Recall that x x1 x2 b b 2 4ac 2a Problem 1a(iii) 1 x 3 2 1 y x 3 2 1 x y 3 2 1 x3 y 2 2 x 3 y g ( x) b b 2 4ac b b 2 4ac 2a 2a b b 2 4ac b b 2 4ac 2a b b x1 x2 2a 2b x1 x2 2a b x1 x2 a therefore x1 x2 g 1 ( x) 2 x 3 1b Problem 1a (i) Show that it is not a one to one. 1 x 0 2 x2 1 1 x 2 2 x 1 x 1 We can see that when x = 1, we get a result of Zero, this would represent 2 a -5 -2 1 +2 -1.5 4 -3 -3.5 a3 a Many to one and not a one-to-one. Problem 1(c) 1 2 1 2 x x x x 48 2 2 x 2 2 x 48 0 x 2 8 x 6 x 48 0 x 2 8 x 6 x 48 0 x x 8 6 x 8 0 x 8 x 6 0 x 8 and x 6 1 ( 8) 2 32 2 1 y ( 6) 2 18 2 y Problem 2 (a) Problem 1a (ii) f ( x) 2 x 2 12 x 9 expressed in Standard Form Given : f ( x) 1 x 2 1 g ( x) x 3 2 ; Standard Form f ( x) a( x h) 2 k . f ( x) 2 x 2 12 x 9 2( x 2 6 x) 9 factor a -2 from the first two terms. Evaluate 2 x 2 6 x (32 ) 9 2(32 ),Complete the square, 2 1 fg ( x) 1 x 3 2 1 1 1 x 3 x 3 2 2 note we added half of 6 squared then subtracted that same amount to balance the equation. 2 x 3 9 18 2 3 3 1 1 x2 x x 9 2 2 4 1 3 3 1 x 2 x x 9 4 2 2 1 x 2 3x 8 x 4 Problem 2b 3 5x 2 x2 0 2 x 2 6 x 1x 3 0 2 6 x 1x 3 0 2 x x 3 1 x 3 0 2 x 1 x 3 0 2 x 1 0 x 3 0 x3 2 Therefore the vertex is at (h, k ) (3,9). Problem 3a (i) Given x 3y 6 kx 2 y 12 Express both lines in the slope -intercept form. 2 x2 5x 3 0 2 x 2 x 3 9 1 x 2 x 1 y 2 ; note that the gradient would be . 3 3 kx y 6 2 Therefore if they are perpendicular, their gradients must be negative reciprocals.. k 3 2 k 6 P roblem 2c(i) Problem 3a (ii) If the Series is Geometric then it must have a common ratio Simultaneous Equations Elimination Method 6(x 3 y 6) Mutliply by 6 Find the ratio, using the recursive Formula: -6x 2 y 12 a1 an r 0.02 0.2 r 6x +18y =36 0.02 0.2 r 0.1 -6x + 2y =12 Add vertically r Proof: 0.2 0.1 0.02 20y = 48 y = 2.4 Therefore x 3y 6 0.02 0.1 0.002 x 3(2.4) 6 0.02 0.1 0.0002 x 6 7.2 P roblem 2c(ii) a S 1 1 r 0.2 S 1 0.1 0.2 S 0.9 2 S 10 9 10 S 2 10 10 9 2 S 9 Problem 5(a) y 3 4 x x 2 , Point P(3, 6) lies on the curve. To find the equation of tangent. y - x2 4 x 3 y ' 2 x 4 y '(3) 2(3) 4 y '(3) 2 , Gradient of tangent Equation of tangent line. y mx c y 2 x c 6 2(3) c c 12 y 2 x 12 In the form of ax by c 0 2 x y 12 0 x 1.2 The center of the Circle would be at the intersection of both lines , that is at (1.2, 2.4). Equation of the line : ( x - (-1.2)) 2 ( y - 2.4) 2 r 2 ( x + 1.2) 2 ( y - 2.4) 2 r 2 Problem 6(b) Evaluate 3 4 cos x 2sin x dx 0 3 3 4 cos x dx 2sin x dx 0 0 3 3 4 cos x dx 2 sin x dx 0 0 4 sin x 2 cos x 4sin x 2 cos x 0 3 4sin 2 cos 4sin 0 2 cos 0 3 3 3 1 4 2 4(0) 2(1) 2 2 2 3 1 0 2 2 3 1 Problem 6(c) Problem 5 (b) f ( x) 2 x 9 x 24 x 7 3 2 (i ) f '( x ) 6 x 2 18 x 24 f "( x) 12 x 18 At Stationary Point dy 6 x 2 1, then we need to integrate to dx find the function of the curve. Remember the derivative if gives you the gradient function. Integrate the gradient function, f '( x) 0. takes us back to the original function. 6 x 2 18 x 24 0 6x 2 6x 24 x 6 x 24 0 1 dx 2 x 3 x C We can find the value of the constant by using point (x,y) that were given. 6x x 4 6 x 4 0 y 2 x3 x C x 4 6 x 6 0 5 2(2)3 2 C x-4 0 and 6x 6 0 x4 and x -1 5 16 2 C 5 14 C 5 14 C f ( x) 2 x 3 9 x 2 24 x 7 f ( x ) 2 x 3 9 x 2 24 x 7 f (4) 2(4)3 9(4) 2 24(4) 7 f (1) 2(1)3 9(1) 2 24(1) 7 f (4) 105 f (-1) 20 Stationary Points location: (ii ) C 19 f ( x) 2 x 3 x 19, the equation of the curve. Find the area of the finite region by the curve , the x-axis, the line x = 3 and the line x = 4. Integrate the function of curve. 4, 105 and 1, 20 3 f "( x ) = 12 x 18 0 f "(4) 12(4) 18 f "(1) 12(1) 18 f "(4) 30 f "(-1) - 30 suggest a minimum suggest a maximum (4) 4 (4) 2 (3) 4 (3) 2 76 57 2 2 2 2 256 16 81 9 76 57 2 2 2 2 44 21 4 xx 2 65 2 dx Area of the definite region under the curve is 65 units 2 . 2 4 3 2 x dx 2 x4 x2 4 1 4 2 44 42 24 22 4 1 4 1 256 16 16 4 1 4 1 4 48 0 48 (4) 4 (4) 2 (3) 4 (3) 2 19(4) 19(3) 2 2 2 2 128 8 76 40.5 4.5 57 Problem 6(a) x 4 x4 x2 3 2 x x 19 dx 2 2 19 x 3 4 Nature of Points: Evaluate 2 Problem 7(c) n 1 2 n 1 51 1 Q2 26th term = 71 2 2 Quartile : (i ) median (i ) P(Math and Biology) (ii ) P (Biology only) n 1 51 1 13th term = 56 4 4 3 n 1 3 51 1 Q3 39th term = 79 4 4 Q1 Problem 7(a) 9 60 11 60 Problem 7(b) (a) (b) 6 1 36 6 6 1 36 6 Prepared by: Mr. Leovany López, B.Sc. Mathematics Sacred Heart College, San Ignacio, Cayo, Belize