java. Includes overview of regional setting) Mazied. Wilton & G. R. gravity and the origin of the Bali Basin: an example of a nascent continental fold-and-thrust belt. D. Geophysical Research 92.R. p. Indon. lower 87Sr/86Sr values in altered samples near Seribu fault. 707-722. & G. along E margin mostly from lower Talang Akar. oil and gas discovery in 300’ section of E Oligocene Ngimbang Fm/ ‘CD’ platform carbonates on basement.K. (IPA). (Bali Basin is downwarp in Sunda Shelf crust. Indonesia. midOligocene and Plio-Pleistocene. ?Holocene basalts. low-metamorphic sandstones. but laterally-restricted fluvio-deltaic deposits and thinner (~60 m). Proc.H. KBank relatively flat top with marginal banks of suspected Pleistocene origin as interpreted from seismic) Pireno.D. Proc. 13p. steeply dipping. mainly to SW (so unlikely to be part of Cretaceous accretionary terrane?. (IPA). & F. I. Ngimbang and Pre-Ngimbang at maximum burial today in syncline. 1. ~1 TCF in Plio-Pleistocene Paciran Fm sandstone and foraminiferal limestones. 301-314. offshore northeast Java Sea. HvG). (Terang-Sirasun 1982 field N of Bali >99. Roberts (1988).E. Play fairway analysis with emphasis on reservoir distribution on N Madura Platform. with N limb subcropping beneath JS 53 and Igangan-1.662. Petroleum Assoc.Source characteristics of Terang-Sirasun bacterial gas field. Coral Reefs 6.vangorselslist. 149-159. Noble & F. (eds. In: R. Darma & F. Ed. R. L46-1 well tested oil in Eocene non-marine sandstone) Bibliography of Indonesia Geology. G. Indon. H. Organic Geochem. Deepwater and Frontier exploration in Asia and Australasia Symposium. Conv. Proc. Underlying basement NE-SW trending fold-thrust belt(s) (steeply dipping reflectors to NW on 3D seismic?)) Phillips. Indonesia. 50 km E of Sunda Shelf margin in E Java Sea.A. & H.G. with top sloping from ~20 m water depth in N to ~100 m in S. 321-332.Deep-water petroleum systems of the Southern Basin. Ramsey (1972). & F. p.Ngimbang clastics play in the East Java Basin: new insight and concepts for North Madura Platform. unfossiliferous. Henk (1996).L. eastern Java Sea (Indonesia). p. Geologi Indonesia (IAGI) 2. Conv. with sedimentation starting with M Eocene lacustrine sediments.H.A.A. p. Jakarta. phyllite. conglomerate.Seismic characteristics and accretion history of Halimeda bioherms on Kalukalukuang Bank. 25th Ann. First Ann. Jakarta. 13-20. (IPA). probably always exposed during Tertiary) Nedom. Consists of thick (~90 m). possibly isoclinally folded. (Abstract only) (Terang-Sirasun gas field 100 km N of Bali in E Java Sea. steeply dipping. Structural grain NWSE. Inversion events in Late Eocene.Nayoan. K-Bank isolated limestone platform. (Southern basin is Early Tertiary NE-SW and E-W half-graben..Hydrocarbon charge of a bacterial gas field by prolonged methanogenesis: an example from the East Java Sea. Cretaceous sediments overmature and non-generative. Paleocene-M Eocene Pre-Ngimbang Fm probable gas source at Pagerungan. Noble et al. R. p. & H. (2004). Indon. Jakarta. Noble. (IPA). unconformably overlain by horizontal. Indon. but more extensive glauconitic shallow marine sandstones. Petroleum Assoc. C. Kangean Block Northern platform.H. Proc. R. 1-3.A.) Proc. Pagerungan Field produced 1. Jakarta.5 TCF gas from this play. Older formation correlated with Upper Triassic flysch by Van Bemmelen (1949). 1p. (Ngimbang Clastics is syn-rift succession in several NE-SW trending Paleogene half-grabens in E Java Basin. Two formations: Karimunjawa Fm Pre-Tertiary. p. Conv. 20th Ann. 6. 2. Indon. (Extensive areas of Halimeda bioherms on Kalukalukuang Bank (K-Bank).A. T. Indon. Hydrocarbon generation triggered by sedimentation associated with Late Miocene N-S compressional event) Phipps.Exploration and development of a new petroleum province. Jakarta. Henk (1998). 111-137.H. Indonesia. Sinartio (1991).A.J. Petroleum Assoc. Indonesia. 29.W. Gas >99% methane of microbial origin in anoxic marine setting) Noble. (IPA). and probably southernmost Sundaland. Marine incursion started in mid Late Eocene. Seismic shows E-W trending syncline in Cretaceous and PreNgimbang N of Pagerungan.0 185 www. Petroleum Assoc. 40th Ann.A.S.F. Petroleum Assoc. p. sealed by Quaternary Lidah Fm shales) Nugraha. Karimunjawa Arch surrounded by onlapping Tertiary sediments. IPA16-98-G. North Lombok. Darmawan (2016). H. (Karimunjawa Islands in Java Sea N of Semarang up to >500m elevation. 637.com Sept 2016 . (1975). (Oil in JS 53 and gas in Pagerungan from Eocene and older source rocks in E-W trending kitchen between fields. Late Eocene Ngimbang Fm coals and carbonaceous shales correlated to oil at JS 53 and condensate at Pagerungan.V.. G. S limb subcrops beneath Pagerungan.Geology of the Karimunjawa Islands.5% biogenic methane in Late Miocene-Pliocene Paciran Mb sandstone and globigerinid limestone. Java Sea. (IPA).Origin of hydrocarbons. Conv. (M Miocene Upper Cibulakan E-M Miocene ‘Massive’ and ‘Main’ hydrocarbons controlled by depositional facies (deltaic and shelfal) and mature Oligocene source rock distribution.650m wide channels normal to platform and terminate at buildup margin. Indonesia. Purnama & D. Checka. Petrol. Conv. Larger Kujung 1 patch reefs coalesced to form NW-SE trending platform. unincised. p. Expl. IAGI.) Posamentier.Lowstand alluvial bypass systems: incised vs. M. 359-373. A. characteristically sharp-edged and thicker on one side. (AAPG) Bull. Stinson (1989). Warmath. separated by 1. C.W.V.com Sept 2016 . Offshore Northwest Java Basin. Petroleum Assoc. American Assoc. Ed. up to 400m thick with diameters 1. C.a potentially significant component of the transgressive systems tract: case study from offshore northwest Java. Laurin. Across platform 100’s of small circular buildups. R. Wu. Tide-influenced elongate large patch reefs in Kujung 2 and K 1 and Wonocolo Bibliography of Indonesia Geology. Kujung 1. V.0 186 www. Bima Field large field in Miocene Baturaja Fm carbonate buildup on flank of N-S trending basement high and underlying Talang Akar Fm sandstones) Ponto. Java Sea. Features asymmetric.Reservoir petrophysics of Bima Field. (AAPG) Bull. Wu.2-2. E..3 . (2001). Large build-ups off platform. 397-422. Ridges oriented parallel with axes of broad paleoembayments associated with structural fabric of basin. Mtg. Wonocolo buildups larger than Kujung buildups and have clinoform architecture: circular to elliptical.0 km wide. Jakarta. Geol. and have significant exploration potential.R.W. 4-10 km wide and up to 20 km long.W.H. Soc. (IPA). >20 km long. George et al.Improved interpretation of the Talang Akar depositional environment as an aid to hydrocarbon exploration in the ARII Offshore Northwest Java contract area: Proc. Smaller patch reefs 60-120 m diameter at tops of buildups. New interpretation determined four environments: continental.C. 17th Ann. Shelf ridge deposits tend to be sand prone and overlie ravinement surfaces. Morgan. 6th Regional Conf. Indon. Small Kujung 2 patch-reef buildups <120.A. (Images of Miocene carbonate landscapes from 3D seismic off N Madura.. A. p.W. Post Wonocolo basin subaerially exposed and veneered by fluvial systems. 86. (extended abstract) (Buildups N of Madura range from small patch reefs to platforms with outliers. Pranoto & W. Jakarta 1987 (GEOSEA). C. 10. Purantoro (1988). with ~25-40 m of relief. and tide influenced elongate large patch reefs in Kujung 2. 6. 85. H. and up to 17 m high.) Cenozoic carbonate systems of Australasia.. N. Conv. Buildups within platform 600m. Spec. (2002). H. Geoph. (Mapping of porosity on petrophysically calibrated seismic data. American Assoc.D. 1771-1793. Sedimentary Geology (SEPM). 75-106. A. Geol. & P.V. Petroleum Assoc. Clastic low-angle clinoforms from NNW beween deposition of Kujung 1 and Wonocolo Fms. (Oligocene Talang Akar Fm previous facies interpretation deltaic and marine. In: B.. 17th Ann. Drajat (2010).5 km wide tidal channels) Posamentier. (Miocene unincised and Pleistocene incised valleys imaged on 3D seismic on shelf offshore NW Java) Posamentier. (eds. Situmorang (ed.H. C. Pranoto & W. Anastamosing 200m deep. Jakarta. and Wonocolo Fms. Houston 2005. Geology Mineral Hydrocarbon Resources of Southeast Asia.Controls on hydrocarbon accumulation in the Main. Four cycles of delta progradation from northern source) Posamentier. (IPA). p. p. Soc. Roe & R. p. Stinson (1988). Delta complex and shore zone good source and reservoir potential.6.361. Publ.5 km. In: W.H. Proc. delta complex.vangorselslist. (3-D seismic of Miocene off NW Java shows extensive shelf ridge deposits: linear bodies 0. Massive sandstones of the Upper Cibulakan Formation.2.Seismic geomorphology of Oligocene to Miocene carbonate buildups offshore Madura. 4p. These deposits migrated across ancient sea floor. A. Petrol. P. represent important component of transgressive systems tract. Laurin (2005). Ridges formed as result of erosion and reworking of sand-prone deltaic and/or coastal-plain deposits by shelf tidal currents. H. H. Indon. 345. 95.W. Four stages in Talang Akar Fm depositional history) Ponto.. 1. p.2 km diameter and 200-300 m thick. Indonesia.Seismic stratigraphy and geomorphology of Oligocene to Miocene carbonate buildups offshore Madura. shore zone and shelf.500 m wide.Ancient shelf ridges. (SEG) 2005 Ann. immediately after shoreline transgression.) Proc. Buildups range from small patch reefs to platforms with outliers.Poggiagliolmi. 1.H. 175-194. Assoc. Sumantri.tectonic episodes: (1) Some of Pre-Tertiary and economic basement show compressive regime (subduction/ collision). (2) Most of DBS Paleogene extensional regime.5 km wide. p. 1. In: Int. Indonesia 9. normal to platform. H. implications for hydrocarbon prospect. Suyenaga. JCB2015-110. F.Structural and tectonic development of West-East Indonesian backarc transition zone. Basement consists of mixed oceanic. Sarmili (1994). 23-60. W. Situmorang & S. Inst.V. HAGI-IAGI-IAFMI-IATMI. Sugeng H. offshore northwest Java. Back arc region of E Sunda arc currently closing) Prasetyo. Biostratigraphic and sedimentologic data indicate open marine channel-fill. Conv. 26th Ann. T. (1992). p. R. Balikpapan. gravity. while Bali Basin represents analog of initial stage of foreland fold-thrust belt. Proc. Dwiyanto (1986). Indonesia. & L. 6. (IPA). Proc. suggesting multiphase deformation. M Miocene and younger basement-involved inversion to form 'Sunda Folds'. & B.2–2. Bull. Geol. Djatmiko (1997). Indonesia 2. likely deltaic. At least five geologic. Larger circular to elliptical patch reefs of Kujung 1 coalesced to form NW-SE trending platform. H. Flexure of SE Sunda shield margin to S beneath volcanic ridge.. a NE-SW and E-W series of ridges and deep basins in E Sunda Backarc. p. Conv. 20 km long). Bull. Back arc portion of the DBS currently closing and will form suture zone in future) Prasetyo. 58-70. Pratama. H.First screening method use in low contrast low resistivity pay evaluation of the upper Cibulakan reservoirs in the L Field offshore Northeast Java.2 km wide and 200-300m thick. 2.Fms.The 'Doang Borderland System' in the Southeast Sunda Shield margin: implications for hydrocarbon prospect in the eastern Indonesia frontier region. Indonesia. Ed. side-scan seafloor mapping and Airborne Laser Flourescensor data used to determine geologic-tectonic development of “Doang Borderland System”. Hundreds of small circular buildups of Kujung 2 range from 120 m. and (5) Backarc fold-thrusting since Neogene. related to collision of Buton micro-continent with Sulawesi arc. Seminar on the sea and its environments.. Petroleum Assoc. T.Sunda Arc collision and Roo Rise (oceanic plateau) subduction in Sunda Trench. Conv. Large buildups form off platform. p.Stratigraphic analysis of the Main Member of the upper Cibulakan Formation at E field. Rufaida. Tectonic phases: 1. H.com Sept 2016 . Ikhrandi.0 187 www. Prasetyo. Proc. drill-holes. Buildups within platform 600m. Jakarta. Marine Geol. Petroleum Assoc. Smaller patch reefs at tops of buildups. 4. Utomo & R. continental and Paleogene volcanic rocks. Joint Conv. Y. showing oceanic crust of Flores basin currently closing) Prasetyo. 3-11. 1-6. Pemberton (1998). & W. 21st Ann. and 25-40 m of relief. Main Member imaging reveals sand fields or patches. (4) Flexural downbowing to S of SE Sunda Shield margin (N basin margin) alongN Sunda volcanic ridge.W. 3.The Bali-Flores Basin: geological transition from extensional to subsequent compressional deformation. D.Single channel seismic reflection study of the eastern Sunda backarc basin. p. (W-E Indonesian Backarc Transition Zone (WEIBTZ) in E Sunda Arc System between Makassar Strait to N Bali and to E by NW-SE trending submarine ridge N of Flores. associated with Australian margin. 455-478. Paleocene rifting. Nugroho. in which oceanic crust of Flores Sea subducted S-ward beneath arc. Fathurrahman. Anastamosing channels up to 200m deep and 650m wide.R. 2. 129-153. (Amplitudes in Upper Cibulakan Fm at E Field show E-W trending channel. up to 400 m thick. H. North central Flores.5 km wide) Posamentier. Back arc thrusting N of Lombok reflects initial stage of arc polarity reversal. Indon. Clastics low-angle clinoforms from NNW.. 26th Ann. 1. Proc. p. 10p. Top Wonocolo Fm subaerially exposed and site of densely spaced fluvial systems. (IAGI).Bawean island as a new geoturism destination in East Java basin. A. Woncolo buildups larger than Kujung (4-10 km wide. Ujung Pandang 1995. Wirasantosa (1995).500m in diameter. H. (Seismic.G. Indon. Marine Geol.. Inst. Neogene back arc foldthrust zone. with internal clinoforms and separated from each other by tidal channels 1. Indon. interpreted as sand waves migrating across a transgressive surface of erosion) Prasetyo. Bibliography of Indonesia Geology.. (Young back-arc thrusting N of Bali-Lombok-Flores. Amami (2015). Westward transition from well-defined accretionary wedge to fold structural styles indicates W-ward decrease in shortening. Meyrick & S.W. (3) extensional regime inverted to form 'Sunda Fold' structures. associated with Australian margin-Banda Arc collision and subduction of Roo Rise oceanic plateau in Sunda Trench S of Bali.vangorselslist. B. a sleeping giant. First drilled in 1974 by ZZZ-1 well. Five coral-algal-foraminiferal limestone facies distinguished. Upper Cibulakan Group.Lombok basin. Coarser grainstone.0 188 www. Balikpapan. but at that time deemed non-commercial and heavy oil) Priyono. & W. Jauhari & W. (Reservoir sand distribution in fluvial 35-1 sand in Gita Mb of Talang Akar Fm in Widuri Field) Ralanarko. Gas analysis: methane (98. J. Yogyakarta. (M Miocene Mid Main Carbonate sequence in Seribu Shelf area of NW Java Basin comprises numerous N-S trending reef build-ups. 6p. Kaldi & C. offshore Ses Block. D. S. With outcrops of Late Oligocene. 4th Circum Pacific Council for Energy and Mineral Resources Conf.Pliocene quartz sandstones and Pleistocene volcanics. 37th Ann.) Trans. Joint Conv. Wijaya. offshore Southeast Sumatra. based on gas isotope lightness and low C2-C7 content. Butterworth. P. D.Shallow gas in ASRI Basin. Lantung. HAGI-IAGI-IAFMI-IATMI. indicated by decrease in C29 sterane relative abundance from 70 to 30%) Ralanarko. 41st Ann. 5p. (1987). Horn (ed. M. 1. Conv. Proc. J.Reservoir characteristics and petroleum potential of the mid main carbonate. ('Asri Basin in W Java Sea with cumulative oil production of 549 MMBO. Gas 99% methane and viewed as biogenic. p. Radke..19%). Conv. 23rd Ann. Indon. Jakarta. Northwest Java Basin. G-068. Late Miocene.. Sun Pengxiao & Su Chonghua (2015). Assoc.G. Indonesia. Geochimica Cosmochim.L. Acta 58. 2/3 of oil in partly stratigraphic trap of E Miocene Baturaja Limestone. Stable isotope data show gas unlikely to be biogenic gas without thermal hydrocarbons) Ratkolo.Bima Field. (HAGI). p. The latter processes with greatest effect on porosity and permeability. H..com Sept 2016 . (IPA). 289-306. Asri Basin. A. (IPA). Geophys. J. p. 2012-E-11. (C1-C3 naphthalenes and cadalene determined in 60 crude oil samples from Sunda. Singapore 1986.vangorselslist. Oils from Ardjuna and Jatibarang basins mainly derived from terrestrial sources. Vriend (1994).Petroleum potential of the East Java. Petroleum Assoc. Indon.Geochemistry analysis for reoptimizing a gas well to be developed case study: ASRI Basin. Senoaji (2012). Widjonarko. wetness 0. R. Indonesia. (IAGI).9%). Indonesia: drilling hazard or future potential? Proc. Ed. Larger pores mainly secondary vugular or fracture porosity (23%. Senoaji (2012). 6.K.. Secondary target now is gas in Air Benakat Fm. Proc. Proc. Indonesia.D. Indon. (General paper promoting hydrocarbon potential) Purantoro. Jakarta. 3675-3689.W.. Assoc. Rullkotter & S. P. Conv. p. Transition to marine depositional environment in Sunda basin. Oil seep at in Mt. offshore NW Java. PITHAGI2012-065. S Bawean) Prior. Conv. Adhiperdana (2007). (1994). E.E Miocene limestone.(Geotourism potential of Bawean Island on Bawean Arch.50 %. Southeast Sumatra. Gunawan. Palembang. Main diagenetic processes early diagenetic marine and vadose cementation. R. 199-212.packstone facies locally reduced porosity by cementation Bibliography of Indonesia Geology.Uncertainty on stratigraphic heterogeneities within West Area and East Area of Widuri Field. In: M.Distribution of naphthalenes in crude oils from the Java Sea: source and maturation effects. (Shallow gas in Air Benakat Fm sandstone reservoirs in Susana-01 around 1600. Geol. R.. Indonesia: identifying 351 interval thin reservoir as an upside potential from fluvial channel system in Talangakar Formation. 6p. Indon. Gas accumulations can be identified as bright spots on 3D seismic. Sunardi & B.J. Ph. Additional pay in deeper Talang Akar Fm sst. Petroleum Assoc. Nugroho. Thesis University of Wollongong. 12p. with ~100 MBO of recoverable reserves. Proc. JCB2015-368.1800' TVD and and in other wells at ~1400'. Most probably generated from shale in M-L Miocene Air Benakat Fm) Ralanarko. Atkinson (1994). followed by later dissolution and cementation. P. (On large ARCO Bima oil field. offshore Northwest Java Basin: insights from U-11 Well.A sequence stratigraphic model of the Upper Cibulakan sandstones (Main Interval). T. E Java Sea.D. Sangkapura district. North and South Makassar Strait and offshore Kutei basin. Talang Akar Fm main productive reservoir. D. Arjuna and Jatibarang basins and in sample of Oligocene Talang Akar Fm resinite. 31st Ann. with tops in 30-50m water depth. G. P.E Miocene and was major source of clastic material to nearby depocenters. indicating tropical land-plant precursor) Ramsay. United Nations ESCAP CCOP Techn.A. Several exploration wells with high CO2 in Tuban Fm sandstones and Bibliography of Indonesia Geology. Vol. Coral Reefs 6. which includes Madura Island. JAV11-JAV13. 11p.V.(e. (IAGI). Reynolds. & L.V.Exploration and development of a new petroleum province. Phipps & L. p. Caughey et al. Publ. Phipps & L. Bandung. 161-172.Morphology and sedimentology of Halimeda bioherms from the eastern Java Sea (Indonesia). 6. Fewer and thicker along deeper S margin. In: Proc.0 189 www. Good quality reservoirs >10% recovery efficiency.D. (2014). nutrient rich S-moving Pacific Throughflow water from Makassar Strait) Roberts. like JS-I-1 ridge. No reef-building corals below 15m. S.H. 371-374. Main source of gas inMuriah basin.H. Geo-Marine Letters 7. Conv.termogenik pada area tinggian Bawean. Smaller offshore highs. nutritive water responsible for high Halimeda productivity and large bioherm development) Roe. stable northern platform (Java Sea) and series of deep basins to S (onshore). ARII ONWJ contract area: the search for additional reserves.. In: C. E Java Sea. Indon. Geol. C.com Sept 2016 . Java Sea. C.846. eastern Java Sea (Indonesia): a side-scan sonar study. NE-SW trending Bawean Arch dominant positive feature offshore. Proc. Proc.W.) Seismic Atlas of Indonesian Oil and Gas Fields. 43rd Ann. oleanane and high pristane/phytane ratio. Petrol. Effendi (1987). Nedom (1973). J. E Java Sea. Thickness up to 52m above Top Pleistocene surface. J. Ed.V. 22 nd Ann. Jakarta.Studi pendahuluan potensi gas biogenik. p. Natuna and Irian Jaya. Gas in Kujung Fm in Lengo-1 well mixture of hydrocarbon (67%) and non-hydrocarbon gas (CO2 13%.thermogenic. 1. (1993).Northeast Java Basin. Kalimantan. p. Muriah basin. Roniwibowo. A. E-W trending Rembang inversion zone. trend parallel to arch and separated by grabens and half-grabens with Eocene-Oligocene source rocks.Reservoir distribution of the Upper Cibulakan Formation in the Seribu Shelf MMM area. Indonesia. 50 m) and developed over large areas by coalescence of individual mounds. Morphologies range from small mounds (10–20 m diameter) through haystack features (100 m diameter) to broad swells. Oil from Mid Main Carbonate reservoir characterized by presence of bicadinane resins. Indonesia.g.. Seminar Generation and maturation of hydrocarbons in sedimentary basins. 7-14. 14% porosity and low permeability in Coral Limestone facies). 3-4..Morphology of large Halimeda bioherms. cekungan Muriah. Manila 1977.Semanggi. 832. Assoc. Carbon isotopes indicate gas is biogenic.Kawengan fields) Roberts.J.vangorselslist. H. Technology 25. separated by 30-40 km wide. Geology 15. Phipps (1988). 180-194.L. (1995). With stratigraphic column and regional seismic line Trembul. 4. (The most extensive.J.Ledok. Nitrogen 20%). (Bioherms composed mainly of Halimeda plates on Kalukalukuang Bank. ('Preliminary study on the potential for biogenic-thermogenic gas in the Bawean High area. (Halimeda bioherms along W and S margins of Kalukalukuang Bank. Indon. Laut Jawa Timur Utara.H. & H. Conv. 2. Assoc. H. which remained emergent from Eocene . p. Features average 20-30 m thick (max. Presence and growth rate possibly related to upwelling of deep.R. (Early paper on first 10 oil-gas discoveries made in offshore NW Java basins since exploratory drilling started in 1968) Reksalegora. or mixed biogenic. 6.Source rocks for oils in the Ardjuna sub-basin of the Northwest Java basin. and thickest Halimeda bioherms reported from modern seas are along margins of Kalukalukuang Bank. Numerous bioherms at N bank. p. 2: Java. (NE Java basin rel. 395-401. p. 50-70 km E of central Sunda Shelf. Upwelling of cold. North East Java Sea'. Effendi (1987). Aharon & C. Polito (1977). H. PIT IAGI 2014-115. Geol.Halimeda bioherms of the eastern Java Sea. (eds. Indonesia. Upwelling of cold water and nutrient overloading from Pacific Troughflow water possible explanations for remarkable algal growth at expense of reef-building corals) Roberts. H. (IAGI). p. Proc. Locally high CO2 content in gases in region. (IPA). probably magmatic activity. 4p.Organic geochemistry as an aid to exploration in the East Java Sea. Arifin (1994).. 6. (3D seismic interpretation of Oligocene-Miocene carbonate buildups of N Madura Platform. A. Hughes (2008). in other wells derived from organic activity) Roniwibowo. Co-ord. J.0 190 www. Sturrock & A. 4.A.72m thick. One thick peat layer S of Masalembo 0. Kuntoro. Inst. (2015). East Java basin. 10p.Biogenic gas exploration in the Bawean High offshore North East Java Basin. Conv. domal buildups. (Similar to above.Preliminary results on the occurrence of peat deposits in eastern Java Sea. 2.M. Search and Discovery Art. (Ujung Pangkah oil-gas field offshore E Java with complex Early Miocene Kujung I (Prupuh FM) carbonate reservoir: E-W trending platform margin reef build-up with steep southern margin. (IPA). Saint-Cyr 2012. Indon. in coal beds and shale) Ruf. Bawean High and E Florence Basin.. Jakarta. Sutton & W. mainly of inorganic (magmatic) origin) Ruf...Petrophysical assessment for early water production in the Ujung Pangkah Field. Petroleum Assoc.Quantitative characterization of Oligocene-Miocene carbonate mound morphology from 3D seismic data: applications to geologic modeling. 34th Ann. CO2 in Lengo-1 gas derived from inorganic source.M. 87-96.vangorselslist. Simo & T. 30th Sess. p. IPA15-G-285.Insights on Oligocene-Miocene carbonate mound morphology and evolution from 3D seismic data. This confirms Kalimantan and Java were connected during Quaternary. (Extended-Abstract) (online at: www. Petroleum Assoc. Proc. Faturachman. Bangkok.5% and sufficiently mature) Shofiyuddin & S.S. kaolinitic and marine deposits.A. 69-80. 5th Ann. Reservoir Miocene Kujung Fm fractured carbonate with good to excellent matrix reservoir quality) Bibliography of Indonesia Geology. (IPA). p. A. Ilahude & D.com Sept 2016 . Indonesia. Bull. Fundamental controls on flow in carbonates. (IPTC). Petroleum Assoc. drilling losses. and outcrop data. 9-20. In: Proc.S. 120090. Meyers (1976). Indon. Hidayat (2013). Conv. which coalesce into amalgamated platforms (>5 km diameter)) Russell. S. (Non-marine and marine sediments on E Java Sea seafloor between Madura and Kalimantan include channel. volcanogenic. production. Proc. C.searchanddiscovery. with the Sunda river flowing in middle of area) Smart. Hughes (2008). Indon. closely spaced. 32nd Ann. Jakarta. J. Petroleum Assoc. M.C. p. Indon. D. 1-11. Kuala Lumpur 2008. (English version of Roniwibowo (2014). D.Kujung Fm limestones.com/documents/2013/120090smart/ndx_smart. (3D seismic interpretation of N Madura Platform shows growth history of Oligocene-Miocene carbonate buildups. Int. Conf. IPTC 12511. Proc. the only unit with TOC >1. Farurachman. IPA10-G-030.pdf) (Ujung Pangkah Field is 1998 gas condensate field with oil rim just offshore NE Java. 2. Indonesia. East Java Basin. Proc. D. 39th Ann. Siregar (1994). Comm. Kuntoro. 9p. Widespread swamp deposits with peat layers in E Java Sea. Jakarta. Conv. M.A. with peat layers up to 0. with Sunda River flowing in middle of area) Situmorang. A. (East Java Sea Poleng field oils probably sourced from Kujung Unit III (Early Oligocene) shales. Sutiyono (2010). logs. Peat layers on Java Sea floor suggest land areas between E Kalimantan and E Java-Madura during the Quaternary. (IPA). Active biogenic source in Muriah Trough. Joint Prospecting Mineral Resources in Asian Offshore Areas (CCOP). AAPG Hedberg Conf. Ilahude & D. Jakarta. Ed. A. Simo & T.Distribution and characteristics of Quaternary peat deposits in eastern Jawa Sea. Petroleum Techn.Discrete fracture network modeling based on seismic data.. IPA08-G-093. swamp. Marine Geol.Ujung Pangkah Field. 14p. Conv. Mound initiation with small (<100-500 m). East Java. A.. Early water production suspected caused by mobile water through fractures and vuggy porosity) Situmorang.L. p. Same paper as below. Indonesia 8. K. which become nuclei for intermediate mounds (2-3 km).4m below sea floor in 30m water radiometrically dated as Early Holocene.. Indonesia. Proc. (IPA). Jakarta.W. Conv. p. Lawrence & S. Toralde & H. 31. Bowman & W. Jakarta.Development strategy in the BZZ Field and the importance of detailed depositional model studies in the reservoir characterization of Talang Akar channel sandstones. underdeveloped due to inability of seismic to image sandstones) Sukamto. Ronnie P. Proc. Offshore Northwest Java. (Offshore NW Java basin mature area. 105-118. S. Penetration of organic-rich. J. Ed.Underbalanced drilling challenges and benefits in a marginal high-pour-point oil reservoir in Sepanjang Island. Bibliography of Indonesia Geology. Mitchell (1998). Int. 1-17. (Asri Basin off SE Sumatra PSC recoverable oil reserves of ~500MMBO from nine fields includinge major Widuri and Intan oil fields.pdf) (Biomarker cluster analysis of 45 oil samples in Sunda-Asri basins shows 6 geographically separated groups) Subidyo. 1.B. L. Asri Basin.The state of the art finding new oil and gas reserves in an old and mature area. wax content 24. Proc.An example of 3-D AVO for lithology discrimination in Widuri Field. p.Organic geochemistry: 1. Jakarta. SPE/ IADC Managed pressure drilling and underbalanced operations Conf.A.applications in the deep Ardjuna Basin. Widuri Field offshore Southeast Sumatra. (IPA). S. Indon.E. Oil and gas in channel-type sandstones of Talang Akar Fm. Zaki (2010). Good geochemical match between produced oils and E Oligocene Banuwati Fm lacustrine shales) Sukaryadi. 283-288.W. correlate with bright seismic amplitudes on 3-D seismic data. Underbalanced drilling for new wells to improve reservoir productivity Sosrowidjojo. p. (2011). Indonesia. J. Geographic location of crude oils based on biomarker compositions of the Sunda-Asri basins. off SE Sumatra. Sukanto. Herbudiyanto & T.. F.academicjournals. In: Proc. Tijdschrift Kon. Kuala Lumpur 2010. Conv.Petroleum systems of the Asri Basin. The Leading Edge 15. & Benarto V. Proc 20th Ann. B.P. (IPA). p. Java Sea.The morphological history of the Java Sea.Smit-Sibinga.S. Oil from (Eocene) Ngimbang Carbonate reservoir mostly of heavy black oil with high pour point of 120°F.. Conv. part of Kangean PSC.S. Surabaya. mature source rock by Hariet-2 well in 1995 helped define primary petroleum system. Indonesia.0 191 www. I.L.9%. (Sepanjang field is marginal oil field on Sepanjang Island. 26th Ann. Himawan. Aldrich. Cinta Field... Siboro. Parigi carbonates neglected as targets because only gas. Smith (1996). Harmony.. J. 2. Smith. Indonesia. G. Petroleum Assoc. Atmawan T. G. Petroleum Assoc. 24th Ann.B. 1. Gilmore. T. Amplitude maps at Base Upper Gita horizon interpreted as NE-SW trending belt of meandering distributary or fluvial channels) Sosa J. Conv. Sinclair (1995). (IPA).D.. Conv. T. Indonesia. 185-200. (online at: www. Proc. although one accumulation has >200’ of column and holds >1 TCF gas. C. (2002). Rinehart & J. Geol. Example of U1 well. (1947). H. p. 12p. Sudarmono. specific gravity 0. (1991). Indon. Danahey. p. Nunuk. W.. R. p. Asri Basin. offshore Northwest Java Sea. Abdat (2003). Indon. Assoc. Armon. Palao. Suria. 4. Success rate in Parigi <30 %. 7291-7301. J. Proc. 28th Ann. p. p. 1. 193-223. Physical Sci. 419-451.L. Jakarta. (2001).com Sept 2016 .W. Commonly thick Parigi buildups only thin gas columns at top.org/article/article1380715460_Sosrowidjojo. Sunda Basin. 31st Ann. first discovered by ARCO in 1990. Petroleum Assoc. J. Jakarta. 291-312.8574 and API gravity 33. Petroleum Assoc. (IPA). 6.K.B.C. Nederlands Aardrijkskundig Gen.Characteristics and sandbody geometry of the 34-1 reservoir. Indon.L. Petroleum Assoc.Reservoir characterization study to delineate dimension of channel. Reservoir is tight Ngimbang Fm carbonate at depth of ~4600'. Indon.vangorselslist.Talang Akar (Oligocene) source rock identification from wireline logs. (IAGI). Indon. Conv. (Oil producing Lower Miocene U Gita Mbr sandstones of U Talang Akar Fm in Widuri Field. 29th Ann. E Java Sea. 6.. B. T. 572-576. F. 64. E. Sequence stratigraphy in SE Asia. Lemigas Scientific Contr. with organic matter from both marine and terrestrial sources. 327. Petroleum Assoc. 1. Satyana (2016). Petroleum Assoc. J.T. Indon. Jakarta. (eds. Crude oils from Paleogene Ngimbang Fm in Kangean oil field in offshore NE Java Basin classified as mixed oil.3. is another indication that there is Cretaceous source in area (proposed to be part of Australian-derived Paternoster-Kangean microcontinent.0 192 www. Sci. Butterworth. may correlate to Cretaceous age. Bachtiar (2015). 39th Ann. Techn. Musu (2015). marker for flowering plants) suggests oils originated from Cretaceous source rock) Sutanto. Presence of Lower Cretaceous Alisporites sp. deposited under oxidizing and reducing conditions. not necessarily Cretaceous.A. (IPA)..T. Soeprapto (2015). SE of Kangean. Proc. Musu (2014). Kawengan oil clearly terrestrial oil from deltaic source rock) Sutanto. Very low oleanane Index (<20%. (High Triaromatic Dinosteroid Index in 3 oil samples from Sepanjang Island 1. NE Java basin. Indon.W. Petrol.J. H. show stronger marine character and reducing conditions than typical Cenozoic 'Sundaland' oils and also show very low oleanane and sterane indexes.. Bachtiar & A.D. Occurrence of Alisporites sp. which may also be potential source rock. Jakarta. Atkinson. offshore Northwest Java. Indon.com Sept 2016 . Indonesia: evidence from biomarkers and new exploration opportunities.Application of oleanane and sterane index for biostratigraphic age determination: examples from Kangean oils. (NE Java Basin hydrocarbon source rock generally believed to be in Late Eocene.J. Subroto.Plio-Pleistocene seismic stratigraphy of the Java Sea between Bawean Island and East Java. p.T. H.Mesozoic source rocks in Northeast Java Basin. Proc. Petroleum Assoc. Musu. S. Indonesia: evidence from triaromatic dinosteroid. Int. & J. p. 23rd Ann. C. C. 145-159. 15-24. H. in sediments analyzed. 9p. (Similar to paper above: biomarkers in some oils from Eocene Ngimbang carbonates in Sepanjang Field.Application of integrated sequence stratigraphic techniques in non-marine/marginal marine sediments. Conv. H. indicating source of oils may be Cretaceous in age. M.A. Ed. (IPA). N of E Java and Madura. J.T. 17p.A. Sepanjang 1. (Abstract only) Susilohadi. Northeast Java Basin. Joint Conv.Marine depositional environment determination using hydrogen isotopic composition of individual alkanes: case studies from Kangean oils. 17p. 'Supports idea that Cretaceous source rocks were deposited in marine setting while Australia-derived microcontinent was drifting N-ward before it collided with SE margin of Sundaland in Cretaceous' (NB: If 'triaromatic dinosteroid' biomarker indicates Mesozoic and younger marine dinoflagellates and oleanane indicates (Upper) Cretaceous and younger angiosperm land plants. 3 oils may be from mixture of marine and terrestrial kerogens. Offshore Northwest Java. an example from the Upper Talang Akar Formation.) Proc. Gresko.D. Balikpapan. & J. couldn't the low oleanane/ high dinosteroid signify a marine Tertiary. Andani. Symp. (Marine geology/ seismic stratigraphy of SE part of submerged Sunda Shelf.vangorselslist.Mesozoic-aged oils in the Northeast Java Basin. source facies?. 5-16.4 wells. SE of Kangean in Java Sea.E Oligocene early synrift Ngimbang Fm. p. IPA15-G-090. (Geochemistry of oils from well in Kangean (Sepanjang) area. Petroleum Assoc. Multiple Quaternary erosional features resulting from exposure during major sea level lows) Sutanto.Suria. as also supported by previous studies reporting Oleanane Index <20%. Indon.H. Satyana & A. S.. but Cretaceous marine sediments are also known all around the Sundaland margin. Proc. 37. S.J. Proc. 6. Conv.. 1. A. which is common for samples from older sources than Cenozoic. Ardjuna Basin. Musu. Suria. Gresko & B. M. & T. Sinclair. JCB2015-207. Java Sea and Kawengan. Berita Sedimentologi 32. C. HvG)) Bibliography of Indonesia Geology. HAGI-IAGI-IAFMI-IATMI. 40th Ann. IPA16-663-G. Conv. low oleanane % suggests marine shale source. Jakarta. Caughey et al.W. A.H. N. P. HvG)) Sutanto. Atkinson (1995).. p. In: C. Sinclair & C. suggest presence of Cretaceous sediments. the Northeast Java basin. (IPA). Mahaperdana (1994). E. Jakarta.Sequence stratigraphic surfaces identified on conventional core data: Talang Akar Formation. Reservoir water saturation and permeability modeling in the Pangkah Field. Asian Earth Sci. 2012-GD-08. East Java. probably due to extension initiated in Late Eocene. Jakarta. Geol.Posisi tektonik Bawean-Muria dalam hubungan dengan hidrokarbon cekungan Cepu. (2009).Integrated petrophysics in Kujung carbonate reservoirs. Central Java'. Yogyakarta.. Conv. two shoal complexes with progradational and aggradational patterns at W to C part and E part of platform. 14th Ann. (1978). Assoc. (IAGI). E. A.. Manila 1977. Proc. p. (1998). During relative sea level lowstand topographic highs at center of shoal complexes might be exposed. Joint Conv. Surabaya 2005. 32 nd Ann. Indon. Geol. basalt andesite.. incl. p. & A. Proc. Koswara (1993).6 -0.Seismofacies study in early fill to source rock depositional environment. (2005). Dev. 34 th Ann. Jakarta. S. Indon. Asri basin. Sequence boundary is onlap surface. H. unconformably overlainby Late Miocene-Pliocene marine Brakas Fm limestone-sandstones) Sutiyono. S. JCS2005S029.Krisna Lower Batu Raja waterflood project. 11p.Sequence stratigraphy and depositional model of the Ngimbang carbonate reservoir in Pagerungan Utara offshore. offshore SE Sumatra. K. Java. 6. mainly N-dipping.Cenozoic thermotectonic history of the Sunda-Asri basin. (Eocene Ngimbang Carbonate isolated platform reservoir in Pagerungan Utara two depositional sequences. (Kangean and Sapudi islands folded Oligocene-Pliocene sediments. 5-6. (IPA). (On log interpretation challenges in E Miocene carbonate buildup of Ujung Pangkah Field. 1-8. Java Sea. Indon. Indonesia. 1808-4. O. IPA10-G-012. (NW Java basin oilfield development) Bibliography of Indonesia Geology. (IPA). Syafrie. Hariet-1 and Yani-2 in Sunda-Asri basin suggest basin continues subsiding. IPA09-G-022. 1.J. Geothermal gradients relatively constant through Cenozoic) Sutton. Bandung. Petroleum Assoc. Ed. & Reno F. J.Muriah in relation to the Cepu hydrocarbon basin. M. East Java. CCOP Techn.G. Java Sea) Sutriyono. scale 1:100. Publ. with significant amounts of leucite. Conv. Center. Upper part interfingers with Oligo-Miocene Tambayangan (= Kujung) orbitoid limestone. 163-179.0 193 www. 6. NE Ria-1. 169-194. Indon. A. and finally covered by hemipelagic shales (Ngimbang Shale)) Talo.com Sept 2016 . Composed of phonotepite.000. with ages of 0. C. (AFT analysis of Cenozoic rocks from wells Asri-1. Disiyona. Randall (1985). Proc. p. Jakarta.Geological map of the Kangean and Sapudi Quadrangle. Earliest fill alluvial-fluvial setting with N-S sediment transport direction. Bintoro W.P. (Seimic facies maps of Eo-Oligocene early basin fill of Asri Basin.0.26 M. Similar to Muria volcano (0. I. Subsequent relative sea level rise resulted in TST carbonate deposition (U Ngimbang Carbonate) only on platform with upward fining/deepening facies succession. Kangean Block. Tata & B. 41st Ann. Res. p. Banuwati lacustrine shale source rocks. 485-500. Recent heating of rocks consistent with 800m of Plio-Pleistocene burial. with local sediment sources from W and E flanks of rift basin) Takano. Petroleum Assoc. IPA08-G-062. Paper is on initial petrophysical models to calculate water saturation and permeability) Sutiyono. Bawean Island volcanics different from Java arc. offshore NE Java. Samodra & A. ('Tectonic position of Bawean.vangorselslist. 30th HAGI. (IPA). 16. p. Overlain by E-M Miocene Jukong-Jukong Fm limestone.Depositional environments and their relation to chemical composition of Java Sea crude oils. 34th IAGI. Proc. in front of present day Solo river delta. 1708-4. Proc. southeast Sumatra: new insights from apatite fission track thermochronology. 98-111. A. 1709-3. Indon. Usman (2012). Sudradjat & E. Petroleum Assoc.Sutisna.4 Ma)) Syarif. Heruyono (2008).67. Jawa Tengah. Petroleum Assoc. (2010). United Nations ESCAP. Main producing Kujung-I Fm is complex carbonate reservoir. Proc. Conv. Conv. In: Seminar Generation and maturation of hydrocarbons in sedimentary basins. 7p. Oldest rocks Late Oligocene Cangkaramaan Fm marls with planktonic forams. HST of lower sequence (L-M Ngimbang Carbonate). Jakarta. 33rd Ann. (Ujung Pangkah Field is 1998 discovery in E Miocene platform margin carbonate reef build-up. p. Conv. 14th PERHAPI. trachite and phonolite. A. (IPA). Temansji & R. W. 15th Ann. P. American Assoc. Jakarta. West Java Sea. p. Gravity data suggest thick Tertiary depocentre. Geol.Basement lithology and its control on sedimentation. After E Tertiary block faulting and nonmarine basin-fill. (IPA). A. 3..E Eocene. Himawan (1999). D. Jakarta. 29p. W.G. Local reversal of trend in Miocene along N part of CLB where shelf margin Bibliography of Indonesia Geology. Rel. Two stage rift model that progressed from E to W. P.) Changing face of East Asia during the Tertiary and Quaternary. (Central Lombok Block (CLB) N of Lombok/ Sumbawa underlain by Cretaceous melange and/or oceanic crust. SE Sumatra. Ed.Earliest Oligocene structures reasonable chance of capturing hydrocarbons) Tonkin. 123-140. 24th Ann. Tyrrell. p. Conv. Most of upper Paleogene and Neogene in deep water facies. By Late Eocene deep marine environment while areas to N had just been transgressed.32. Petroleum Geol.W.C.E.1-7. Conv.G. (Sunda Basin Cinta Field produces from Late Oligocene Talang Akar Fm sandstones and overlying Baturaja Fm reefal carbonates. Davies & H. Petroleum Assoc. Park (1992).) Carbonate rocks and reservoir rocks of Indonesia: a core workshop.Temansja. 1. 2.G.. 7. Cinta Field.E Eocene source rock reached peak oil by end Eocene. Indon.C. In: N.Reef complex lithofacies and reservoir. Siemers et al. (1997).Miocene carbonate shelf margin. Lidya field reservoir pinch-out onto eroded areas of basement silicification along shear zone. Widuri-Intan oilfields. Petroleum Assoc. p. Central Java. R. McDowell (1986). 47-75. Proc. Jakarta. Sunda basin. 2. Basement topography influenced subsequent distribution of fluvial channels and sand pinch-outs. In: C.) Atlas of seismic stratigraphy. Rama Field. P. W. Secondary porosity restricted to packstones of bioclastic debris from main reef. Southeast Sumatra. Basin modeling shows Paleocene. (3) plugs of metabasalt and related volcanic rocks.C. p. Reservoir sands interbedded with mudstone and coal and overlie Cretaceous basement rocks. In: A. so only Late Eocene. Conv. Indonesia. 6. Geochemical evidence of migrated hydrocarbons in dry wells. Oil in structural and stratigraphic traps in sinuous-meandering channel sandstones. Indonesia. Sandstones frequently large amounts of pore-filling kaolinite. p.New and significant fossil finds from Sangiran.Determination of permeability in sandstone reservoirs affected by diagenetic kaolinite. Proc.A model for hydrocarbon accumulation in Sunda Basin. Fourth Conf.An alternative view on the existence of an effective petroleum system in the Bali-Lombok area. (eds. except along E and N margins where shallow water carbonate banks were progressively drowned.C. Faults controlled by basement lithology.com Sept 2016 . P. (1995). Ppt presentation SEAPEX Conf. 174-179. (IPA). NW-SE shear zone offset basement between main Widuri and Intan fields. p. Petroleum Assoc. Indon. (Five main lithofacies in Rama field E Miocene Baturaja Fm. (2) metamorphic rocks (mainly mica schist). (2007). (IPA). 22. 1. minor in-situ reef facies tightly cemented poor reservoir) Tyler. (Widuri-Intan fields in NW Asri Basin produced ~310 MB Oil from Late Oligocene Talang Akar Fm fluvialdeltaic sandstones. 141-165. (4) dolomitic limestone. especially at boundaries of intrusives. & R. 45-59. (Bali-Lombok area water depth 200-1000 m and extension of E Java Basin. from breakdown of potassium feldspars from volcanic detritus) Tonkin. Evolution of the East Asian Environment. Marine transgression progressed from SE to NW.Miocene carbonate shelf margin. (IPA). & D. Bushnell (1986). Reservoir at Indri field underlain by dolomitic limestone and exhibits karst sinkhole and collapse structures) Tonkin.0 194 www. & R. By end M Eocene Bali-Lombok area fully marine. A. Jablonski (ed. trap formation and hydrocarbon migration. part of Paleocene and M Eocene rift system that developed between. Proc. Tognini. (AAPG). Indon. Proc. Petrol. Drape and compaction over eroded volcanic plugs enhanced structural-stratigraphic plays. Petroleum Assoc. Davis (1987). Jakarta. J. Studies in Geology 27. 15th Ann. Bali-Flores Sea. Indon. p. (Amoco seismic line showing SW prograding Miocene carbonate shelf margin) Tyrrel. Basement lithologies: (1) hornblende granodiorite.K.W.T..D. Singapore 2007. Bali-Flores Sea. 498-515. Potential lacustrine and paralic source rocks only in Paleocene. area underwent rapid subsidence. Bally (ed. Southeast Sumatra.vangorselslist. Caughey. (IPA). but accumulations not commercial due to unpredictable reservoir quality. (E Java Sea Sakala Timur area basin modeling by BP. Carter et al. Meratus trend and Muria. Most effective way to find carbonate reservoirs is to use seismic attributes in combination with the conventional methods of seismic interpretation such as structural mapping. M. 379-415. (Poleng Miocene carbonate reef off Madura once abandoned field revived as economic venture after 3-D seismic survey. Armon & S. MacGregor (1996). Petroleum Assoc. Petroleum Assoc.C.W. Several small discoveries in recent years. M. and led to new discovery at KE-23 Field) Welker-Haddock. Park. S. (IAGI). Java Sea.W. Petroleum Assoc. I. Semarang. (IPA). (Seismic response to variations in lithology is complex and non-unique. Topseal capacity of silty Tertiary mudstones main risk) Welker-Haddock.Tektonik dan jalur volkanik busur belakang Bawean Muria sebagai pengontrol pembentukan Cekungan Pati dan potensi hidrokarbon. Assoc. Present day top ‘oil window’ 9. (IPA). P.com Sept 2016 . 9p. R. J. Petroleum Assoc.A. In: C. Netherwood. 25th Ann. Drainage areas identified. isochron mapping to determine the paleogeography and seismic morphology) Wicaksono Prayitno. Azmalni. or low recovery factors. 111-118. Jakarta.. (online at: http://download. 421-435. Reason for failure of ST-Alpha well was lack of suitable migration pathway from mature source kitchen to trap. A. p.F. Conv. Indonesia. p. 1. A.P. Applied Sci. Nguyen (2001).R. F. from seven fields. R..Deep hydrocarbon play in Banyumas sub-basin. (IPA). Hanggoro (1996). Lodwick. W.The transformation of Poleng Field. Kahfi & Alfardi A. Indon. Sudarmono (1996). Indon. (Lower Miocene Batu Raja Fm and Gumai Fm shallow marine limestones 250 MMBO. Volcanics in area of Gunung Muria calc-alkaline-shoshonite magmas. p. Central Java: opportunities and risks.php?article=104220&val=1389) ('Tectonics and position of Bawean-Muria back-arc volcanic arc as controlling the Pati Basin and hydrocarbon potential'. 6. Petroleum Assoc.) Proc. A. (Sunda Basin good match between oils and Banuwati Fm lacustrine shales Type I kerogens. Indon. Jakarta. B. & D.D. p. D. p. Proc.K. Bibliography of Indonesia Geology. Indon.vangorselslist. Sequence Stratigraphy in SE Asia. Angkasa. 38th Ann.M.. PITIAGI2009-149. Geol. Conv. Conv. Jakarta 1995.S.2-D basin modeling of secondary petroleum migration in the Sakala Timur PSC. Proc. Proc. lateral migration dominates away from it beneath regional Gumai shale seal. Park & M. (IPA). Indonesia. limited areal extent.The implications of basin modelling for explorationSunda Basin case study. p.Use of sequence stratigraphy in carbonate exploration: Sunda Basin. 21st Ann. Indon. Mature source rocks more limted areal extent than indicated in earlier work.0 195 www.A. Asjhari.698. Jakarta. (eds. Budiarto & D. offshore southeast Sumatra. 25th Ann.portalgaruda. 28th Ann.500'. Indon. Bradfield & B. R.E. Wight.L. directional and horizontal wells. 2. Conv. 3.Bawean back arc volcanic belt divides NE Java basin in Pati Basin in W and NE Java Basin in E) Vear. Proc. 1. R. E.Prediction of carbonate sweet spots from 3-D seismic: a case history from Krisna Field.carbonate complex prograded ~9 km to SW over deep water basinal deposits during Miocene-?E Pliocene. Significant hydrocarbon generation began at end Talang Akar time in basin center and progressed outwards through time. Symp.R. 353-365.migration hydrocarbon system' delineate probable prospective areas) Wicaksono.org/article. SW-NE trending Muria -Bawean back-arc magmatic belt part of Quaternary volcanic belt on SE border of granite belt of Java Sea. Int. This was followed by rapid subsidence causing 'drowning' of N shelf margin after which slope was onlapped and covered by deep water Plio-Pleistocene mudstone) Usman. J. 197-229. Sequence stratigraphic study of carbonates undertaken to produce a predictive model for porosity development) Wicaksono. 681. Indonesian J. Vertical migration crucial close to generation area. Ed. 1. (2009). Jakarta. Haryono (1992). (2012). Proc. Boundaries of 'Banuwati generation. Conv. (On complex distribution of porosity and pore types in E Miocene Baturaja Fm carbonate reservoir in Kitty oil field. Jakarta. asymmetric half-grabens between stable Sunda Shield and active volcanic arc on Java) Wight. (IPA). Geol.Widiatmo. Caughey et al. Petroleum Assoc. London. 205-213. Sudarmono & Imron A. Ed. Southeast Sumatra. p. West Java Sea. 126. A. (eds.) Petroleum Geology of Southeast Asia. Indon. Main basins (Sunda. (1986). Soc.) Pertamina-IPA Seismic Atlas of Indonesian Oil & Gas Fields. Krisna Field. 11th Ann.R. Fraser. Petroleum Assoc. waxy and sourced by Oligocene lacustrine shales. S.K. U. AAPG Int. C. Proc. Jakarta. Oglesby & B Setiawan (2000)‘Classic clastics’. p. & D. Wight. Jakarta. with similar stratigraphy and productive horizons. Proc. (High porosity in Lower Baturaja carbonate from secondary leaching in freshwater environment. (Extended Abstract) Wijaya. H.H. 1972 discovery in Sunda Basin. Kalimantan.Arjuna basins) Wight. 38th Ann. Wicaksono & C.Exploration history of the offshore Southeast Sumatra PSC. Indon. Publ.000'. Asri) retro-arc. 25th Ann.. Sunda Basin. Sunda Basin. Sunda Basin. but more carbonate in younger Miocene because farther from Sunda shield clastic provenance. Jakarta. Mohamad & A. Petroleum Assoc. Java Sea. (IPA). Natuna. 6. F.has high-tech 3D improved imaging of stratigraphic traps found with ‘traditional’ techniques? Yvonne ‘B’ Field. (Structure influences character and distribution of non-marine Oligo-Miocene TalangAkar and Banuwati Fms sandstone reservoirs in Sunda Basin. Reminton (1997). I. Mardiana. (IPA). Gas-oil column only 200') Widjanarko. Best reservoirs are fluvial sandstones: (1) early braided regime derived from W and (2) younger meandering system flowing primarily from NE down graben axis. Conv. (IPA).3D facies modelling of SS-44 mixed load channel reservoir. (IPA). Friestad. Most porosity secondary and much of this porosity is late) Bibliography of Indonesia Geology. Karmila Field. p. Syafar. Kartika.13.J. p. (Offshore SE Sumatra PSC in Java Sea produced >800 MBOE.34% porosities in oil-gas zone and about 17% in water zone.Importance of diagenesis in carbonate exploration and production.vangorselslist. Proc. (2014). 1-12. (Overview of NW Java geology and hydrocarbons in Oligo-Miocene sandstone and carbonate reservoir horizons in offshore Sunda. with 29. South East Sumatera.BD field. N-S oriented. Petroleum Assoc. 1. P. Burgos. Proc. A. (1990).934'). (1995). 15p. Petroleum Assoc. R.com Sept 2016 . Jakarta.Integrating nuclear magnetic resonance logging data with traditional downhole petrophysical data to optimize new development wells strategies in the Bravo Field offshore North West Java.J. Irian Jaya. Seven major carbonate facies recognized) Wight.W. Conv.. Sunda Basin.Rock type identification and complexity of carbonate reservoir in Kitty Field. Crude low sulphur. p. Murphy (eds. Conv.15th Ann. Spec.a case history.W. Lower Batu Raja carbonates. 2. Java Sea. >200 exploration wells since 1970. In: C. Syah. Proc. (1996). Java Sea. R. A. (Karmila field in Sunda Basin produces from Talang Akar sands. 77-100. S. W Java Sea.0 196 www. Indon. Jakarta. Indonesia. 7p. A. Bali 2000. A. JAV1-JAV10. Arco Indonesia PSC. Conv.Geologic summary of Java. Conf. SS-44 reservoir complex is mixed load channel facies with NW-SE orientation) Widjonarko. Petroleum Assoc. Telaumbanua. 211235. Ginanjar (2013).. p. 37th Ann. Anderson. M. Asri and Arjuna basins. 19th Ann. IPA14-G-216. IPA13-SG-070. (BD field Mobil 1987 oil-gas discovery in W Madura Straits in E-W trending E Miocene reefal carbonate buildup (11.. Arjuna basin offshore extension of larger onshore basin.Stratigraphic response to structural evolution in a tensional back-arc setting and its exploratory significance. Recoverable reserves ~300 MMBO in nine fields) Wight. 121-142. J. Reservoirs Oligocene-E Miocene with ~25% of reserves in carbonates and 75% in fluvial-alluvial clastics. Indon. Conv. 161-182. p. W. A. (IPA). Conv. 21 commercial fields. A. In: A. II: Java. Indon.R. Matthews & R. Indon. A. Hardian (1982). With regional W-E seismic line across Sunda. Proc.. Petroleum Assoc. K. Zhang (2006). p. D. In: A. R. (Pagerungan 1985 gas discovery first gas development to provide fuel gas to power generation in E Java. fluvial and swamp. Java. R. Gradual change in river/channel type accompanied by change in reservoir quality and geometry from thick sheet sandstone at base to thin.M. 1. Indon. Trap combination structure-stratigraphy. shortly after deposition of Talang Akar Fm. Atkinson et al. Indonesia: multidisciplinary studies. J. Kaldi. lacustrine. 40th Ann. J. and deltaic systems on gentle slope of basins. Conv. Conv. Indon. Oentarsih (1991). West Java Sea. P. Proc. IPA16-649-G. Thomas (1991). American Assoc.E.S. 3. petrophysics and petroleum engineering in reservoir delineation. subaqueous fan. & C. Lower Miocene sea-level drop caused subaerial exposure of platform and leaching by meteoric fluids) Yaseen. p.I. Indon.D. Java. Conv. Indon. description and management. Widuri field. McCauley (1993). Basal reservoir coarse fluvial sandstone. Assoc.I. Zhu & Q. (IPA). (Bima Field with 700 MB OIP and 50 GCF gas in E Miocene Batu Raja limestone.E. Atkinson (1993). Sneider (eds. Zhong.210. In: R. In: C. Proc. Core Workshop. Gardjito & M. X. Jakarta.Early Miocene. geophysics. R. G.0 197 www. 20th Ann.Wijaya. Spec. p. most extensive and best reservoir quality. Kangean Block PSC area. Offshore NW Java.The sedimentary system and evolution of the Early Tertiary in the Sunda basin. (Talang Akar Fm succession of fluvio-lacustrine and fluvio-deltaic sediments up to 7000’ thick. Alluvial fan. Monalia & H. 495-508. 355-380. Petrol. 385-417.. Field startup was in 1987 with 7 platforms in N on primary production. 22. R. A. with shelf margin reef developed basinward in S.D. p. offshore southeast Sumatra: sandbody geometries and the reservoir model. W. fan delta and delta deposit..W.. p.F.Integrated reservoir simulation study of the Bima Field. E.) The integration of geology.E. Talang Akar Fm diachronous lithostratigraphic rock unit in Late Oligocene. 22nd Ann.C. p. Multi-disciplinary reservoir study performed on Oligocene-Miocene U Batu Raja Limestone formation) Woodling. Petrol.Widuri field. Jakarta. W. subaqueous fan and fan deltas on steep slope adjacent to synrift boundary fault. Publ. Geol. 2. distributary channel and marginal marine bar sandstones. Fluvial reservoirs tend to be thickest. Oentarsih & R. 26. Fluvio-deltaic sediments in upper part of succession retrogressively stacked in response to regional transgression which affected entire S margin of Sunda Shield) Young. Indon. 2. Int. 1-11. Petroleum Assoc. Offshore N... Roe & K.C. W. uppermost reservoir fine distributary channel sand in tide-dominated delta. Publ. Southern 2/3rd of field undeveloped.com Sept 2016 .K. Sci. 1-26. Jakarta. 19th Ann. F. 177. Productive reservoirs fluvial. (IPA). Harmony & T.) Sedimentary facies analysis. Young. Budiyento (1995). Upper Batu Raja build-up thickest on highest parts of platform.G.. Gunawan & B. p. 15p. (Sunda basin early Tertiary half-graben basin with alluvial.. Roe (1990). No geology) Young. with 'cleaning upward' cycles (muddy facies overlain by progressively more grain-rich sediments). (eds. Proc. Indonesia. Developed as rimmed carbonate platform complex.The evolution of CD carbonate In North Madura Platform. (IPA).A review of Talang Akar Formation (Oligo-Miocene) reservoirs in the offshore areas of Southeast Sumatra and Northwest Java. J. Kaldi. Petrol Assoc.) Clastic rocks and reservoirs of Indonesia. Conv. Beijing University. shoestring sand at top). (Widuri 1988 discovery in Asri Basin 170' net oil pay in 6 reservoirs in upper Talang Akar Fm sandstones. an effort to understand reservoir complexity distribution. Petroleum Assoc. Faulted anticline formed ~19 Ma (E Miocene). Four stages) Woodling. 1.vangorselslist. (Facies evolution of 70-200m thick Early Oligocene CD carbonates offshore North Madura. Jakarta. 6. G. (IPA). delta and Bibliography of Indonesia Geology.G. Proc. fan delta.G. Ed. Harmony.. 2000’ wide. Sedimentologists (IAS) Spec.The evolution of Oligo-Miocene fluvial sand-body geometries and the effect on hydrocarbon trapping. (Bima field largest productive carbonate field offshore N.Multidisciplinary reservoir study of the Bima Field. Yogapurana. (AAPG). Petroleum Assoc. Haryanto (2016). turbidite fan.W. now interpreted as subaqueous fan. Zelda Mb of Talang Akar Fm previously interpreted as fluvial.S.Development of Pagerungan gas field. Plint (ed. shallow and deep lacustrine. 1-36. Ed. steady subsidence (middle Zelda Mb) and uplift (Upper Zelda Mb and Gita Mb) Zhong.0 198 www.vangorselslist.com Sept 2016 . Beijing University. Petrol. fluvial and lacustrine facies. D. Four stages of basin evolution: initial subsidence (Banuwati Fm). p.Sedimentary characteristics and evolution of Asri Basin in Early Tertiary. 3..a. 3. with Early Tertiar terrigenous clastics of Banuwati and Talang Akar Fm. Zhu & Q. 1-11. in alluvial. partly from N) Bibliography of Indonesia Geology. Four stages a. rapid subsidence (Lw Zelda Mb)..lacustrine deposit system. 6. Sci. (Asri basin half-graben with steep E side controlled by synrifting and gentle W slope. Zhang (2006). X. Sediment supply mainly from W and E. Krimer. Alg. West Java.E. 1-60. Vigouroux. D. 1.C. Earth Planetary Sci.J.E. Doct. (1998).E. van Hinsberg. reflecting two crustal contaminants or different proportions of subducted oceanic crust and sediments) Andreastuti S. (Java arc lavas low in Osmium.000. p.Volcaniclastic stratigraphy of Gede Volcano. 1200. pyroclastic flow and surge deposits.0 199 www. Volcanology Geothermal Res. J. M. S. Akita University. p. Ph. M. 238-252. G. P. Doct. Voluminous lahars common between eruptions.fr/~beaudu/download/ecrit. deduced from volcaniclastic deposits in volcaniclastic fans of lower flanks. Proefstation Landbouw.M.M. Smith (2000).com Sept 2016 .A comparative study on recent ashes of the Java volcanoes Smeru. Thesis.J. M.Quaternary Volcanism Abdurrachman. Akkersdijk. p. Indonesia: implications for eruption predictions and hazard assessment. (online at: www. University of Auckland. Alloway & I. and Merapi.D. West Java. Belousov. Excursion Guide E 2. Major part of volcanic edifice of Gede Volcano.Structures et comportement mecanique du volcan Merapi (Java): une approche methodologique du champ de deformations. 213-218. (2012): Geology and petrology of Quaternary volcano and genetic relationship of volcanic rocks from the Triangular Volcanic Complex around Bandung Basin. Letters 168. Recent eruptive period of the volcano started ~800 years ago frequent and weak explosive eruptions of Vulcanian type and rare small-volume extrusions of viscous lava) Berlo. Alves. M. 10. show that most eruptions from 3000 to 250 years ago are of different style from that of present period.Sulfide breakdown controls metal signature in volcanic gas at Kawah Ijen volcano.Caldera of the Tengger-Mountain. F. 100. B..V. After inactive period of >30.vangorselslist. 1-12. Java .Le Merapi (centre Java): elements de chronologie d'un stratovolcan andesitique. 51-67. p. Indonesia: how it erupted and when. Java 1929. Fourth Pacific Science Congress. Belousova. (1929). F.E. New Zealand. (1949). Numerous coarse ash and lapilli beds interbedded with soil material. Meded. Williams-Jones (2014). Buitenzorg (Bogor). with explosive basaltic andesite to rhyodacites.III. Thesis Universite de Paris 7. Ed.3. Most of erupted products transported as pyroclastic flows. J. P.. 301. 60 km S of Jakarta. Zaennudin (2015). Indonesia: implication for assessment of volcanic hazards. In deeper parts of succession pyroclastic products from adjacent Merbabu Volcano recognised. 6.jussieu. p. 83. formed in Pleistocene with high-silica basalts. 115-127. and 1000 yr BP. (Holocene volcaniclastic deposits. Central Java. A. p. Costa. Thesis. Eruptive record back to mid-Holocene times. Kelut. 311.. ('Merapi. p. J. S. 1-131. p. p. Vincent (1990).A. Central Java.000 years volcanic activity resumed at Pleistocene/ Holocene boundary.Stratigraphy and geochemistry of Merapi Volcano. J..D. N.pdf) ('Structures and mechanical behaviour of the Merapi volcano (Java)') Berthommier. Camus. V. Prambada & A. Indonesia. 4000. Four major Holocene eruptive episodes ca. Condomines & P. O.D. (1999).A detailed tephrostratigraphic framework at Merapi volcano. Gagnon & A. (Merapi Volcano episodes of dome growth usually resulted in partial dome collapse events that generated pyroclastic flows. Comptes Rendus Academie Sciences. 65-77. Andreastuti. 243 p. Chemical Geology 371. Beauducel.Rhenium-Osmium isotopic investigation of Java subduction zone lavas.. Indonesia. Mixing between unradiogenic Os from peridotitic upper mantle and two different radiogenic Os components. Schiano & C. K.ipgp. Paris. Allegre (1999). central Java: elements of chronology of an andesitic stratovolcano') Bibliography of Indonesia Geology. providing evidence of concurrent activity at both volcanoes) Baak. Volcanology Geothermal Res. Geothermics 37.dwc. (2010).Geologi gunung api purba. Proc. 5p. 100km SE of Bandung. Lajoie (1993). 3.. Bourdier. p. Columnar leucite tephrite on E side of N slope) Boudon. I. (1990). Y. and its leucite-bearing rocks. Volcanology Geothermal Res. A. 133. Kusumah & M. Java.G. (2006). Geologi Indonesia 7. Thouret. 19th Ann. (‘Basaltic-andesitic rocks of the Salak mountains in West Java’) Bogie.Blattmann. textural characteristics and transport mechanisms. P. Bronto. 3. S. (1982). J. (online at: www. Kon. New Zealand. (Geology of ancient volcanoes') Bronto. p. 181-203. Bandung. N slope built up mainly of breccias of leucite-bearing rock fragments with intercaled basaltic and leucitite flows.. W Java. p. S.I. Bandung. & K. Assoc. Amsterdam. J. NE Java. Geological Survey.vangorselslist. Proc. 1-490. Neues Jahrbuch Min.49 Ma) eruptive centers) Boomgaart. p. S. 352-374.C. Bronto. Central Java. Indonesia.C. BP) and in 1822. ('Geology of Mount Galunggung'.esdm. 50. Camus.M. 1982-83) Bronto. Gourgaud & J. Volcanology 55. Indon. Assoc. (IAGI). Bandung. 1894. Beilage Band 73. Pratomo. Geol. I. Indonesia: stratigraphy. G. 347-365. (1989).Galunggung 1982-83 high-Mg basalt: Quaternary Indonesian arc primary magma. Krakatau.0 200 www.10. Conv. Age of 'Old Galunggung' stratovolcano rocks mainly pyroclastic flows. 7-18.. Nederl.knaw. I. L.Basaltisch-andesitische Gesteine des Salak-Gebirges in West Java.nz/bitstream/10092/5667/1/bronto_thesis. ('Volcanic facies model' of Wayang Windu geothermal project 40 km S of Bandung. Wayang. Asmoro..go. p.Observations. (IAGI). Boudon & P.nl/DL/publications/PU00018361. ('Volcanic facies and its applications') Bronto.The 1984 nuee-ardente deposits of Merapi volcano. p. West Java. Vincent (1997). Thesis University of Canterbury.. G. 1-154. (1938). Ph. Edisi Khusus No. p.pdf) (Study of active Galunggung volcano. 649-652. p.Fasies gunung api dan aplikasinya. Bronto.Evolution of Rajabasa Volcano in Kalianda Area. S.L. 2. Akademie Wetenschappen.com Sept 2016 .Overview of the Wayang Windu geothermal field. 327-342. (1947). J. S. (online at: www. Abhandl. 20th New Zealand Geothermal Workshop.. Spec. Direktorat Vulkanologi.D. Hartono & Sulistiyono (2012). J. Berita Berkala Vulkanologi.id/publication/index. stratigraphy and eruptive processes of the 1990 eruption of Kelut volcano. (Wayang Windu geothermal field 35 km S of Bandung. Publ. 79. Indonesia.ac. Windu Pleistocene volcanic centers) Bogie.php/dir/article_detail/363 Bibliography of Indonesia Geology. Geol. (online at: ir. Palaont. p. A. MacKenzie (1998).Geologi G. 265-276. 1. 59-71. Younger formations erupted during caldera formation (4200 ±150 yrs. S. Ed. Indonesia.M.pdf) (Brief survey of Muriah volcano complex. 1.Volcanic geology of Galunggung.Some data on the Muriah volcano (Java).10ka old. Wayang Windu is one of three small Pleistocene (0. Indonesia. 126-143. Geol. S. Conv.canterbury. p. p. W Java volcano) Bronto. 6. J. W Java. at S slope of active Malabar volcano. 1918.bgl. G. S. Indon. Wisnandary (2008). ~50ka. 6. pyroclastic fall and lahar deposits and lava flows. associated with Gambung. p. West Java. Bull. 11th Ann. G. Proc. Proc. Geologi Indonesia 2. Galunggung. (1990).The application of volcanic facies models to an andesitic stratovolcano hosted geothermal system at Wayang Windu.0. Gloaguen. Beser.. (1915). p. A. 2. E. Camus. Merapi lavas calc-alkaline. Palaont. but older Bibliography of Indonesia Geology. Proc.knaw. (1928).pdf) (On earlier recrystallization products in 1918 lava dome of Galunggung volcano.14. (online at: www. G. Vincent (1987). 4-5.Merapi (Central Java. J. S..De vulkaan Raoeng (Oost Java) en zijne erupties. Verhandelingen.A. sandstones and arkose) Brouwer. 23.nl/DL/publications/PU00014780. Proc.com Sept 2016 .nl/DL/publications/PU00018161. (Java) and the origin of these rocks. Nederl. Two last (pre.Emplacement of a debris avalanche during the 1883 eruption of Krakatau (Sunda Straits. Nederl. Indonesia).A.A. with a special emphasis to the major pyroclastic events. (online at: www. Gourgaud. H. Akademie Wetenschappen 47. Kon. violent magmatic to phreatomagmatic eruptions twice interrupted growth of volcano.dwc. (1945). Majalah Geologi Indonesia 19.A. Ed. (online at: www. (1914). H. alternating with violent explosive phases. Xenoliths in volcanic rocks of Merapi volcano include metamorphic limestones with wollastonite and diopside.On the composition and the xenoliths of the lava dome of the Galunggung (West-Java). (online at: www. Kon. 8.. 299-316. p. Volcanology Geothermal Res. Budiadi & H. 123-128. Helens-type edifice collapse during Middle Merapi stage between 6700.knaw. Mount St.pdf) (Nearly all Java volcanoes produced pyroxene andesites and basalts. Indonesia): an outline of the structural and magmatological evolution. Brouwer.vangorselslist. H. 1238-1245. G. A.dwc. p. Nederl. During Recent Merapi stage. 1-7. p..A.digitallibrary. (Krakatau Volcano in Sunda straits characterized by phases.2200 y BP. 139-163. 51-87. 6. each beginning with construction of cone and ending with destruction and formation of caldera. 2.pdf) (Another description of large block of metamorphosed limestone from lahar derived from pyroxene-andesite flow in Kali Batang at SW slope of Merapi.G. Kon. Diament. Previous stages characterised by long lava flows. Nederl. M.Permasalahan geologi gunungapi di Indonesia. Akademie Wetenschappen.Leucite-rocks of the Ringgit (East-Java) and their contact metamorphosis.0 201 www. ('On leucite-rich to leucite-free rocks from Gunung Beser'. Extinct volcano in E Java) Brouwer.knaw.M.nl/DL/publications/PU00015607. 100. Geol. etc.000. Amsterdam. M. GeoJournal 28. Vincent (1992). p. H. Amsterdam. Middle. p. Provost & P. 1234-1240. H. Mossand-Berthommier & P. 2. gehlenite. G. Proc.C. p. 492-498. but is limestone transformed into wollastonite. Kon.The association of the alkali rocks and metamorphic limestone in a block ejected by the volcano Merapi. (1920). Originally described as lenses of limestone in green ‘schist’.Vincent (2000). SE tip of Sumatra formed in 25 km wide Pre-Rajabasa Caldera) Bronto. 91-105. 166-189. P. Gourgaud & P. No fossil evidence reported from limestone) Camus. ('The Raung volcano (East Java) and its eruptions') Brouwer. 90% of Merapi lavas high-K basaltic andesites) Camus. Volcanology Geothermal Res. Hartono (2004). Jaarboek Mijnwezen Nederlandsch Oost-Indie 42 (1913). Akademie Wetenschappen. H. (1913). p. 15.Petrologic evolution of Krakatau (Indonesia): implications for a future activity. Modern Merapi characterised by persistent growth of summit dome.nl) Brouwer. 33. 1914. p.A.(Quaternary Rajabasa volcano in Lampung. J. Recent (starting at 2200 yrs BP) and Modern Merapi (since eruption of 1786).M. A.dwc.000 yrs BP). Proc. (Java).Uber leucitreiche bis leucitfreie Gesteine von G. p.Alkaline rocks of the volcano Merapi. Akademie Wetenschappen 31.and post-1883) cycles well known. (Merapi Volcano history four periods: Ancient (40. leucite-bearing minerals. y interrupted by collapses of dome to generate frequent Merapi-type nuees ardentes (blocks-and-ash flows and associated surges). with ~50-60% SiO2. Zentralblatt Mineral. W Java) Brouwer. p.. Helens-type event) Carey. Volcanology Geothermal Res. 1643-1683. acid andesites to dacites. Troll.. including metamorphosed volcanoclastic sediment and carbonate country rock.A. B.0 202 www. 57-63. Gertisser. Sr isotopes in plagioclase compared to Wonosari Lst from Parangtritis) Bibliography of Indonesia Geology. 6. p. (1916). probably responsible for this and other features of complex) Caron. Volcanology 61. Geology 29. rich in Ca and lower Mg and Fe. (Recent Merapi andesite lavas with abundant. & P.. p. Lava evolution shows cyclicity tied structural evolution. Bull. Ginibre. (2000). p. D. Source of pumice widespread pumice rafts on surface of Sunda Straits. (Discussion of Krakatau 1983 eruption. J. Deposits correlated to major pyroclastic flow phase on 27 August) Carn. Massive and poorly stratified units formed from pyroclastic flows and surges that traveled over sea for distances up to 80 km. Sigurdsson & S. p. Volcanology 57. Petrology 42.B. A. Verhandelingen Geologisch-Mijnbouwkundig Genootschap Nederland Kol. historic activity and hazards. S. ('The sulfur occurrence of Kawah Idjen'. Anak Krakatau from 19271979 characterized by basalts and basic andesites. Carn. 1981 eruption close to dacitic) Camus. S. interpreted to be Mount St. J. p.ones not clearly defined. Sebuku. Volcanology Geothermal Res. Mineralogy and geochemistry indicate magma-crust interaction at Merapi more significant than previously thought. 60-71. (online at: http://petrology. Extensional tectonics. Davidson (2007)Carbonate assimilation at Merapi Volcano. C. p.H.M.P. G. S. J. M.B. T. 92-105. (Inundation of coastal areas by tsunamis during 1883 eruption of Krakatau volcano led to deposition of pumice-enriched deposits. 493-511. S. C. Morgan. Petrol. Sr isotopes require source or melt with elevated radiogenic Sr. Indonesia.19. p. (Pyroclastic deposits from 1883 eruption of Krakatau described from Sebesi. Vanderkluysen (2016).Pyroclastic flows and surges over water: an example from the 1883 Krakatau eruption. H. p. J.Petrology and geochemistry of the Lamongan volcanic field. Indonesia: insights from crystal isotope stratigraphy.org/content/42/9/1643. R. 347-350. Bull. Geol. possibly related to arc segmentation created conditions promoting rapid ascent of parental magmas. Abundant xenoliths. Ed.com Sept 2016 . Indonesia: physical volcanology. 95. V. Indonesia: primitive Sunda Arc magmas in an extensional tectonic setting? J.oxfordjournals.167-173. D.Het zwavelvoorkomen van de Kawah Idjen. Java. East Java. Volcanology Geothermal Res. Destructive stages correspond to dacitic terms.The 2006 lava dome eruption of Merapi Volcano (Indonesia): detailed analysis using MODIS TIR.P. J. 9.. Pyle (2001). Clarke & L. & D. and central compound complex comprising three main vents including historically active Lamongan volcano.pdf) (Lavas of Lamongan volcano (E Java) include medium-K basalts and basaltic andesites..Discussion of a new hypothesis for the Krakatau volcanic eruption in 1883. Sigurdsson.Tsunami deposits from major explosive eruptions: an example from the 1883 eruption of Krakatau. are crater lake deposits) Carr. plagioclase phenocrysts. Vincent (1987). H.R. (1999). 311. (Lamongan volcanic field in SE Java 61 basaltic cinder or spatter cones.E. a case study in East Java. 9. Chadwick. 1. 48. Waight & J. Mandeville & S. Decreasing sorting grain size and thickness with increasing distance from Krakatau. East Java. 81-108. >29 prehistoric maars. along with high-K suite. Persistently active between 1799-1898) Carn. some with significant coral fragments and non-volcanic beach sediment. from basalts to basic andesites.M.Application of synthetic aperture radar (SAR) imagery to volcano mapping in the humid tropics. S. Morelli. 1793-1812. Horizontal beds of sulfur in E part of crater wall of Idjen volcano. 4.A. formed by fallout and pyroclastic flow activity) Carey.full. Bronto (2001).The Lamongan volcanic field. and Lagoendi islands and SE coast of Sumatra. E Java.vangorselslist. Bronto (1996). complexly zoned.A. The least evolved lavas lowest SiO2 contents (43 wt % SiO2) in Sunda arc volcanics. Serie 3 (Molengraaff issue). C. 5.R.. J. 511-562. Troll.Verslag omtrent een onderzoek aan den Semeroe in verband met de ramp van Loemadjang. Chadwick.pdf) (Evidence for late-stage interaction between magmatic system and local limestone at Merapi volcano. K. Java. Lavas are basalts. 4. Bibliography of Indonesia Geology. 6. Java) Charbonnier. Ed. 37 (1908). Sedimentology 58.M. Three stages of growth. channel morphology and local topographic features on flow dynamics) Claproth.Krakatau in 1908. J. V. Low Mg-numbers indicate basalts crystallized from derivative melts. 177. F.R. plagioclase at shallow crustal (3-7 km) and sub-Moho (23–28 km) levels. Gertisser (2011). Java. U.0 203 www. 297-331. 971-982.E. Indonesia. Misiti & J.Late Pleistocene. C.P. V.Petrography and geochemistry of volcanic rocks from Ungaran. Misiti. (online at: http://ro. p.D. (1910). p. Gertisser (2008). Early stages of Ungaran mainly shoshonitic rocks. (Common igneous inclusions in basaltic-andesite lavas of Merapi.P.carbonate interaction processes and associated CO2 release at Merapi Volcano. 1027-1051. C Java: calc-silicate xenoliths within Merapi basalts-andesites and feldspar phenocrysts frequently with crustally contaminated cores and zones) Deegan. J. (1988). interrupted episodes of cone collapse. Cool. Contr. C.edu. ('Report of an investigation of the Semeru in connection with the disaster of Lumajang') Dahren. Java. Central Java. van Der Zwan & L. Central Java. (Lengthy paper on Late Pliocene..Petrology and geochemistry of igneous inclusions in recent Merapi deposits: a window into the sub-volcanic plumbing system. p. C Java) Charbonnier. p. Indonesia.J. 183-195. B.vangorselslist.org/content/51/5/1027. Clinopyroxene in Anak Krakatau lavas crystallized at of 7–12 km depth. R. p. Indonesia: insights from experimental petrology. H. C. p.Magma. 1573-1612. Freda. J. V.F.Field observations and surface characteristics of pristine block-and-ash flow deposits from the 2006 eruption of Merapi Volcano.M. Indonesia.M. J.Chadwick. Indonesia: evidence for multiple magma storage regions. C.Magmatic affinities of volcanic rocks from Ungaran.R. Schwarzkopf (2013). andesites are high-K calcalkaline. basaltic andesites and andesites. (online at:http://petrology. R. Petrology 51. 259-282.J. p. p. T. p. F.oxfordjournals. Freda. 1 (Katili volume).P. p. (Internal archtecture of 2006 block-and-ash flow at S flank of Merapi vocano. Waight.uow.Late Pleistocene volcanic rocks of Ungaran volcano. H. Mineralogy Petrology 163. Thesis. while seismic evidence pointed towards deeper crustal storage zones at 9 and 22 km.P. 63-64. 6. F. Ph.. Chadwick (2011). 2.au/theses/1398/) (Ungaran volcano. Indonesia. S. Troll. M. V. & R. & R. Most basalts are shoshonites. Contr. (2010). surface morphology and lithology related to source materials involved during individual events and to effects of changing slope. New seismic tomography shows separate upper crustal (<7 km) and lower-mid-crustal magma storage regions) Deegan. University of Wollongong.B.. later stages mostly high-K calk-alkaline andesites) Cool.R. 4. Jaarboek Mijnwezen Nederlandsch Oost-Indie. 2. Koulakov (2012)Magma plumbing beneath Anak Krakatau volcano. Geology Today 27. V. (Petrological studies identified shallow magma storage 2-8 km beneath Krakatau. 1-500. (Internal archtecture of 2006 block-and-ash flow at S flank of Merapi vocano. V. (1989). 38 (1909). Volcanology Geothermal Res. C Java. Chadwick et al.full. Troll. Jaarboek Mijnwezen Nederlandsch Oost-Indie. Troll. Gardner. S. Variations in distribution. Java.Fast and furious: crustal CO2 release at Merapi volcano. Andersson. 631-651. Mineralogy Petrology 165. (1910) . forms part of second of three cycles of volcanism recognized on Java and was active between Late Pliocene. Geologi Indonesia (IAGI) 12. and do not represent mantle-derived magma) Claproth.M.Deposit architecture and dynamics of the 2006 block-and-ash flows of Merapi Volcano. Jaxybulatov & I. Shoshonitic rocks dominated early stages of activity.com Sept 2016 . (eds. Volcanology Geothermal Res. (1985). Baltimore. Jakarta.Sulfur and chalcophile elements in subduction zones: constraints from a laser ablation ICP-MS study of melt inclusions from Galunggung Volcano. Ed. and chemical modeling of the acid crater lake of Kawah Ijen Volcano. G.com Sept 2016 . 1-45. Indonesian Inst. p. Mason & M. Proc. 10th Ann. E Java (Kelut) and Bali (Agung). G. Bandung. (1989). G.M. Thesis. Indonesia. Indon.Krakatau's earliest known activity: was it prehistoric ? Berita Geologi (Bandung) 15.H. 1-384. M. Issue (163). Fischer & B.J van Bergen (2001). P. p. Geochimica Cosmochim. Lembaga Ilmu Pengetahuan Indonesia (LIPI).A. Sumber Daya Geologi 17. (Very extensive bibliography of Krakatau volcano and geology of adjacent regions) Dirk. De Neve.Merapi volcano.Geochemistry. In: D. 2445–2460 Delmelle. Acta 58.J. (Abstract only) (Merapi stratocone lavas are calc-alkaline hi-Al basalts and andesites ranging in Si02 from 49-56%) Delmelle. & B.A. p. Ph. Publ. 3147-3164.R. Bernard. 1.A. No.A. p. A. mineralogy.) Proc. Conv. De Neve. Bibliography of Indonesia Geology.D. Central Java. 6. LON/COAST/III-14. (Chemical and isotopic analyses of samples from Kawah Ijen crater lake and spring) Dempsey. p. it rapidly liberates crustal CO2.Petrologi dan geokimia batuan gunung api di Gunung Mandalawangi dan sekitarnya. 1-279. (IAGI). G. P. G.Anak Krakatau. (1992). J. Inst. fifty years of geomorphological development and growth with the petrographically derived consequences.. Sastrapradja et al. p. 11.The petrology and geochemistry of Merapi volcano.A. 35-46. Thesis Durham University. p. indicating terrigeneous crustal contamination.A.Geochemistry of volcanic rocks from the Sunda Arc. Ph. De Neve. p. and activities in previous times.) Proc Symp. p. Indonesia: petrology and geochemistry. 100 Years development of Krakatau and its surroundings. Jakarta. particularly in W and C Java. J. (1981).vangorselslist. (1983).dur. M. 7-40. Geol. 86. Papandayan and Patuha significant enrichments in isotope ratios above mantle values.R. with strong evidence for assimilation of carbonate-rich lithologies) De Neve. De Neve.Geochemistry of the magmatichydrothermal system of Kawah Ijen volcano. Acta 65. Science (LIPI). p. 11-22.pdf) (Geochemistry and isotopic (Sr-Nd-Hf-Pb) examination of volcanoes from W Java (Papandayan. 1-645. with potentially devastating repercussions for explosive volcanic behaviour) De Hoog.D.D. Takano (2000). P. Symposium on 100 years development of Krakatau and its surroundings. p. In: D. (online at: http://etheses.A. Contamination in arc crust more extensive than previously recognised. Magma compositions of Sumbing similar to Merapi and Merbabu. p.ac. p. East Java. (eds. Kusakabe.Geovolcanology of the Krakatau Goup in the Sunda Strat region: review of a hundred years developments (1883-1983).uk/6948/1/ScottDempsey_Thesis. (2007). John Hopkins University. Oceanology (LON-LIPI). 97. Indonesia. (2013).D. S. 39-44. Geochimica Cosmochim.(Experiments show that when magma interacts with carbonate-rich crustal rock. Indonesia. Patuha. G. De Neve. Nat. (1983). Volcanological Survey of Indonesia. Sastrapradja et al. Bernard (1994). M. T.C. 20-34.Earlier eruptive activities of Krakatau in historic time and during the Quaternary. C Java (Sumbing). (Unpublished) Del Marmol. 1-2. & A. Marsh (1988).Krakatau Bibliography: a comprehensive bibliography of Krakatau volcano in the Sunda Straits and its adjacent regions (Indonesia). (1981).A. Chemical Geology 70. J. Assoc. Spec. Del Marmol.Historical notes on Krakatau’s eruption of 1883. Indonesia.0 204 www. Galunggung). Central Java. 3153. Leidsche Geol. Magmas show transition from intraplate to subduction zone processes in their genesis) Edwards.com Sept 2016 . Dvorak. Jaarboek Mijnwezen Nederlandsch Oost-Indie 39 (1910). mainly basaltic andesite. Cronin. J.J.Vesuvius. p. (online at: www.D. 23-34. Petrol.E.subduction zone and intraplate processes in the genesis of potassic alkaline magmas. Leeman &. p. C.G. Indonesia.Krakatau in 1883 en in 1928. Indonesia. East Java.S.. (1928). B.G. A. R. 45.0 205 www. Tijdschrift Kon.nl/document/549247) ('The prehistoric collapse at Tasikmalaya and the Galunggung volcano'. (High-K alkaline volcano Muriah in C Java has younger highly potassic series (HK) and an older potassic series (K). Mededelingen 2. Calc-alkaline magma contaminated by arc crust before mixing. (1933). which has Indian Ocean MORB characteristics. 8. and probably formed as gravity collapse of volcano) Escher. B. M. (1912). Spec. Thirlwall.De uitbarsting van den Tangkoeban Prahoe in April 1910.G. p.. (Ringgit-Beser volcanic complex lavas of normal island arc calc-alkaline type and atypical potassic lavas. J. Sumedang. J. p. H.E.H. 8-21. Mededelingen 1. J. basaltic andesite. p. B.nl/document/549675) (Includes discussion of Bromo Caldera.L'eboulement prehistorique de Tasikmalaja et le volcan Galounggoung (Java). (2007). 32. 555-592.J. Edwards. 3. Leidsche Geol.P. (1927). B.A. S. Matahelumual. Indonesia. ('Petrology of volcanic rocks of Kareumbi and surroundings.H. The area of ten thousand hills of Tasikmalaya is in front of large missing sector of Galunggung volcano. Quaternary volcanics of Kareumi. E. E. 6. S. West Java'. 80-86.Petrologi batuan gunung api Kareumbi dan sekitarnya.repository. 1557-1595. including high-Mg lavas.The coalescence and organization of lahars at Semeru volcano. 715-743.The transition to potassic alkaline volcanism in island arcs: the Ringgit-Beser complex. andesite and dacite of calc-alkaline affinity) Douglas.J. Morris. Ed. E of Bandung.F.On the character of the Merapi eruption in Central Java. M. 6. p.Recent uplift and hydrothermal activity at Tangkuban Parahu Volcano.. Issue (163). Potassic lavas from enriched mantle sources within wedge not affected by recent subduction processes) Escher. (online at: www. Volcanology 53. Bull. Proposed model for Muriah lavas three source components: (1) asthenosphere of mantle wedge of Sunda arc. for the interplay of supra.naturalis. Harmon (1994). ('The eruption of the Tangkuban Perahu in April 1910') Doyle. Indonesia.H. Thouret (2010). M. Jawa Barat. Menzies & M. Leidsche Geol. Sumber Daya Geologi 17. Cole & J. Bull. 51-58. p. Mulyadi (1990).M.A.vangorselslist. W Java. Okamura. (On Krakatoa eruptions of 1883 and 1928) Escher. Mededelingen 6.M. Thirlwall (1991). 35. Menzies. M. Sumedang. as typically formed in island arc environment) Dirk.repository. Casadevall & D. (3) subducted pelagic sediments. dacite and high-K rhyolite of calk-alkaline affinity. p. Tengger Mountains of East Java) Escher.G.. C. Quaternary volcanics of Mandalawangi volcano ESE of Bandung. 961-970. p. which has enriched mantle characteristics. (2) metasomatic layer at base of lithosphere. Incompatible trace element and Pb isotope data for calc-alkaline lavas indicate similar source to other calc-alkaline lavas in Java (Indian Ocean MORB mantle fluxed by fluids from subducted slab). T. Petrol. Volcanology 72. Bibliography of Indonesia Geology. Said. p.Evidence from Muriah. 51-88.('Petrology and geochemistry of volcanic rocks of Gunung Mandalawangi and surroundings'. West Java. (1925). the Tengger Mountains and the problem of calderas. J. Nederlands Aardrijkskundig Gen. 20-28. andesite. J.naturalis. W.T. 4. London. Imamura (2011). Gamble.M. J. Gerbe. Gourgaud. (Merapi is Indonesia’s most dangerous volcano. Geophysical Research. Anak Krakatau magmas have genetic relationship with 1883 eruption products. (1951). Solid Earth.J. M.The geological evolution of Merapi volcano. (Eight main volcano stratigraphic units distinguished in Merapi volcano of C Java. naar het voorkomen van leuciet-houdende gesteenten. 199-218.0 206 www.% SiO2) to high-Mg basalt (47 wt. S. 116.(online at: www. Joron & A. Wetenschappelijk Gedeelte. V. Troll. ('The eruption of the Tangkuban Perahu in May 1896') Fermin.. Volcanology 54. 410. R. J. ('The volcanoes Semeru and Lamongan'. 284-298. Publ. Shift from medium-K to high-K character of volcanics at ~1900 years BP) Bibliography of Indonesia Geology.R. 23-30.nl/document/549807) (Mainly discussion of two paintings of 1865 Merapi eruption by Raden Saleh in 1865) Fennema. Indonesia. Construction of Merapi complex began after 170 ka. Central Java.5 ka. R. 3.full. p. 5.dioritic and metasedimentary (with cordierite) xenoliths Low levels of assimilation of quartzo-feldspathic sediment recorded) Genareau. M. etc. Average 4. Calc-silicate xenoliths brought up by Merapi magmas indicate assimilation of carbonate rocks from sub-volcanic basement) Gertisser. G. p.. lasted 9 months. 5. Herd (2011)Merapi (Java. more common in pre-historic time. Barclay & R.A. Harmon.org/content/early/2012/10/31/petrology. 1-24. Bull. such as in 2010.A. ('Brief report on a preliminary investigation in 1942 on leucite-bearing rocks on the slopes of Gunung Muriah'. Jaarboek Mijnwezen Nederlandsch Oost-Indie 39 (1910). Ellam. Harris & J.vangorselslist. 57-62. Indonesia.and progressive evolution from andesite (58 wt.De uitbarsting van den Tangkoeban Prahoe in Mei 1896. M. Old Merapi started to grow at ~30 ka as stratovolcano of basaltic andesite lavas and pyroclastic rocks and was destroyed by flank failure after 4. p. Lube (2015). Explosive eruptions.Mineralogical and geochemical evolution of the 1982-1983 Galunggung eruption (Indonesia). Gertisser. R.. Geology Today 27. Keller & X. Cronin & G.% SiO2). Geol.P. S. & F.naturalis. K. p. K. 9.H. Troll.Tsunami generation by a rapid entrance of pyroclastic flow into the sea during the 1883 Krakatau eruption. Old Merapi and New Merapi. Preece.35% K2O) Fukashi.F..A. Charbonnier. Quidelleur (2012).A. Gardner.oxfordjournals. J. diopside.Beknopt verslag van een voorlopig geologisch onderzoek in 1942.L. Soc. A. J. Hart. IV. Volcanology 74. extinct double volcano Muriah in NE Java.com Sept 2016 . p. S. Indonesia): anatomy of a killer volcano. Keller. 6. with diversity of eruptive style. linked to three main evolutionary stages:Proto-Merapi. W Java.) Gertisser. Proto-Merapi volcanic edifices Gunung Bibi (109±60 ka) in NE and Gunung Turgo and Gunung Plawangan (~138. Bull. J. (1886)-De vulkanen Semeroe en Lamongan. op de hellingen van de Gunung Muriah. (online at: http://petrology. Investigation into potassium-rich volcanics of the large. 1213-1233. 2.pdf+html) (Anak Krakatau is basaltic andesite cone that has grown following caldera-forming 1883 eruption of Krakatau. p. Galunggung basalts most primitive basalts known from W Java. B09205. 74-79. O. Charbonnier. With granitic. R. P. C.8±1.repository. Chadwick.C. R. 149-182.R. Indonesia. R. p. p.Effects of volatile behaviour on dome collapse and resultant pyroclastic surge dynamics: Gunung Merapi 2010 eruption. East Java) Fennema.J.J. (Pyroclastic deposition of 1982-1983 eruption of Galunggung. J.G.egs066.L. J. Ed. R. V.. p. 5-130. 135 ka) in S. (1912). Over past two centuries volcanic activity dominated by prolonged periods of basaltic andesite lava dome growth and intermittent dome failures to produce pyroclastic flows every few years.. De Ingenieur in Indonesie. Since 1950s has been growing at rate of ∼8 cm/ week. Spec. Provost (1992). Jaarboek Mijnwezen Nederlandsch Oost-Indie 15 (1886). Sigmarsson. J. Petrology 54. with phenocrysts of olivine. Wolff (2012)Crustal differentiation processes at Krakatau Volcano. A.. Panjang and Rakata in <1 min. 6.) 35-45 min after onset of collapse. Keller (2003). (online at: core. Spec. R. Strong E-to-W Java variations in Ba concentration attributed subducted source input) Bibliography of Indonesia Geology. 100.280 km3 flank collapse directed SW-wards would trigger initial wave 43 m in height that would reach islands of Sertung. Turner. with amplitude from 1. Zaennudin & M. Waves would propagate across Sunda Strait. R. Petrology 44. H.org/content/44/3/457. Central Java. Soc. p. Geol. Paris. at 80-110/ hour. Gede. 169-186. Merapi.. Periods of high eruption rates alternate with shorter time spans of reduced eruptive frequency since first appearance of high-K volcanic rocks. J. combined with mantle-like δ18O values in Gede explained by assimilation of-primitive arc rocks and/or ophiolitic crust known to outcrop in West Java. 123. C.K. Indonesia: evidence for the involvement of subducted sediments in Sunda Arc magma genesis.V. Handley. Indonesia. (Galunggung volcano in W Java 9-month-long eruption in 1982-83 with phreatomagmatic phase with ash columns 20 km high. (online at: http://petrology.ac. (2006).E Java transition may represent SE boundary of Sundaland (pre-Tertiary arc basement). Blichert-Toft. Idjen volcanoes shows progressive E-ward increase in Sr isotope ratio of volcanic rocks across W and C Java. high-K over past 1900 yrs. J.. Abdurrachman (2014). Salak. likely carbonate material. Geochimica Cosmochim. Galunggung. producing basalts and basaltic andesites of medium-K composition in earlier stages of activity and high-K magmas from ∼1900 BP to present. K. S. Ontowirjo (2012). Keller (2003). 3. p. Ed. Sunda Strait.C. Voight (2000). & J. K.vangorselslist. Sunda arc. Tsunami would reach cities on Java W coast Merak. Terry & J.oxfordjournals.G.Geochemical and Sr-Nd-Hf-O isotopic constraints on volcanic petrogenesis at the Sunda arc. p. Gertisser. Kelfoun & B. E Java thin crust/ pelagic sediment). T.Insights from Pb and O isotopes into along-arc variations in subduction inputs and crustal assimilation for volcanic rocks in Java. Anyer.0 207 www. Peak in δ18O wholerock and mineral values in C Java volcanic rocks (Merbabu and Merapi) combined with along-arc trends in Sr isotope ratios suggest different or additional crustal assimilant of C Java volcanic rock. 1‐23. Indonesia.Stratigraphy and textural characteristics of the 1982-83 tephra of Galunggung volcano (Indonesia): implications for volcanic hazards. Cashman & B.full. 205-226. Publ. Indonesia): magmatic cycles during the past 2000 years of explosive activity.open. Hypothetical 0. Thouret & J. R. H. (Anak Krakatau volcano is built on steep NE wall of 1883 Krakatau eruption caldera.P. Ijen). 1-289. J.com Sept 2016 . Macpherson. and is active on SW side. Acta 139. 104. Ph.D. Magma composition evolved from andesite to primitive magnesian basalt and progressive increase of ratio of xenoliths versus juvenile magma before increase of explosivity) Hammer.Magmatic processes revealed by textural and compositional trends in Merapi dome lavas. broadly correlating with inferred lithospheric thickness (W Java thicker crust and more terrigenous signal of subducted sediment. & J. J. Goff. (Merapi Volcano in C Java frequently active in M-Late Holocene time. largely reflecting variable contributions from subducted sediment to mantle wedge which was similar to MORB-source mantle before subduction-related modification) Giachetti.Trace element and Sr. p. which makes edifice quite unstable. London. Nd. Merbabu. 361.L. C. Pb and O isotope variations in medium-K and highK volcanic rocks from Merapi volcano.Gertisser. (New Pb isotope data for volcanoes across Java (Gede. Volcanology Geothermal Res. Volcanology Geothermal Res. Negative correlation between Pb isotopes and SiO2.4 m) Gourgaud. Handley.kmi. Natural hazards in the Asia-Pacific region. Cyclic variations result from interplay of several magmatic processes) Gertisser.. Carita. R. p. 457-489. Indonesia.Temporal variations in magma composition at Merapi Volcano (Central Java. A. J. p.E.Tsunami hazard related to a flank collapse of Anak Krakatau Volcano. J. 79-90..5-3. 165-192.pdf+html) (Merapi Holocene basalts-andesites medium-K affinity. Thesis Durham University. p. Volcanology Geothermal Res. J.uk/download/pdf/6116169) (Geochem work on Salak.P. In: J. Bourdier (2000). with amplitudes from 15-30 m. Geochemical and Sr-O isotopic constraints on magmatic differentiation at Gede Volcanic Complex.P.3-0. (Dieng volcanic complex three volcanic episodes: pre-caldera (>1 Ma). J. Australia. Along-arc variation reflects decreasing thickness of turbidite deposits on down-going Indian Ocean lithosphere from Sumatra to Java) Handley. 1 (Goldschmidt Conf. p.P.Die Vulkangruppe im Sudwesten des Salak-Vulkans in West Java. & M.G. Uruma. Each episode distinct differentiation trends. Lowry (2007). (online at: http://eprints. Macpherson. A227.The 1982-83 eruption at Galunggung Volcano. 11551183.. (Ijen Volcanic Complex in E Java on thickened oceanic crust. Indonesia. Hartmann. Davidson (2011). Endoet-Wajang..G. Berlo & D.K. Caldera complex 20 km wide with 22 postcaldera eruptive centers.27 M). R. J. M.253/cgi-bin/…) (‘The group of volcanoes SW of the Salak volcano in W Java’. 310. indicating multiple shallow magma chambers) Harmon. E Java volcanics greater involvement of subducted pelagic sediment and stronger slabfluid imprint. (online at: http://62. 85-98. H. Indonesia. 212-223.com Sept 2016 . p. p..vangorselslist. Macpherson & J.Constraining fluid and sediment contributions to subduction-related magmatism in Indonesia: Ijen Volcanic Complex. Indonesia. L. Indonesia. central Java. Macpherson. p. Davidson (2010). Lett. p. Stimac (2008). Gerber (1992). C.P.edu.Along-arc heterogeneity in crustal architecture and subduction input at the Sunda arc in Java. Abstracts). Macpherson.D. 360-376. Acta 70. U. R. 6. Watanabe (2016)Geochronology and magmatic evolution of the Dieng volcanic complex.au/15767/2/1Hartono_whole_thesis. p. Davidson and R.K.0 208 www. Haryo. 209-224. Yonezu & K. p. Ed. Imai. 3. Kiaraberes and Gagak) Hartono. 4.28.G.4 Ma) and youngest (after 0. Natuurkundig Tijdschrift Nederlandsch-Indie 98. E. Volcanology Geothermal Res. Macpherson & J.pdf) Bibliography of Indonesia Geology. Lavas geochemistry suggest least contaminated mantle wedge source analysed in region. (1938). H.41. Wibowo. (New Nd-Hf isotope and trace element data for Javanese volcanoes.K. Gertisser & J. Descriptions of 4 Recent volcanoes SW of Salak. (1994).G. 6. Gertisser (2006).The petrology and geochemistry of the Wilis and Lawu volcanics. 1-441. Indonesia and their relationships to geothermal resources. C. K.G. Setijadji. J. 215-249. (Volcanic rocks from Salak Volcano. Chemical Geology 255. from NE to SW: Perbakti. 585-609.D. Other isotope ratios for W Java volcanics consistent with incorporation of subducted sediment dominated by terrigenous component. H. 48.A. C. Ph.K. S. Correlation between Sr ratio and volcano summit elevation indicates relation to lithospheric thickness.Untangling differentiation in arc lavas: constraints from unusual minor and trace element variations at Salak Volcano. 'Old Idjen' volcanics unconformable on Miocene limestone. H. Turner. Earth Planet Sci. 18. Java (Indonesia): oxygen isotope geochemistry of a chemically zoned magma chamber. J. West Java. A. Mineralogy Petrology 159.Handley. Davidson.C. Davidson.K. 304. (Sunda Arc lavas across Java. K. Petrol.S. C. but lower further E..A.. p. Contr. J. Handley..utas. East Java.Hf-Nd isotope and trace element constraints on subduction inputs at island arcs: limitations of Hf anomalies as sediment input indicators. p.P. Thesis University of Tasmania. R. Petrology 33.P. Indian-type mid-ocean ridge basalt (IMORB)-like fertile mantle wedge first infiltrated by minor fluid from altered oceanic crust. A. Hf anomaly variation may be controlled by fractionation of clinopyroxene or amphibole and does not represent magnitude or type of subduction input in some arcs) Harijoko. J. Sr ratios increase from Krakatau in W to Merapi in C Java. Suppl. second (0. Geochimica Cosmochim. prior to addition of <1% subducted Indian Ocean sediment (pelagic ooze and Mn-nodules)) Handley.W Java show different minor and trace element geochemistry between central vent group lavas and rocks erupted at side vents) Handley. H. C. U.vangorselslist. Assoc. Bull. Descriptions of Recent volcanoes Perbakti. Central Java. J. p.Magma source characteristics in the Wilis Volcano.library. Geol. A. Geol. 50.edu/ ) ('The volcano group in the SW of the Salak volcano in W Java'. p.The major trace and rare earth elements geochemistry of the Lawu volcano. U. U. Indon. Conv. Eastern Sunda Arc. 27. (Wilis extinct Quaternary volcano at border C-E Java with basalts high in Al2O3.Hartono. Assoc. Crystallization of amphibole of Old Lawu at ~18km depth) Hartono. Jakarta. Bull. 97-133. East Java. C Java. (online at: http://colonial. Central-East Java have high Ba50 and Ba/La ratios and Sr and Nd isotoperatios that suggest contribution to magma source from subducted slab sediments (1% of sediment added to Indian Ocean MORRB source will give observed Sr and Nd anomalies)) Hartung. (1938). 8-15. (1997). Centre 19. p. (Basalts from extinct Quaternary Wilis volcano. (1916). Dev. 250-270. p. M. (1995). Nd and O Isotope constraints on the petrogenesis of the island arc Wilis volcanics. Eastern Sunda arc: implication for magma evolution. Hartono. (On 18O oxygen isotopes in Quaternary volcanics of Wilis Complex. Kiaraberes.Die Vulkangruppe im Sudwesten des Salak-vulkans in West-Java. Natuurkundig Tijdschrift Nederlandsch-Indie 98. with minor dacites. Achdan (1993). U. but Young Lawu contains olivine. Geol. p. Ed. Endut. 4. Eastern Sunda Arc: trace element and Sr and Nd Isotope constraints. p. Geologi Sumberdaya Mineral 3. 39-62. Central Java. Res. Indon. 215-249. (IAGI). (Lawu volcano two parts. 69. 2-7. (IAGI). 12-32. Geologi Sumberdaya Mineral 5. Centre 21. (Wilis volcano. Higher K2O and other incompatible elements in Young Lawu rocks may indicate crustal contamination) Hartono. (1994). Geologi Sumberdaya Mineral 4. 1. Geologi Sumberdaya Mineral 6. 2-7. p. (1996). J.leiden. Central Java. U. Proc. 25th Ann.Auf dem Vulkan Smeru auf Java. Dev. East Java: evidence for assimilation and fractional crystallization. 15p. 39.Possible sediment involvement in the Wilis magmatism: a preliminary study. 43.) Hartono.Radiogenic and stable isotope data from the Wilis volcanic complex. Zurich 1916. J. Geologi Sumberdaya Mineral 7. Proc. p. SE Java. U. (Quaternary lavas of Lawu volcano. Showing evolution from intitial poorly evolved basalts to more evolved andesitic magmas to finally dacitic magmatism) Hartono.Stratigraphic geochemical trends of the Wilis volcanic complex. enriched in Kgroup elements (Ba. low MgO. 12-29. Conv. Rb. Geol.Petrogenesis of basaltic magmas from the Wilis volcano. (1996). 118. U. J. & A. etc. p.com Sept 2016 . (1995). 23rd Ann. J.Sr. J.A. Mineralogical differences between 'Old Lawu' and Young Lawu'. 52.Basaltic andesites resulted from the reaction between hydrous basaltic magmas and anhydrous ferromagnesian minerals: evidence from the Lawu volcano. Old Lawu and Young Lawu. 2-10. Neujahrsblatt Naturforsch. Ges. Both dominated by basaltic andesites and andesites. Bibliography of Indonesia Geology. mainly basaltic andesite to dacite. U. five episodes of basaltic-andesitic volcanism. Hartono. 6. (1997). Gagak) Heim. 233-249. Hartono. Res. (1994). K). Geologi Sumberdaya Mineral 5. Young Lawu with olivine phenocrysts) Hartono. p. p. (1995).0 209 www. U. U. (Rocks from extinct Quaternary Lawu volcano typical calc-alkalic subduction volcanics of mainly andesites.Petrography and mineral chemistry of the Lawu volcano. E Java) Hartono.Oxygen isotope variations from the Wilis volcanic complex. K. Furman (2013). B.bgl. Pekanbaru. (Textures of Merapi lavas. presumably associated with different rheological behaviors and storage/transport systems) Jaxybulatov. Geol. A. p. p. S. A.Textural and mineral chemistry constraints on evolution of Merapi Volcano. Geologi Indonesia 4. J. T. Verhandelingen Geologisch-Mijnbouwkundig Genootschap Nederland Kol. from Proto-Merapi through modern activity. Mulyana (2006). p.D.The pre-eruptive magma plumbing system of the 2007-2008 dome-forming eruption of Kelut volcano.vangorselslist. (2013). 6. S.. J. S. (IAGI). Indonesia: insights from textural analyses and geochemistry. Dwiyono et al. 96-105.A.('On the Semeru volcano on Java'. Varying proportions of subducted sediment and subducted crustal fluids can explain repeated shifts between medium. Contr. with creation of lava dome in crater) Hirschi. Jousset. Anomaly appears to be separated in two parts at depth of 5-6 km) Jeffery. Indonesia. Kristianto & I. Basuki. Volcanology Geothermal Res. 35th Ann. Pennsylvania State University. 213-218. Harris et al. S.id/publication/index.Troll. M. 261. Formation of viscous plug responsible for shift between effusive and explosive eruptions) Innocenti. 4. J. p. Ed.A. 171-192.M. before ascending to surface and erupt explosively (tephra). P.Signs of magma ascent in LP and VLP seismic events and link to degassing: an example from the 2010 explosive eruption at Merapi volcano. S. J. M. East Java. Klinge.Sc. p. Ibs-von Seht.The pre-eruption conditions for explosive eruptions at Merapi volcano as revealed by crystal texture and mineralogy. 20-37. H. R.go. 229-238. Priadi & R. Voight. B. C. 69-86. Voight (2013). suggests distinct histories for basalts and basaltic andesites. Early report on ascent of Semeru in E Java) Hidayati. S.Emergence of lava dome from the crater lake of Kelud Volcano. Indonesia. East Java. East Java. Volcanology Geothermal Res. 275-308 (Kelut 2007-2008 lava dome provides evidence for complex magma system that comprises deep crustal..R. del Marmol. Reichert. A. M. 206. Found relatively low content of radioactive materials) Innocenti. B. Java. (2013). (online at: www. Gertisser. Assoc.0 210 www.libraries. J. V.. Troll (2011)Evidence for high fluid/melt content beneath Krakatau volcano (Indonesia) from local earthquake tomography. Koulakov.Die Radioaktivitat des Shoshonits von Bromo (Java) und Shonkinits vom Pik von Maros (Celebes). E Java in 2007. Volcanology Geothermal Res. Mulyana (2009).. midcrustal storage and upper crustal storage zones) Jhonny. 261. Dahren & V.edu/paper/7396/ ) (Merapi volcano activity produces lava flows and viscous lava domes and explosive events. A.. Indonesia. p. C. K. Proc. 261. p.php/dir/article_download/255) (On volcanic activity of Kelud Volcano. (Unpublished) (Online at: https://etda. Andreastuti. M.Lavas and tephras of Merapi Volcano. Bibliography of Indonesia Geology. (1925). Furman. (Tomographic inversion for P and S velocities from 2005-2006 microseismic network shows zone of high Vp/Vs ratio beneath Krakatau complex. (2006). Indon Geol. Conv.R. T. I. Surono. p. Dahren. E.. or stagnate in shallow magma chamber before extrusion (lava)) Innocenti. Volcanology Geothermal Res. B.esdm. 1-210.and high-K affinity (also displayed by other volcanoes in Java). p. a probable indicator of presence of partially molten and/or with high fluid content material with composition corresponding to deeper layers.. Jolly. del Marmol & B.psu.J. Evidence in support of multiple distinct plumbing systems. S. Thesis. M. Serie 8 (Verbeek volume).Jolis. ('The radioactivity of the shoshonite of Bromo (Java) and the shonkinite of Maros Peak (SW Sulawesi)'. Boichu. Mineralogy and Petrology 166.Continental characters on volcanism of Lamongan volcano.com Sept 2016 . Andreastuti. (Merapi tephra and lavas resided for similar lengths of time in mid-crustal reservoir. Budi-Santoso. Nakamura & T. Volcanology Geothermal Res. 3. Goenoeng Goentoer. II Goenoeng Pangerango. F. XV Slamet') Junghuhn.Bijdragen tot de geschiedenis der vulkanen in den Indischen Archipel. p. F. (1843). p. XVII The Dieng Plateau') Junghuhn.W. ('Contributions to the history of volcanoes in the Indies Archipelago. F. Okuno.X Kawa Manok. M. (1844). Slamat. XI Papandayang'. Duquesnoye M.Eruptive history of Tangkuban Perahu Volcano. Series not completed as originally intended) Kartadinata. S..jst.Tangkuban Perahu. Gunung Salak. XV. Tijdschrift voor Nederlands Indie 1843.W.0 211 www. F. explained mostly by growth of lava dome) Jousset. Tijdschrift voor Nederlands Indie 1843. p. 614-626. Indisch Magazijn 1844.. 4-6.Temporal gravity at Merapi during the 1993-1995 crisis: an insight into the dynamical behaviour of volcanoes. XIV. V Patuha. Tijdschrift voor Nederlands Indie 1843.journalarchive. T. III. VIII-IX. (1843). I. ('Contributions to the history of volcanoes in the Indies. Ed. Tijdschrift voor Nederlands Indie 1843. Goenoeng Sindoro. Goenoeng Salak. etc. Eerste afdeeling Java. XIX. XIV Ciremai') Junghuhn. Goenoeng Gede. F. X. Eerste afdeeling Java. J.. 97-133. First part Java. Eerste afdeeling Java. but significant gravity changes. (1843). VI. etc. 100.. p. Gunung Pangerango. ('Contributions to the history of volcanoes in the Indies. 745-763. Kawa Manok. F. etc. VII Waijang.Bijdragen tot de geschiedenis der vulkanen in den Indischen Archipel. II. (online at: www. XIII Galunggung') Junghuhn. Indisch Magazijn 1844.) Bibliography of Indonesia Geology. Papandaijang. p. (October-November 2010 eruption of Merapi volcano in C Java was the largest eruption in >100 years at volcano known for smaller eruptions occurring on average every 4-6 years) Junghuhn. Volcanology Geothermal Res. Early descriptions of Java volcanoes) Junghuhn. P. M. Palister & Surono (2013). p. Gunung Gede'. Eerste afdeeling Java.W. 257-280.Bijdragen tot de geschiedenis der vulkanen in den Indischen Archipel. 163176. III.Bijdragen tot de geschiedenis der vulkanen in den Indischen Archipel. 7-9. Waijang. Geography (Chigaku Zasshi) 111. (1843). First part Java. (1843).Jousset. little deformation (<5 cm). T.. ('Contributions to the history of volcanoes in the Indies. First part Java. Eerste afdeeling Java.jp/. 64-94. J.go. Dwipa. Galoeng Goeng. XVII. p.com Sept 2016 . Patoeha.W. Telaga Bodas. 1. XVI Raja Jampangang.Bijdragen tot de geschiedenis der vulkanen in den Indischen Archipel.Bijdragen tot de geschiedenis der vulkanen in den Indischen Archipel. 41-83 and p.W. F. ('Contributions to the history of volcanoes in the Indies. Malabar. Beauducel. C Java. ('Contributions to the history of volcanoes in the Indies. XII. Eerste afdeeling Java. 289-320.Bijdragen tot de geschiedenis der vulkanen in den Indischen Archipel. IV. XIII. Indisch Magazijn 1844. ('Contributions to the history of volcanoes in the Indies Archipelago. XII Telaga Bodas.vangorselslist. Goenoeng Soembing. XVIII. etc. 185-227. (1844). Tangkoebang Prauw.The 2010 eruption of Merapi volcano. First of many continuations of above) Junghuhn. XVI Radja Djampangang. Kobayashi (2002). Tijdschrift voor Nederlands Indie 1843. 261.Bijdragen tot de geschiedenis der vulkanen in den Indischen Archipel. 1-6. XVIII Gunung Sindoro') Junghuhn. V.W. p. J.W. etc. Tjerimai. p. 4-6.. I. Diament (2000). XIX Gunung Sumbing'. 6. Het gebergte Dieng. p. IV. VIII-IX Gunung Guntur. (During 1993-1995 activity of Merapi volcano. 287-315. VI Malabar. XI. Indonesia: a preliminary report. Eerste afdeeling Java. West Java. 404-409.N. F. Eerste afdeeling Java. (1844). VII. P. p. J.W. (Final part of 'Contributions to the history of volcanoes in the Indies Archipelago. F. J. 1. J. Ag.F. L.Galunggung the 1982-1983 eruption. Indonesia. 129. Setijadji T. and possibly involving contribution of subcontinental mantle (C Java)) Maeno.com Sept 2016 . Sopeng I Fm in Sulawesi). Y. 194-201. I. B. Natuurkundige Vereniging. G. tephra group divided into two subgroups. F. R. 479-491. Related to ascent of new magma and degassing at depths of 2 km or less below the summit of volcano. Gesellsch. Kupper. Suwa & A.. 4. Centralblatt Mineral.Geochronology and petrogenetic aspects of Quaternary across arc magmatism on Merapi-Merbabu-Telomoyo-Ungaran volcanoes. 423-456. ('The position of the Krakatau volcano in the Malay Archipelago') Lavigne. Lamongan in het begin van 1920. G.(Tangkuban Perahu volcano. Geochemical Exploration 50. Imamura (2011).High Au. In: Proc. Osterreich. Cindako Fm. and (3) silicaundersaturated ultrapotassic. but in S Sulawesi emplacement post-dates latest known subduction. Mo. Ed. 171-187. H. (1921). (1984). Pb. & A. Soeria-Atmadja & R. usually leucite-bearing (Muria 2.Uber das Vorkommen von leucitreichem Basalt am Gunung Ringgit (Java). 100. Voight. Indonesia. (Neogene. Batavia.G. N of Bandung. ('On the occurrence of leucite-rich basalt at the Ringgit volcano. Geol.D. Kolff. Indonesia. Bibliography of Indonesia Geology. & F. Ringgit is an extinct volcano center E of Arjuno . 4.S.A. Indonesia. Solid Earth.Lahars at Merapi Volcano. (Blue and red-green sublimates incrustations deposited in 1991 around high T (800°C) fumaroles at Merapi volcano. Volcanology Geothermal Res. Dienst Mijnbouw Nederlandsch-Indie. 1-162.L. Brama en de G.p. J. de G. Brama and Lamongan volcanoes in early 1920) Kohno. p. & Exh. (1994). Rocks compatible with subduction-related environment. Palaont.vangorselslist. Harijoko et al. Geophysical Research B. 245-249.Welirang complex. F. p. H. K. Java'. A.L.Tsunami generation by a rapid entrance of pyroclastic flow into the sea during the 1883 Krakatau eruption. ('The Semeru.750 years) and Young Tangkuban Perahu (started at ~10. Earth Resources and Geological Engineering Education.L. Genuk in Java. p. p.L. unrelated to hydrothermal fluids with potential for commercial mineralization) Keil. Camba 2a Fm and part of Lompobatang stratovolcano. Weltevreden. Zoltan. Y. 1-40. 1102. (2006). Bawean in Java. Central Java. Yuwono. Sumaryono (2000). Central Java. Itaya.Potassic volcanism in Central Java and South Sulawesi.0 212 www. (Geology and geomorphology of Idjen Highlands and volcano. 6. Conf. Southeast Asian Earth Sci. Semeroe. Old Tangkuban Perahu (oldest radiometric date ~40. P. p. High T fumarolic activity may form 'false'" anomalies of key elements such as Au. J.C. 3.64% Pb and many other metallic elements. In C Java do not fit with model of increasing K2O with depth of Benioff plane. Prefer genetic model for K-rich volcanic series by melting of mantle sources enriched in incompatible elements during previous subduction events. p. Blue sublimates comprise thin coating of Mo oxide on cristobalite-alunogen-anbydrite.De G. 1993. Central Java: an overview. J. Indonesien. East Java) Kemmerling. Maury (1990).. Vulkanologische Mededeelingen. Sudradjat (1984). Thouret. J.. V and W content of fumarolic deposits at Merapi Volcano.000 BP)) Katili. 65-68. Baturape Fm. Leterrier. J. p. 3rd Int. Kon. (1923). (1933). p. They contain up to 3% Mo. and location of UK series is independent from latter (Quaternary UK Series on Bawean away from 600 km isobath). Young basalts with leucite crystals up to 3 cm in size and locally up to 50% of rock) Kemmerling. East Java.Quaternary K-rich volcanics from back-arc of C Java and S Sulawesi 3 series: (1) silica-saturated or -oversaturated potassic (SK). p.Die Stellung des Vulkans Krakatao im Malayischen Archipel.. Mitteil. (2) weakly silica-saturated alkaline potassic (Muria 1.De geologie en geomorphologie van den Idjen. Kavalieris. Mineral.C. Camba 2b Fm. Volcanological Survey Indonesia. S Sulawesi). A. Yogyakarta 2006. derived from long-offset transient electromagnetic data. Indonesia. 22nd Ann. M. Indon. (2011)-The behaviour of base metals in arc-type magmatic-hydrothermal systems. and andesite at 980-1000 °C) Mandeville..W.S. J. (Long-offset transient electromagnetic survey gave 2 resistivity profiles (10 km E-W and 15 km S-N) of Merapi volcano. 74. p.W.D.. p.0. J. Neubauer (2002). S. Indonesia..Nouvelles donnees geologiques et chronologiques sur le deux associations magmatiques du volcan Muria (Java. Nadeau. Indonesie). Conv.Links between arc volcanoes and porphyry-epithermal ore deposits. 1-135. Sci.pdf) ('Hafnium in subduction zones: isotopic record of incoming and outgoing flows'.. p. Stix & A. Geology 44.vangorselslist. Two submarine pyroclastic facies (1) massive.com Sept 2016 . (Fe. vitric-enriched silty ash. 304 (II).iaea. 11-14. Chemical Geology 342. Geophysical Research 107. (2004). Indonesia. & F. Co and Ni at Merapi volcano transferred from mafic melt to immiscible sulfide melt.org/inis/collection/NCLCollectionStore/_Public/37/095/37095281. J.W. less rich in K (1.The behavior of Cu. 1.The sand-sea and other calderas formation in Bromo-Tengger complex. S. (online at: www. Williams-Jones (2016). Montreal. 512-529. poorly sorted pumice and lithic lapilli-to-blocksized fragments in silty-sandy ash matrix (indistinguishable from 1883 subaerial pyroclastic flow deposits.Mandeville. p.0. King (1994). Doct. Ph. Suparka (1987). (2) less common well-sorted. 243-274.Sedimentology of the Krakatau 1883 submarine pyroclastic deposits. Bibliography of Indonesia Geology..C. J.0 213 www.L’Hafnium dans les zones de subduction: bilan isotopique des flux entrant et sortant. (IAGI). 90% rhyodacite.E. which appear very radiogenic. S. Carey & H. p. Carey & J. 35-44. Cu. p. C. p. likely deposited from low-concentration pyroclastic density currents generated by shear between submarine flows and seawater) Marini.Internal structure of Mount Merapi. Grenoble. 4% mafic dacite.Pleistocene volcanic arc lavas from Java. R. (Krakatau eruption of 1883 produced ~12. Ed. Soeria-Atmadja. C. Two lava types in Pleistocene Muria volcano: young (0. Yuwono & E. Nadeau.Paleomagnetic evidence for high temperature emplacement of the 1883 subaqueous pyroclastic flows from Krakatau volcano. p. Thesis McGill University. Assoc.1. A.E. Indonesia. overlying more mafic dacite at 890-913 °C. Paris. Williams-Jones (2013). Bellon. 4.4 Ma) ultrapotassic leucite-bearing lavas and underlying leucitefree rocks. 175-180. fractional crystallization and volatile degassing during the 1883 eruption of Krakatau volcano.M. E.S. Geol. Mandeville. Stix & A. C Java. 1% andesite and ~5% lithic material. possibly caused by contamination of oceanic pelagic sediments in magma sources) Maury. Comptes Rendus Academie Sciences. planar-laminated to low-angle cross-bedded. Y. result of sinking of components of pyroclastic flows over water). Thickest accumulation of tephra from eruption on submarine slopes W of Sertung (80m). Universite Joseph Fourier. Sigurdsson (1996). Indonesia. East Java. (Majority of tephra generated during the paroxysmal 1883 eruption of Krakatau deposited in sea within 15 km of caldera. Geophysical Research 99.Magma mixing. Thesis. Hordt. Joron. O.L. Zn and Pb during magmatichydrothermal activity at Merapi volcano. p. J.C. 1-195. ('New geological and chronological data on the two magmatic associations of Muria volcano'. 2187.. R. 6. Volcanology 57. C. O. J. J.insights from Merapi Volcano.H. Bandung. 167-179. Includes chapters on Hafnium isotopes in North Luzon and Late Eocene. Magma chamber compositionally and thermally zoned with upper part rhyodacite at T of 880-890 °C. p. Extensive conductive layer at depths of 1-2 km. Sigurdsson (1996). probably caused by fluids) Mulyadi.6.. Carey & H. Proc. then to magmatic volatile phase which carried them to surface) Nadeau.5 km3 of magma. B9. O. 9487-9504.6 Ma)) Muller. 1. (1993). Bull. Volcanology Geothermal Res. R. De Ingenieur Nederl. 157-165. Del Marmol. 211-227 ('The eruption of the Ciremai volcano in 1937'. Hydrous Series magmas may be result of mixing between Anhydrous Series and high-K calc-alkaline basaltic.A. (1939). p. 50-68. R. p. C Java. J.. Oldest age for explosive eruption 9630 yrs BP.Magmatic-hydrothermal evolution and devolatilization beneath Merapi Volcano. Bahar. K. probably following fault zones) Neumann van Padang. ('On the many thousand hills in the western foreland of the Raung Volcano (East Java)'. p. B.10.G. M.. Stix (2013). 6. and must have been captured by magma from underlying complex. (Stratigraphy and radiocarbon dating of pyroclastic deposits at Merapi Volcano. 100. Mafic A-series probably related to crustal doming-extension above dominant subduction regime. and deposition of porphyry and epithermal ores at rel. R.De uitbarsting van den Tjerimai in 1937. N. C. ITC Journal. Dam (1996).vangorselslist. 337-359. shallow depths (<5km)) Nadeau. but probably erosional remnants of large ancient landslide) Newhall. reveals ~10. Merapi and Semeru'.(Formation of porphyry and epithermal ore deposits tied to volcanic cycles (partly based on observations of variations in vapors from Merapi volcano. Holcomb et al. 4.Uber die vielen tausend Hugel im westlichen Vorlande des Raoeng-Vulkans (Ostjava).A. 1-6. M. De Ingenieur in Nederlandsch-Indie (IV). (3) Explosive Merapi eruptions before and after Buddhist and Hindu temples construction in C Java between 732 and ~900 AD. Williams-Jones & J. p. Hadisantono. I. Oba. Whitford (1983). R. M. J. I. Indonesia. J. Bronto. (2000).000 years of explosive eruptions:(1) Construction of Old Merapi stratovolcano to height of present cone or slightly higher. 6. 12. 9-50. & D. (Extinct Pleistocene Muriah volcano in N-C Java two groups of lavas: (1) 'Anhydrous Series' leucite basanite to tephritic phonolite and (2)'Hydrous Series'. p. Lamongan). Merapi en Semeroe. GeoJournal 28.Geomorphologic development of the Sunda volcanic complex.A. 1.G.. N. A. Indonesia: products of multiple magma sources? J.E. Sialic crustal materials may have plunged into depths and partially melted to produce magma of granitic composition and mixed with ascending basaltic magma from upper mantle to produce pumice of dacitic composition) Bibliography of Indonesia Geology. 99-108. Central Java: archaeological and modern implications. M. p.Merapi) or NE to SW (Slamet.J. 2. Somma-forming collapse at ~1900 yrs BP. Injections of mafic magma (commonly with explosive volcanic eruptions) are followed by decompression of magmatic hydrothermal system. (1937). p.C.An interpretation of the 1883 cataclysmic eruption of Krakatau from geochemical studies on the partial melting of granite. Neumann van Padang. p. Banks.D. Fragments of granitic rock in pumice flow are similar to W Malayan granites. 4. (4) Partial collapse of New Merapi in 12th-14th century AD). S.andesitic magmas related to subduction) Nossin. West Java. (5) Lava-dome extrusion and dome-collapse pyroclastic flows dominant in 20th century) Nicholls.000 years of explosive eruptions of Merapi volcano. (1936). Indonesia. Lamongan.M. Volcanology Geothermal Res. which are tholeiitic. De Ingenieur in Nederlandsch-Indie (IV).. O.Indie (IV).Potassium-rich volcanic rocks of the Muriah complex.T.P. 3. Alloway. 18. ('On the shifting of the craters of the volcanoes Slamet. 261. tephrites and high-K andesites. Ed.G. Numerous hills at W side of Raung volcano (E of Slamet) not small volcanic centers as suggested by Verbeek. Volcanology Geothermal Res. Volcanology Geothermal Res. inducing fluid phase separation. Lamongan. rapid cooling. 2.com Sept 2016 .Over de verplaatsing van de kraters der vulkanen Slamet. 1996. Current cone began to grow soon thereafter. Java. W Java) Neumann van Padang. (2) Collapse(s) of Old Merapi with impoundment of Kali Progo to form early Lake Borobudur at ~3400 yrs BP.0 214 www. Voskuil & R. Yamamoto (1992).J. (Pumice from 1883 Krakatau eruption very different from other volcanics of Krakatau group. Several of Java active volcano groups show shift of active craters from N to S (Ungaran-Merbabu. Tomita & M. 35-41. C Java). W. height ~132m) Philibosian. Sudradjat & T. 247-249. N. 1593-1609. 21st Ann. A. Kuala Lumpur 1984.com Sept 2016 . Toba ~74kyr BP?. B. Granitic clasts presumably from underlying sialic crustal material at depth of Sunda Straits) Oppenheimer. C. closer to 1°C) Paris. (1949). deposited before and during Plinian phase (26–27 August). p. Preece. K. F. (Satellite-based survey of volcanic deformation on Java during 2007-2008. Soc. p. Simons (2006). p. Granitic xenoliths of quartz monzonite in pyroclastic flow of Sertung) Oba. FeO and CaO. Volcanic rocks from Rakata three types: augite-hypersthene andesite. M. Teh & S. Barclay. (1992). Fac.. R.files. Malaysia 19. augiteandesite and olivine basalt. Parlin. A. & M. ('A first post-war reconnaissance of Pulau Panjang and Anak Krakatau on 5 June 1949'. K. 5th Reg.A. Na2O and K20 and low MgO.H. M.New data on ages of the Muria Complex. Istidjab. Proc. Geophys. Sadjiman. Volcanologique 76:814. Bull.quartz monzodiorite. Bull.) Proc. Contr. Ed. Benbakkar. Anak Krakatau little changed since 1941. 2.. Yamamoto. 51-68.vangorselslist. 21-41. Deformation event at Lamongan volcano likely linked to magmatic intrusion at several km depth. Suhanda (1983). Y. M. Wassmer. 1061. p. Geochem. lithologically andesitic and geochemically dacitic. Sci. Ontowirjo & Nelly Mazzoni (2014). (3) rounded pumice lapilli reworked by tsunami. Geol. Tomita.Oba.pdf) (Pumice flow of 1883 Krakatau eruption at Rakata Kecil and Sertung differs from other volcanics of Krakatau Group which belong to Miyashiro's (1974) tholeiitic series.Pre. 1-23. Rept. (2002). Bibliography of Indonesia Geology. Indonesia. Belousov. M. characterized by a large amount of volcanic glass and high-contents of SiO2.jp/bitstream/10232/5932/1/AN00040884_1982_002. In: G..Een eerste na-oorlogse verkenning van Lang Eiland en Anak Krakatau op 5 Juni 1949.. Yamamoto. R. (≈74 kyr BP 'super-eruption' of Toba volcano in Sumatra is largest known Quaternary eruption.Limited global change due to the largest known Quaternary eruption. Pyroclastic flow from 1883 eruption. K. N. Indonesia. A. B. Second one at Slamet volcano at shallower depth that may have been related to subsequent eruption) Prastistho. M. Kagoshima University 15. A. Iskandarsyah. Paramananthan (eds.. Suhanda (1986). Chronica Naturae 105. Conv.com/2014/09/bgsm1986005. Badruddin.and syn-eruptive degassing and crystallisation processes of the 2010 and 2006 eruptions of Merapi volcano.Coupling eruption and tsunami records: the Krakatau 1883 case study.A survey of volcanic deformation on Java using ALOS PALSAR interferometric time series.pdf) (Rocks and ejecta of Anak Krakatau almost same lithologic and geochemical characteristics of island arc basaltic andesites. Quaternary Science Reviews 81. more basic in composition. Indonesia. M. Geol. Lavigne. (Five kinds of sedimentary and volcanic facies related to Krakatau 1883 identified along coasts of Java and Sumatra: (1.Geologic significance of granitic fragments found from pumice flow of 1883 eruption at the Krakatau Group. Crater lake close to sea level. With lithic fragments of granitic rock (quartz monzonite. (online at: http://ir. B. J. 2) bioclastic and pumiceous tsunami sands. 507-516.. Possible 6 yr duration 'volcanic winter' following eruption has been proposed. Geosystems 12. 10. Assoc. (IAGI). Djuwandi. Belousova. K. 6. Sudradjat & T.ac. M. Volcanoes experiencing small eruptions are typically fed by magma bodies too small to produce recognizable InSAR signal. Gertisser. p. Istidjab. ejecta and pyroclastic flows from the Krakatau group. Mineral and Energy Resources of SE Asia (GEOSEA V). Herd (2014). Berlo & R. p. M. up to 30cm in size) similar in compositions to W Malay Peninsula granites.Geochemical study of lava flows. Mineralogy Petrology 168.wordpress. p.kagoshima-u. New volcanic ash different. p. Tomita. Indon. 11.A. (online at: https://gsmpubl. Indonesia. Congress Geology. Java. Max. P. 1. (4) pumiceous ash fall deposits and (5) pyroclastic surge deposits (only in Sumatra)) Petroeschevsky. but previous estimates of globally averaged surface cooling of 3-5°C after eruption probably too high.0 215 www. 1-25. .. F. H. Conv. (1982). Asian Earth Sci. Indonesia). I. 100. Geol. 2. 1. non-welded ignimbrite. 20-28. Nature 294.R. 10. Suharno (1997).The eastern flank of the Merapi volcano (Central Java. 1983-1994. Volcanology Geothermal Res.a guide book. A. M. D. 5843. (Brief review of deposits of 1883 Krakatau eruption. H. J. 19th Ann.. E Java') Scrivenor. Mededelingen 7.S.A. (Brief report of observations on lahar deposits of Kelut volcano near Kediri in E Java. 119. (1935).. p.A. 87-97. Both are poorly sorted deposits with large blocks. but volcanic mudflows would be composed mostly or entirely of volcanic material) Self. p.Priadi B. J. and its similarities to glacial deposits. Leidsche Geol.Merapi volcano. I. GeoJournal 28. J. Bulk volume of pyroclastic deposits (incl. S. Suharna. Kimura (2010). (IAGI). Magazine 66.I.naturalis.J. 33-47. J. R.0 216 www. Volcanology Geothermal Res. & T. Nicholls & V. Kamenetsky (2003). Sumarti & S.Geothermal systems on the island of Java. p. Rampino (1981). 47-59. Pichler (2014). M. I. to climax on 27 August) Self.The mudstreams (“lahars”) of Gunong Keloet in Java. (Review of Krakatau 1883 eruption cycle.Geokimia dan petrogenesa basalt kompleks Gunungapi Lamongan . p. Asian Marine Geology. 64 p. Permana (2004).S. Sayudi. Ed. co-ignimbrite ash) estimated as 18-21 km3)) Selles. (Two types of geothermal systems on Java. (Volcanoclastic facies architecture of E flank of Merapi. O. A. J. Richard. (1929).Volcanism and submarine hydrothermal activities around Krakatau island in Sunda Strait.Krakatau revisited: the course of events and interpretation of the 1883 eruption. Ratdomopurbo.vangorselslist. Geol. Indonesia): architecture and implications of volcaniclastic deposits. p. Volcanol. Volcanology Geothermal Res. A. p. 220-246. p. D. Purnomo.An overview of the seismicity of Merapi volcano (Java. Subandriyo. 105.S. p.. & M. Deffontaines. Assoc. Hendrayana & S. ('Geochemistry and petrogenesis of the basalt complex of Lamongan volcano. Poupinet (2000).K.G. Bandung. Survey Indonesia. Indonesia. Reubi. 109-121. p. Conf. 285. 255-274. Sinulingga. 699-704. Bibliography of Indonesia Geology.repository.G. Indonesia.com Sept 2016 . Large explosions produced pyroclastic flows that entered sea and produced tsunamis. Y. Proc. Suparwaka & Sunarta (2013).Geochemical variation in Tertiary-Quaternary lavas of the West Java arc. J. Indon. Modest ignimbrite-forming event. dacitic. Nandaka.A. Violette (2015). Beauducel. Merapi.J. A. Mineralogical Petrological Sci. B. p. Java. & J. J. 6. starting with minor activity on 20 May. Bangkok. Mulyana & R. J. & G. Zulkarnain & H. Slamet volcano.Early mixing and mingling in the evolution of basaltic magmas: evidence from phenocryst assemblages. Newhall. Sukhyar (1990). 433434. 1-40. Deposits mainly coarse.nl/document/549799) ('Some notes on the Raung volcano in E Java') Sayudi.Overview of the 2006 eruption of Mt. C. Ratdomopurbo. Purbawinata. 108. S. 193-214. Indonesia: steady-state subduction over the past 10 million years. p. volcano-hosted and fault-hosted) Ratdomopurbo.The 1883 eruption of Krakatau. B. J. Volcanology Geothermal Res. 261.. A. 5th Int. I. B. p.Enkele aantekeningen omtrent den Gg Raoeng op Java. Indonesia Proc. (online at: www. which was not impacted by major eruptions for nearly 2000 years) Sendjaja.Jawa Timur. (online at: www.jstage.jst.go.jp/article/jmps/105/1/20/_pdf) (Geochemistry and Sr-Nd-Pb isotopes of Miocene-Quaternary basaltic-andesitic lavas from W Java arc. W Java arc existed in current configuration since at least 15 Ma. Two parallel volcanic ranges: southern (VF; volcanic front) and northern (RA rear arc). Partial melting in mantle source greater in VF. Ffluid addition to mantle greater in VF. Across-arc geochemical variation between Tertiary and Quaternary lavas does not differ, implying W Java arc has been in 'steady state' over past 10 My, with continuous subduction input from Indian Ocean sediments and continuous upwelling and replenishment of depleted mantle source from back arc) Setyawan, A., S. Ehara, Y. Fujimitsu, J. Nishijima, H. Saibi & E. Aboud (2009)- The gravity anomaly of Ungaran Volcano, Indonesia: analysis and interpretation. J. Geothermal Res. Soc. Japan 31, 2, p. 107-116. (online at: www.jstage.jst.go.jp/article/grsj/31/2/31_2_107/_pdf) (Positive Bouguer gravity anomaly over Old Ungaran volcano, which was active until >0.5 Ma, suggesting Ungaran formed in tectonic depression) Sendjaja, Y.A., J.I. Kimura & E. Sunardi (2009)- Across-arc geochemical variation of Quaternary lavas in West Java, Indonesia: mass-balance elucidation using arc basalt simulator model. Island Arc 18, 1, p. 201-224. (W Java Arc segment of Sunda arc >10 Quaternary volcanic centers, above 120 to 200 km depth contours of Wadati-Benioff zone. Quaternary lavas range from basalt to dacite. Incompatible element abundances increase from volcanic front to rear-arc in response to change from low-K to high-K suites. Nd-Sr isotopes of basalts between mid-ocean ridge basalt (MORB) source mantle and Indian Ocean sediment compositions) Simkin, T. & R.S. Fiske (1983)- Krakatau 1883- the volcanic eruption and its effects. Smithsonian Inst. Press, Washington, DC, p. 1-464. (Thorough and well-illustrated account of 1883 Krakatoa eruption and its effects) Simkin, T. & R.S. Fiske (1984)- Krakatau 1883: a classic geophysical event. In: C.S. Gilmor (ed.) History of Geophysics 1, American Geophys. Union (AGU), p. 46-48. (online at: www.agu.org/books/hg/v001/HG001p0046/HG001p0046.pdf) Sisson, T.W. & S. Bronto (1998)- Evidence for pressure-release melting beneath magmatic arcs from basalt at Galunggung, Indonesia. Nature 391, 6670, p. 883-886. (Volatile content of primitive magmas from 1982-1983 eruption of Galunggung volcano in W Java indicates magmas derived from pressure-release melting of hot mantle peridotite) Siswowidjoyo, S., I. Suryo & I. Yokoyama (1995)- Magma eruption rates of Merapi volcano, Central Java, Indonesia during one century (1890-1992). Bull. Volcanology 57, 2, p. 111-116. (Magma eruption rates of Merapi volcano rel. constant for last 100 years. Total lava discharged during this period >0.1 km3. Length of magma conduit <10 km) Sitorus, K. (1990)- Volcanic stratigraphy and geochemistry of the Idjen caldera complex, East Java, Indonesia, Master Thesis, Victoria University, Wellington, New Zealand, p. 1-148. (Unpublished) Sitorus, K. (1990)- Stratigrafi dan geokimia kaldera Idjen, Jawa Timur, Indonesia. Proc. 19th Ann. Conv. Indon. Assoc. Geol. (IAGI), 2, p. 247-291. ('Stratigraphy and geochemistry of the Idjen caldera, E Java') Soeria-Atmadja, R., R.C. Maury, H. Bellon, Y.S. Yuwono & J. Cotton (1988)- Remarques sur la repartition du volcanisme potassique Quaternaire de Java (Indonesie). Comptes Rendus Academie Sciences, Paris 307, ser. 2, p. 635-641. ('Remarks on the distribution of Quaternary potassic volcanism of Java (Indonesia)'. Pleistocene K-rich volcanoes behind active Sunda arc, at ~200-600 km above Benioff zone in E Java- Java Sea (Beser, Ringgit, Lurus, Muriah, Lasem, Bawean). Positions controlled by major faults oblique to Sunda arc axis. Origin ascribed to melting of mantle enriched in incompatible elements during previous events, e.g. Oligo-Miocene subduction beneath Java) Bibliography of Indonesia Geology, Ed. 6.0 217 www.vangorselslist.com Sept 2016 Soeria-Atmadja, R., M.E. Suparka & Y.S. Yuwono (1991)- Quaternary calc-alkaline volcanism in Java with special reference to Dieng and Papandayan- Galunggung complex. Proc. Int. Conf. Volcanology and Geothermal Techn., 10 p. Soetoyo, H.R.D. (1992)- Geologic map of Tangkubanparahu volcano (Sunda Complex volcano), West Java. Volcanological Survey Indonesia, 1:50,000 scale. Solikhin, A., J.C. Thouret, A. Gupta, A.J.L. Harris & Soo Chin Liew (2012)- Geology, tectonics, and the 2002-2003 eruption of the Semeru volcano, Indonesia: interpreted from high-spatial resolution satellite imagery. Geomorphology 138, 1, p. 364-379. (Structural interpretation of satellite imagery shows four groups of faults orientated N40, N160, N75, and N105 to N140. Currently active Jonggring-Seloko vent of Semeru composite cone is buttressed against Mahameru edifice at head of large scar that may reflect failure plane at shallow depth and has potential for flank and summit collapse in future) Spicak, A., V. Hanus & J. Vanek (2002)- Seismic activity around and under Krakatau volcano, Sunda Arc: constraints to the source region of island arc volcanics. Studia Geophysica et Geodaetica 46, p. 545-565. Stehn, C.E. (1929)- The geology and volcanism of the Krakatau Group. Proc. 4th Pacific Science Congress, Batavia, Excursion A1, p. 1-55. Stehn, C.E. (1929)- Keloet. Proc. 4th Pacific Science Congress (Batavia), Excursion E21, Vorkink, Bandung, p. 1-37. (Guidebook to Kelut volcano, E Java) Stehn, C.E., W.M. Docters van Leeuwen & K.W. Dammermann (1929)- Krakatau (Geologie, vulkanisme, flora en fauna). Proc. 4th Pacific Science Congress, Java 1929, Vorkink, Bandung, p. 1-118. (Fieldtrip guide book on Krakatau volcano, in 3 parts: (1) The geology and volcanism of the Krakatau group (Stehn), (2) Krakatau's new flora (Docters van Leeuwen) and (3) Krakatau's new fauna (Dammerman)) Stimac, J., G. Nordquist, A. Suminar & L. Sirad-Azwar (2008)- An overview of the Awibengkok geothermal system, Indonesia. Geothermics 37, 3, p.300-331. (Awibengkok (Gunung Salak) geothermal system liquid-dominated, fracture-controlled reservoir, hosted mainly by andesitic-to-rhyodacitic rocks, floored by Miocene marine sedimentary rocks cut by igneous intrusions. Major volcanic peaks of area built from 860-180 ka, while ancestral andesitic cone that forms rim of Cianten Caldera to W active from ~1610 to 670 ka) Sucipta, I.G.B.E. (2006)- Product of Lamongan volcano (Java, Indonesia): indication of gradational magmatic changes from continental to subduction-related system. Proc. Ann. Conf. Indon. Assoc. Geol (IAGI), p. Sudradjat, A. (1975)- Batuan gunungapi dan struktur geologi di Jawa Timur dan Nusatenggara Barat. Geol. Indonesia (IAGI) 2, 3, p. 19-22. ('Volcanic rocks and structure of East Java and West Nusatenggara') Sudradjat, A. (1981)- The morphological development of Krakatau Volcano, Sunda Strait, Indonesia. IAVCEI and Volcanological Survey of Indonesia, 18 p. Sudradjat, A. (1991)- A preliminary account of the 1990 eruption of the Kelut Volcano. Geol. Jahrbuch A 127, p. 447-462. (On 1990 violent eruption of Kelud composite volcano in E Java, after being quiet for 33 years. About 120km2 of SW slope of volcano covered with 10-40cm of tephra) Bibliography of Indonesia Geology, Ed. 6.0 218 www.vangorselslist.com Sept 2016 Sudrajat, A., I. Syafri & E.T. Paripurno (2010)- The characteristics of lahar in Merapi volcano, Central Java, as the indicator of explosivity during Holocene. Proc. 39th Ann. Conv. Indon. Assoc. Geol. (IAGI), Lombok, 5 p. (Investigation of relationship between characteristics of Merapi volcano lahars and activity. Five lahar units and 5 groups of Merapi activities can be distinguished) Sudrajat, A., I. Syafri & E.T. Paripurna (2011)- The characteristics of lahar in Merapi Volcano, Central Java as the indicator of the explosivity during Holocene. J. Geologi Indonesia 6, p. 69-74. (Same paper as above; online at: www.bgl.esdm.go.id/publication/index.php/dir/article_download/303) Sukhyar R. (1989)- Geochemistry and petrogenesis of arc rocks from Dieng, Sundoro and Sumbing volcanic complexes, central Java, Indonesia. Ph.D. Thesis, Monash University, p. 1-319. (Unpublished) Sukhyar, R. (1991)- Chemistry of arc rocks from Dieng, Sundoro and Sumbing volcanic complexes: crustal contamination versus chemical heterogeneity. Proc. 20th Ann. Conv. Indon. Assoc. Geol. (IAGI), p. 326-339. Sukhyar, R., N.S. Sumartadipura & W. Effendi (1986)- Geologic map of Dieng volcano complex, central Java. Volcanological Survey Indonesia, Bandung, p. Sukhyar, R., N.S. Sumartadipura & R.D. Erfan (1992)- Geologic map of Sundoro volcano, central Java. Volcanological Survey Indonesia, Bandung, p. Sunardi, E. & J. Kimura (1998)- Temporal chemical variations in late Cenozoic volcanic rocks around the Bandung Basin, West Java, Indonesia. J. Min. Petrol. Econ. Geol., Tokyo, 93, 4, p. 103-128. (online at: www.jstage.jst.go.jp/article/ganko/93/4/103/_pdf) (Bandung Basin on axis of Sunda arc in W Java. Underlain by young basaltic-dacitic volcanics with ~4.1 MaRecent K-Ar ages. Trace elements suggest continuous cooling of mantle wedge, with resurgence of degree of melting between ~1.1- 0.6 Ma, same time as axial uplift in Sunda arc and may be due to kinematic change in subduction of Indian-Australian Plate beneath Sunda arc) Sunardi, E. & R.P. Koesoemadinata (1999)- New K-Ar Ages of the magmatic evolution of the SundaTangkuban Perahu volcano complex formation, West Java, Indonesia. Proc. 28th Ann. Conv. Indon. Assoc. Geol. (IAGI), 1, p. 63-72. Suparka, E. (2012)- Petrologi dan geokimia model magmatisme Kenozoik Pulau Jawa. Inst. Techn. Bandung (ITB), p. 1-43. Suparka, E., C.I. Abdullah, P. Senjaya, J. Hutabarat, A.I. Kurniawan et al. (2011)- PGA analyses of incompatible B (Boron) trace element of the Quaternary volcanic rocks of the Sunda-Banda Arc: case study volcanic complex Banten area, West Java. Proc. Joint 36th HAGI and 40th IAGI Ann. Conv., Makassar, JCM2011-238, 9 p. (Samples of Quaternary volcanics from Banten area, SW Java, vary from basaltic, andesitic to dacitic composition. Boron content 7 ppm in basaltic rocks, 3 - 17 ppm in andesitic rocks, and ~7 ppm (for dacitic?)) Surono, P. Jousset, J. Pallister, M. Boichu, M.F. Buongiorno, A. Budisantoso, F. Costa et al. (2012)- The 2010 explosive eruption of Java's Merapi volcano- a ‘100-year’ event. J. Volcanology Geothermal Res. 241-242, p. 121-135. (Merapi volcano known for frequent small-moderate eruptions and pyroclastic flows produced by lava dome collapse. In 2010 largest and most explosive eruptions in more than century, fed by rapid ascent of magma from 5-30 km depths. Eruptive behavior related to seismicity along fault >40 km from volcano) Suryo, I. & M.C.G. Clarke (1985)- The occurrence and mitigation of volcanic hazards in Indonesia as exemplified at the Mount Merapi, Mount Kelut and Mount Galunggung volcanoes. Quart. J. Engineering Geol. Hydrogeol. 18, 1, p. 79-98. Bibliography of Indonesia Geology, Ed. 6.0 219 www.vangorselslist.com Sept 2016 Sutawidjaja, I.G. (2006)- Pertumbuhan gunung api Anak Krakatau setelah letusan katastrofis 1883. J. Geologi Indonesia 1, 3, p. 143-153. (online at: www.bgl.esdm.go.id/dmdocuments/jurnal20060303.pdf) (Since appearance in 1929, Anak Krakatau Volcano has grown to 315 m high in 2005 (av. 4m/ year). Latest volume measurement in 2000 was 5.52 km3) Taverne, N.J.M. (1926)- Vulkaanstudieen op Java. Doct. Thesis Technische Hogeschool Delft, p. 1-132. ('Volcano studies on Java'. Descriptions of Java volcanoes, classified in three groups (1) volcano ruins (2 examples), monoconic volcanoes (9 examples) and polyconic volcanoes (7 examples)) Taverne, N.J.M. (1925)- Merkwaardige uitbarstingen van den Papandajan. Verhandelingen GeologischMijnbouwkundig Genootschap Nederland Kol., Geol. Serie 8, p. 481-519. ('Remarkable eruptions of the Papandayan') Thornton, I.W.B (1997)- Krakatau: the destruction and reassembly of an island ecosystem. Harvard University Press, p. 1-346. (Review of reassembly of a tropical forest ecosystem on Krakatau islands since 1883 eruption. Now covered in secondary forest with > 200 species of plants, 70 species of vertebrates, and 1000's of invertebrate species) Thouret, J.C., F. Lavigne, H. Suwa, B. Sukatja & B. Surono (2007)- Volcanic hazards at Mount Semeru, East Java (Indonesia), with emphasis on lahars. Bull. Volcanology 70, 2, p. 221-244. Thouret, J.C., J.F. Oehler, A. Gupta, A. Solikhin & J. Procter (2014)- Erosion and aggradation on persistently active volcanoes- a case study from Semeru Volcano, Indonesia. Bull. Volcanology 76, 10, p. 1-26. (Semeru volcano, E Java, is one of the most magmatically active volcanoes on Earth that also produces huge volumes of lahars. Patterns of aggradation (sediment supply pulses from episodic pyroclastic density currents and continuous supplies of tephra) and degradation via cycles of aggradation and degradation in river channels and rain-triggered (which remove much more material than fluvial transport) Tjia, H.D. (1969)- Fracture pattern on Lamongan volcano, East Java. Bull. Volcanology 33, 2, p. 594-599. (Arial photographs show fractures up to 3 km long on slopes and in country surrounding Lamongan volcano in E Java, Indonesia. Also linear arrangements of maars and boccas. Fracture system is compatible with regional compression directed N15°- 195°E) Umbgrove, J.H.F. (1928)- The first days of the new submarine volcano near Krakatoa. Leidsche Geol. Mededelingen 2, p. 325-328. (Pictures of ‘birth’ of Anak Krakatoa in late December 1927, in caldera formed by 1883 eruption) Van Der Zwan, F.M, J.P. Chadwick & V.R. Troll (2013)- Textural history of recent basaltic-andesites and plutonic inclusions from Merapi volcano. Contr. Mineralogy Petrology 166, p. 43-63. (On Recent Merapi basaltic andesites crystal size distribution, coarse plutonic inclusions, etc.) Van Es, L.J.C. & N.J.M. Taverne (1924)- De Galoenggoeng en Telaga Bodas. Vulkanologische Mededeelingen, Dienst Mijnbouw Nederlandsch-Indie, Weltevreden, 6, p. 1-63. ('The Galunggung and Telaga Bodas'. Active volcanoes of West-Central Java) Van Gerven, M. & H. Pichler (1995)- Some aspects of the volcanology and geochemistry of the Tengger caldera, Java, Indonesia: eruption of a K-rich tholeiitic series. J. Southeast Asian Earth Sci. 11, 2, p. 125-133. (Tengger Caldera volcanics medium to high-K tholeiitic andesites and basaltic andesites) Van Rummelen, F.F.F.E. & Raden R. Hardjosoesastro (1952)- The mineralogical background of the ash distribution of the Gunung Kelud in connection with the geomorphology of Java (Indonesia). J. Scient.Res. 11, 8-9, p. 178-183. (Distributions and composition of ash from 1901, 1919 and 1951 eruptions of of Kelud volcano, E Java) Bibliography of Indonesia Geology, Ed. 6.0 220 www.vangorselslist.com Sept 2016 Verbeek, R.D.M. (1885-1886)- Krakatau. Landsdrukkerij (Government Printing Office), Batavia, Vol. 1 (p. 1104) and 2 (p. 105-567). (Famous report on 1883 Krakatoa eruption and its effects. Part 2 with 43 maps, 25 plates) Verbeek, R.D.M. (1925)- De vulkanische erupties in Oost-Java in het laatst der 16de eeuw. Verhandelingen Geologisch-Mijnbouwkundig Genootschap Nederland Kol., Geol. Serie 7, 3, p. 149-200. ('The volcanic eruptions in East Java at the end of the 16th century'. Observations from historic ship records, etc.) Vigouroux-Caillibot, N. (2011)- Tracking the evolution of magmatic volatiles from the mantle to the atmosphere using integrative geochemical and geophysical methods. Ph.D. Thesis Simon Fraser University, Burnaby, p. 1-254. (online at: www.sfu.ca/volcanology/pdfs/Vigouroux_PhD'11.pdf) (Incl. work on volatiles from Kawah Ijen, E Java) and Tambora, Sumbawa) Vigouroux, N., P.J. Wallace, G. Williams-Jones, K. Kelley, A.J. R. Kent & A.E. Williams-Jones (2012)- The sources of volatile and fluid-mobile elements in the Sunda arc: A melt inclusion study from Kawah Ijen and Tambora volcanoes, Indonesia. Geochem., Geophys., Geosystems 13, 9, p. (online at: http://onlinelibrary.wiley.com/doi/10.1029/2012GC004192/epdf) (Indonesian volcanoes have variable concentrations of volatile and fluid-mobile elements. Kawah Ijen higher Altered Oceanic Crust-derived fluid fluxes (Sr/Nd and H2O/Nd) than Galunggung and Tambora) Voight, B, E.K. Constantine, S. Siswowidjoyo & R. Torley (2000)- Historical eruptions of Merapi volcano, Central Java, Indonesia, 1768-1998. J. Volcanology Geothermal Res.100, p. 69-138. (Descriptive chronology of Merapi volcano, C Java. Major difference in eruption style between 20st and 19th centuries: in 20th century mainly growth of viscous lava domes and lava tongues, with occasional gravitational collapses of parts of oversteepened domes to produce nuees ardentes; in 1800s rel. large explosive eruptions with large “fountain-collapse” nuees ardentes) Vukadinovic, D. (1995)- High-field-strength elements in Javanese arc basalts and chemical layering in the mantle wedge. Mineral. Petrol. 55, 4, p. 293-308. (Quaternary basalts from Java-Bali sector of Sunda Arc show increase in high-field-strength elements (Nb, Zr, Hf) and decrease in Zr/Nb and Hf/Nb with increase of depth to Benioff zone, consistent with progressively enriched mantle wedge with depth) Vukadinovic, D. & I.A. Nicholls (1989)- The petrogenesis of island arc basalts from Gunung Slamet volcano, Indonesia: trace elements and 87Sr/ 86Sr constraints. Geochimica Cosmochim. Acta 53, 9, p. 2349-2363. Vukadinovic, D. & I. Sutawidjaja (1995)- Geology, mineralogy and magma evolution of Gunung Slamet volcano, Java, Indonesia. J. Southeast Asian Earth Sci. 11, 2, p. 135-164. (Slamet two large overlapping Quaternary stratocones. Basaltic andesites and andesites with rare basalts dominate in W (Slamet Tua), basalts and basaltic andesites compose East cone (Slamet Muda)) Willumsen, P. (1997)- Krakatau, events and geology, a practical guide to Krakatau and surroundings. Indon. Petroleum Assoc., Jakarta, 1-73. (Brief introduction to Krakatau volcano, Sunda Straits, and its infamous eruption of 1883) Wirakusumah, A.D. (1993)- Geology of and magma mixing process at Mt. Kelut, East Java. Proc. 22nd Ann. Conv. Indon. Assoc. Geol. (IAGI), Bandung, 1, p. 25-34. Wirakusumah, A.D., H. Juwarna & H. Loebis (1983)- The geological map of Merapi Volcano, Central Java. Volcanological Survey of Indonesia, Bandung. 1:50,000 scale map. Bibliography of Indonesia Geology, Ed. 6.0 221 www.vangorselslist.com Sept 2016 Yokoyama, I. (1981)- A geophysical interpretation of the 1883 Krakatau eruption. J. Volcanology Geothermal Res. 9, p. 359-378. (Discussion of 1883 eruption of Krakatau from the geophysical standpoint) Yuwono, Y.S., R. Soeria-Atmadja, M.E. Suparka & R.C. Maury (1991)- Mineralogical studies of two distinct volcanic rock series of the Muria products, Central Java. In: Proc. Silver Jubilee Symposium Dynamics of subduction and its products, Yogyakarta 1991, Indonesian Inst. Sciences (LIPI), p. 122-143. Zelenov, K.K. (1969)- Aluminum and titanium in Kava Ijen volcano crater lake; Indonesia. Int. Geology Review 11, 1, p. 84-93. Zen, M.T. (1969)- The state of Anak Krakatau in September 1968. Bull. Nat. Inst. Geology and Mining (NIGM), Bandung 2, 1, p. 15-23. Zen, M.T. (1971)- Geothermal system of the Dieng-Batur volcanic complex. Inst. Teknologi Bandung (ITB) J. Science 6, 1, p. 23-38. (Geothermal system of eastern Dieng volcanic complex, C Java, originated through intersection of two major fracture zones. Geothermal system is system of hot water and steam rather than dry steam only) Zen, M.T. & D. Hadikusumo (1964)- Recent changes in the Anak Krakatau Volcano. Bull. Volcanology 27, p. 259-268. Zen, M.T. & A. Sudradjat (1983)- History of the Krakatau volcanic complex in Strait Sunda and the mitigation of its future hazards. Bul. Jurusan Geologi ITB 10, p. Zirkel, F. (1875)- Leucitbasalt von Gunung Bantal Susum auf der Insel Bawean bei Java. Neues Jahrbuch Mineral. Geol. Palaeont. 1875, p, 175-176. ('Leucite basalt from the island Bawean near Java'. Brief letter on first discovery of first leucite-bearing basalts known outside Europe, from Gunung Bantal Susum on Bawean, Java Sea (leucite basalts also in Gunung Muriah, NE Java, and SW Sulawesi; HvG)) Zulkarnain, I. (2003)- Petrographic evidence for magma mixing beneath the Krakatau volcano and its implication for eruption magnitude and its mechanism. J. Riset Geologi Pertambangan (LIPI) 14, 1, p. 1-11. Bibliography of Indonesia Geology, Ed. 6.0 222 www.vangorselslist.com Sept 2016 III.4. Madura- Madura Straits Andrearto, W. & B. Syam (2010)- Carbonate reservoir prospect in Madura Island. Proc. 39th Conv. Indon. Assoc. Geol. (IAGI), Lombok, PIT-IAGI-2010-161, 5p. (Seven wells drilled in Madura island show carbonates in Madura Island have good reservoir potential. Prupuh Fm carbonates (N4, latest Oligocene- earliest Miocene) in S part of island bioclastic carbonates deposited in shallow marine- open marine facies with porosity 5-10%. Carbonate deposition in N relatively shallow marine and porosity 10-20%) Arifin, L. (2000)- Struktur patahan, lipatan dan akumulasi gas di perairan Sampang- Bluto dan sekitarnya, Madura, Jawa Timur. J. Geologi Sumberdaya Mineral 10, 103, p. 16- 22. (Shallow seismic reflection study at N Madura Straits. Several major anticlinal trends. Indications of biogenic gas accumulations) Arifin, L. (2001)- Akumulasi gas dalam sedimen de perairan Ambunten- Madura. J. Geologi Sumberdaya Mineral 11, 118, p. 19-25. ('Gas accumulation in sediments in waters off Ambunten, Madura. Indicators of shallow biogenic gas on shallow seismic lines offshore N Madura) Aziz, S., Sutrisno, Y. Noya & K. Brata (1992)- Geology of the Tanjungbumi and Pamekasan Quadrangle, Java (1609-2, 1608-5), 1:100,000. Geol. Res. Dev. Centre (GRDC), Bandung. (Geologic map of Central Madura. Folded Miocene- Pliocene sediments) Banerjee, B.R. (1993)- Seismic signature as a porosity indicator in Early Miocene reefs in the Madura Strait via AVO inversion and modelling. Proc. 22nd Ann. Conv. Indon. Petroleum Assoc. (IPA), Jakarta, 1, p. 445-481. (High porosity carbonate acoustic impedence can be similar to, or lower than, that of overlying sediments, whereas acoustic impedence in low porosity carbonate usually much higher than in overlying rocks) Boehm, A. (1882)- Ueber einige Tertiare Fossilien von der Insel Madura nordlich von Java. Denkschr. kon. kais. Akad. Wissenschaften Wien, Math. Naturw. Cl., 45, p. 359-372. ('On some Tertiary fossils from Madura island, North of Java') Edwin, A., K. Han & W. Nusantara (2013)- A case study on using Mundu-Paciran nannofossil zones (MPNZ) to subdivide Mundu and Paciran Sequences in the MDA Field, East Java Basin, Indonesia. Berita Sedimentologi 26, p. 26-32. (online at: www.iagi.or.id/fosi/files/2013/05/BS26-Java.pdf) (Reservoirs in MDA gas field in E Madura Strait are Late Pliocene planktonic foram grainstones and packstones, deposited as pelagic rains and redistributed by marine bottom currents across crest of Late Miocene inversion structure. Differentiating Mundu and Paciran Sequences (formation/ sequence names used onshore E Java) relies on biostratigraphy and chronostratigraphy, as lithologies are similar. Nannofossils used to define 8 local zones in NN11- NN18 (Late Miocene- Late Pliocene) interval. Best reservoir performance in latest Pliocene MPNZ-7 and MPNZ-6 zones) Endharto, Mac (2004)- The tidal flat-shelf depositional system of the Ngrayong Sandstone in the western part of the Madura Island. Proc. 33rd Ann. Conv. Indon. Assoc. Geol. (IAGI), p. 17-42. Endharto, Mac (2005)- The tidal flat-shelf depositional system of the Ngrayong Sandstone in the western part of the Madura Island. J. Sumber Daya Geologi 15, 2 (149), p. 61-80. (Gunung Geger-Gujug Laut-Water Fall section suggests M Miocene Ngrayong Sst in W Madura formed in tidal sand flat, from supratidal-salt marsh to shallow subtidal environments. Tabular cross bedding in bioclastic lithic arenite, interpreted as sand flat in headward portion of macrotidal estuaries. Overlain by marine transgression of Bulu Limestone with Cycloclypeus, etc.. Paleocurrents from cross bedding from N to S or SW direction (200°- 190°). Bibliography of Indonesia Geology, Ed. 6.0 223 www.vangorselslist.com Sept 2016 Tinjauan stratigrafi dalam tataan tektonik di Pulau Madura. Ed. Madura Straits. Northeast Java Basin. Int. (1992)..Guide Book Post Convention Field Trip. ('Seismic stratigraphy of Middle Miocene sediments in the Madura Straits area'.Early Miocene bioherm. p. HAGI-SEG Int.Peranan wrench fault pada akumulasi hidrokarbon di Pulau Madura. Despite carbonate lithology. All facies shallow marine. American Assoc. J. marl and bioclastic limestones with Cycloclypeus.pdf) (Outcrop study of lateral facies in Pliocene carbonates in Madura and Puteran Island.com Sept 2016 . R. Ass. Seismic stratigraphy study of Middle Miocene in S part of Madura Straits) Situmorang. Jawa Timur.8. KD. 1. 64. P. Conv. 6. NE Java) Pakpahan. probably windward side) Latief. Indonesian Petroleum Association (IPA). Geosc. Madura Island.Geology of the Waru-Sumenep Quadrangle. 213-232. ('Depositional environment of the Ngrayong member of the Tawun Formation in the Guluk Guluk area.. Hadiyanto & Y. (1986). East Java. p. (2007). Madura'. Agustianto& M. ('The role of wrench faults for hydrocarbon accumulation in Madura Island') Bibliography of Indonesia Geology. Exhib. Dev. Marl below sandstone with Globorotalia peripheroacuta. Jyalita & S. p. 12. (1961 hydrogeological inventory survey on Madura) Hageman. Sumenep. 21st Ann...Outlines of the hydrogeology of the Isle of Madura (Indonesia). (Unpublished) Mulhadiyono. p. Arakawa (2010). (AAPG) Bull. Geol. Surjono (2015).. Conf. 44-53. Harsono P. et al. Supriyadi. Sumenep. Orbulina) Purnomo. p. (Seismic study of four Miocene carbonate buildups in Madura Straits (Porong.A. No maps or other specific information)) Kusumastuti.Sedimentology and characteristics of Pliocene shallow marine carbonate as reservoir alternative based on outcrop analogue in Madura and Puteran Island. KE. 543-560. Centre (GRDC). Geol. D. 86.com/documents/2015/51212pakpahan/ndx_pakpahan. BD) on WSW-ENE trending Oligocene fault block.. Assoc.vangorselslist. Geol.S. P.P.S. & D. p. Berkeley. 487-488. 20-36. A.Nadere inlichtingen omtrent de op het eiland Madura ontdekte ontvlambare gasbronnen. Proc. scale 1: 100. p. Natuurkundig Tijdschrift Nederlandsch-Indie 24. M Miocene (zone N10-N13) Ngrayong Mb shallow marine sandstone. (IAGI). Brief communication on existence of gas seeps on Madura. Indonesia. N flank steeper.Flathe. IGCE10-OP-042.searchanddiscovery. Indon. Melbourne. (1862). Riset Geologi Pertambangan (LIPI) 7. Suparman (1983). ('Aditional information on the flammable gas seeps discovered on Madura'.K. indicating gas-water contact) Putra. H. buried by PlioPleistocene rocks.I. R. Hydrology. 2. B. Riset Geologi Pertambangan (LIPI) 17. (1990). 10 p. J. & Sukendar A. Res. Conf. 1. van Rensbergen & J.0 224 www. 1. N. Madura. Warren (2002). Jakarta. (Seismic imaging of Pliocene globigerinid packstones in Sirasun biogenic gas field. Geologi Indonesia.000. J.Lingkungan pengendapan anggota Ngrayong Formasi Tawun daerah Guluk Guluk. p. Porong buildup is Late Oligocene.Sekuen pengendapan sedimen Miosen Tengah kawasan Selat Madura. (New nomenclature for Tertiary of Madura. of Scient. Search and Discovery Article 51212.P wave-S wave sensitivity analysis of globigerinid carbonate in Sirasun gas field. 1. Pfeiffer (1963). J. Bali 2010. A. distinct flat spot present on seismic. 16p. Petrol.I. Bandung. A. (online at: www. unlike age-equivalent gas-bearing globigerinid limestone reservoirs in Madura Straits fields) Praptisih (1986). Proc. 207-222. AAPG/SEG Int.S.Seismic sequence analysis and reservoir potential of drowned Miocene carbonate platforms in the Madura Strait. In: Soc. p. Indon. p. (2015). 6p. Gas ~ 99% methane. 2. Engineers (SPE) Asia Pacific Oil & Gas Conference and Exhibition. low-resistivity case in clean-oil zones. Proc. Indon.H.php/IJOG/article/view/219/195) (Sequence stratigraphy and seismic facies of M-L Miocene interval in Madura Straits. Sharp (2007). Petroleum Assoc. Indonesia. Shanghai 1996. Suseno (1990). consisting almost entirely of Globigerina. Geoscience 2.id/index. Comm. & A. but in W. 25. case Study: Planning vs. Noeradi (2010). Harris. 2. (Extended Abstract) (In NE Java Basin Pliocene Mundu Fm Globigerinid sands carbonate with oil and gas MDA. Geol. Y. O and M fields. Wijaya. Y. as shown by widespread thin fluvial and alluvial fan deposits) Sutadiwiria. 77-87. land of opportunity.I.0 225 www.bgl.Susilohadi (1998). Basin with rapid subsidence and >200 m of Quaternary deposits. possibly on detached platform. primarily biogenic. Deposition interplay between Quaternary coarse-grained volcaniclastics deposition in S. Adelaide 2006. Gas column 49 m in Pliocene Paciran and Mundu carbonates. Coastal and Offshore Programmes E and SE Asia (CCOP). (online at: http://ijog. TSB. E Kendeng zone and Madura strait subaerially exposed. Conv. Jakarta. Marine Geol. and Quaternary sea level changes. A. discovered in 2006. Bull. Problems in reserves assessment include reservoirs compartmentalization (structural and stratigraphic) variations in depth of fluids contacts. 101-110. Ed. Prasetyo (2006). 31st Ann.3D properties modeling to support reservoir characteristics of W-ITB Field in Madura Strait area.C.) Triyana. Assoc.esdm. IPA07-G-115. During major sea level fall. Indonesian J. Maleo first offshore discovery of this reservoir type to be commercialized) Wahab. Structure partly filled 4-way closure. p.Quaternary sequence stratigraphy of Madura Strait. Tadiar & N. (Madura Strait characterized by syndepositional folding forming W-E trending basin between Madura and Java volcanoes. etc. Porosity up to 60%..go.The Maleo Field: an example of the Pliocene Globigerina bioclastic limestone play in the East Java Basin.vangorselslist. Coord. E. & H. Proportion of lime mud matrix primary control on reservoir quality. p. 362-383.250 m deep water. 6. Proc. p.Uncertainty in geophysic-geology-reservoir modelling for Globigerinid sand carbonate in NE-Java Basin. (W-ITB gas field in W part of Santos Sampang PSC. 2. SPE 100957-MS. (IPA). G. NW Madura Straits. marine fossiliferous mudstone from exposed Madura in N. Basden. Some oil production from Globigerina reservoirs onshore. Indonesia. Indonesia. 33rd Sess. Globigerina carbonates deposition in ~ 150. 2. W. G. 33-46. IAGI) 13.A. Geologi Indonesia (J. 45-61 (Maleo field 2002 discovery in Madura Straits. Petrol.Madura. In W-ITB 1 well gas reservoirs in Selorejo and Mundu Fms. which onlaps Top Early Miocene surface from N to S) Bibliography of Indonesia Geology. Indonesia. actual of fields development at Madura Strait. P.com Sept 2016 .Seismic and sequence analysis of Middle to Late Miocene deposits of Northeast Java Basin. & D.ITB 2 no gas reservoir in Mundu Fm) Yuniardi.


Comments

Copyright © 2024 UPDOCS Inc.