1 iPasolink Introduction

May 30, 2018 | Author: pskandrey15_69852842 | Category: Telecommunications Standards, Digital & Social Media, Digital Technology, Electronic Engineering, Internet Protocols
Report this link


Description

iPASOLINK 400 Introduction (Draft) March 2011-Second Draft iPASOLINK 400 Introduction (Draft) iPasolink is a modular network element that integrates a comprehensive set of TDM cross connect switching, packet switching and microwave / optical features, resulting in reduced costs and a long investments lifetime. The following iPasolink series cover mobile backhaul requirements all the way from the access tail links through to the metro aggregation network. iPASOLINK 200 iPASOLINK 400 iPASOLINK 1000 12-way Nodal Redundancy High Speed INTF SDH and All IP with CWDM 4-way Nodal Redundancy Pay as grow architecture 2-way radio Redundancy Compact design iPASOLINK 400 Introduction (Draft) 2 iPASOLINK 400 VLAN ・ Port-based VLAN ・ 802.1Q Tag-based VLAN ・ 802.1ad Q in Q QoS ・ 802.1p CoS / ToS /Diffserv/ - MPLS EXE ・ Advanced QoS (for AMR) Synchronous Ethernet / IEEE1588v2 RSTP, ITU-T G.8031, 8032V2 Ethernet OAM, IEE802.1ag, ITU-T Y1731 TDM Ring Protection (SNCP) Frequency bands: 6 to 38 GHz Radio Transmission Capacities: ・QPSK/16/32/64/128/256 QAM ・ Hitless-AMR ・ LDPC FEC ・Narrowband transmission 7MHz & 14 MHz ・ MTPC / ATPC . Any combination of SDH / PDH / LAN traffic Interface :10/100/1000 Base-T 1000 Base-SX / LX 16 x E1, 2xSTM-1(thru)or 1x Chanallized Pay as you grow concept - software upgrade Flexible configuration - 1+0, 1+1 HS/SD/FD,XPIC (1+0)/(1+1) - 168xE1 Cross Connect SW - PWE (SAToP, CESoPSN) Transmission Specification Scalability and Flexibility Advanced Ethernet Functionalities iPASOLINK Introduction 3 Native TDM TDM based network is the bandwidth-guaranteed and synchronous network. It is free from time and synchronization issues. However, TDM network can not manage the growth of data traffic efficiently. Native IP Unlike Native TDM network, IP based network can accommodate the growth of data traffic efficiently. In addition, wiring work can be reduced dramatically as a result of shared connections. However, IP-based network, due to its asynchronous and on-demand nature, does not guarantee synchronous delivery of data. Therefore, synchronization issue due to fluctuation of delay, latency or jitter must be carefully considered in transmission of mobile service. Dual Native (Native TDM and Native IP) Both packet switching and TDM cross connect are supported natively, which enables flexible transport per traffic type on a single platform. Without incurring additional latency, delay/jitter sensitive traffic and clock such as 3GPP Release-99 traffic is transmitted on TDM network directly, and IP based traffic such as LTE traffic is transmitted on IP network directly without conversion. Moderate packet data growth may be efficiently aggregated by statistical multiplexing while keeping the quality of delay/jitter sensitive TDM services.. TDM splitting (with PWE) TDM splitting enables a port of legacy network traffic, such as HSPA data, to be dispensed onto IP network with Pseudo-Wire Emulation (PWE), keeping only critical and timing-sensitive data on TDM network. With this functionality, it is possible to streamline legacy network while increasing IP network usage. PWE should be applied for transmission of jitter and latency relaxed services or where clock synchronization within mobile RAN has been established by adoption of other synchronization measures. Traffic Offload/Concentration Traffic offload allows the operator to unload their IP traffic, including emulated legacy traffic, onto other cost effective IP network. The benefit of traffic offloading is twofold: > Differentiation of services to customers > Reduction of OPEX by converging voice and data traffic In contrast to offload, concentration creates an opportunity for wholesale operators and carriers to maximize the utilization of their networks by converging services and traffic from various customers . iPASOLINK Introduction 4 iPASOLINK Radio Transmission Method TDM TDM(E1) Ethernet Ethernet TDM(E1) 2) Hybrid Radio (Native Ethernet + Native TDM) Ethernet PWE S W PWE Ethernet TDM(E1) Ethernet Ethernet TDM(E1) 3) Packet Radio IP over E1 IP over E1 TDM TDM(E1) Ethernet Ethernet TDM(E1) 1) TDM Radio S W PWE Ethernet Ethernet Ethernet TDM(E1) 4) Hybrid + Packet Radio TDM(E1) TDM(E1) iPASOLINK TDM S W S W XC XC PWE iPASOLINK Introduction 5 BSC/ RNC/ MME AGW iPASOLINK 200 iPASOLINK 200 iPASOLINK 400 eNB 2G/3G/LTE WiMAX BS E1 Ethernet Access Aggregation Metro Core Ethernet BTS/Node-B iPASOLINK 200 iPASOLINK 200 iPASOLINK 1000 iPASOLINK 1000 iPASOLINK 1000 MS5000 iPASOLINK 400/1000 iPASOLINK 1000 Internet Packet network : All IP : Dual Native (Hybrid) : Hybrid Split : Off Load : CWDM iPASOLINK support both native TDM and native Ethernet. It is possible to provide TDM and Ethernet Hybrid transmission or ALL IP transmission without external box within the same equipment. iPASOLINK can provide flexible and optimized migration scenario according to network situations and customer evolution iPASOLINK can provide end to end Ethernet connectivity with the extension of reach and capacity, nodal packet radio, aggregation and bandwidth management. It is possible to use it also for WIMAX network and fixed network. iPASOLINK 400 Introduction (Draft) iPASOLINK capability for Evolution of Mobile Backhaul BS TDM Based Network 2/3G Backhaul BSC/ RNC MME S-GW eNB IP Based Network BS TDM Based Network 2/3G/LTE Backhaul BSC/ RNC Option-2 ALL IP based Backhaul Option-1 TDM + IP based Backhaul TDM based Backhaul MME S-GW eNB IP Based Network BS 2/3G/LTE Backhaul BSC/ RNC PWE PWE TDM Core Only iPASOLINK can make these transitions on the same platform 7 iPASOLINK Introduction Risk free migration to All IP-1 The migration from TDM based network to All IP network is achieved by simply adding the MSE (Multi Service Engine) card. Packet Radio Migration MSE: Multi Service Engine Note: Network needs to be synchronized by sync ETH , etc. 16xE1 Hybrid Radio 16xE1 16xE1 MSE (PWE) iPASOLINK Introduction 8 Risk free migration to All IP The migration from TDM based network to All IP network is achieved by simply adding the MSE (Multi Service Engine) card. Packet Radio Migration Note: Network needs to be synchronized by sync ETH , etc. 16xE1 Hybrid Radio 16xE1 64xE1 MSE (PWE) MSE MSE: Multi Service Engine 64xE 1 16xE1 16xE1 16xE1 16xE1 TDM transmission Packet transmission iPASOLINK Introduction 9 Flexible PWE configuration iPASOLINK can configure PWE at both access site and aggregation site. It allows operator easy configuration of the network. PWE E1/TDM E1/Ethernet Access Aggregation 1) PWE at Access site E1/TDM E1/Ethernet Access Aggregation 2) PWE at Aggregation site PWE core core E1/TDM Access Aggregation Initial Configuration core or iPASOLINK Introduction 10 Using the STM-1, E1 and Ether BB options iPASOLINK200 Access Aggregation 16xE1 16xE1 16xE1 32xE1 STM-1 STM-1 STM-1 transparent 16E1/MDR x 2 or Channelized STM-1 1) E1 with Ethernet Transmission 2) STM-1 with Ethernet transmission Ethernet Ethernet FE or GbE FE or GbE FE or GbE iPASOLINK Introduction 11 iPASOLINK XPIC (Cross Polarization Interference Canceller) iPASOLINK can double its transmission capacity up to 880Mbps in 56MHz bandwidth by adopting NEC’s state of the art XPIC technology. The additional required components for XPIC are; Dual polarized antenna, Additional ODU, Associated IF cable kit, (iPASO 400 / 1000) Soft-key upgrade in IDU. (In case of iPASOLINK200, no cable connection is required at the front panel for XPIC ) iPASOLINK400 can be configured 2 pair of XPIC links with one IDU. iPASOLINK Introduction 12 iPASOLINK 200 iPASOLINK 400 Radio Nodal capability Two way Four way Interfaces Main Board 16xE1 + 2xFE (2FE+ 2 GbE or 4xGbE) + 2xGbE(SFP Slots) 16xE1 + 2xFE(GbE) + 2xGbE(SFP Ports) Optional 16xE1 card 1x STM-1/chSTM-1 card 16xE1 card (Universal Slot) 2 x STM-1/chSTM-1 card (Universal Slot) 2xFE(GbE)+`2xGbE(SFP Ports) (Universal Slot) Ethernet Functionality Port based & Tag based VLAN, Jumbo Frames CoS/ ToS/ Diffserv based Priority Control Strict priority, D-WRR with Bandwidth Management Policing with CIR/EIR Excess Information Rate Port based & Tag based VLAN, Jumbo Frames CoS/ ToS/ Diffserv based Priority Control Strict priority, D-WRR with Bandwidth Management Policing with CIR/EIR Excess Information Rate Synchronization TDM / Synchronous Ethernet TDM / Synchronous Ethernet / IEEE 1588v2 TDM Cross-Connect E1 Cross-Connect with ADM for Radio and channelized STM-1 E1 Cross-Connect with ADM for Radio and channelized STM-1 TDM SW Capacity E1 x 126ch E1 x 168ch Radio Protection HS,HS/SD,FD Hot Standby, Space / Frequency Diversity HS,HS/SD,FD Hot Standby, Space / Frequency Diversity Resiliency Packet RSTP RSTP / MSTP /ITU-T G.8031 / G.8032v2 TDM E1 SNCP with Radio Ring Sub Network Connection Protection E1 SNCP with Radio Ring Sub Network Connection Protection Ethernet OAM IEEE 802.1ag Service OAM and ITU-T Y.1731 PM IEEE 802.1ag Service OAM and ITU-T Y.1731 PM Other Functions XPIC, Traffic Aggregation XPIC, Traffic Aggregation iPASOLINK Series Functionalities Summary iPASOLINK Introduction 13 iPASOLINK Introduction 14 FEATURES-1 INTERFACES - 400 • 2 x 10/100/1000 Base-T(X), 2 x 1000 Base –SX/LX SFP (Main Board) • 16 x E1 main board and 16E1 card (Universal slot) • MSE (Multi Service Engine) 64X E1 PWE card (Universal slot) • 2 x 10/100/1000 Base-T(X), 2 x 1000 Base –SX/LX SFP (Universal slot) • 2xSTM-1 optical /electrical (Universal slot) • Four front mounted universal slots are available for Modems and option interface cards SAToP (RFC4553), CESoPSN (RFC5086), ATMoP(RFC4717) COMPACT AND RELIABLE PLATFORM • Very compact and light platform for easy installation 1u IDU and 3/3.5 kg ODU with GUI LCT for easy setting up High reliability and quality backed by excellent field proven MTBF Backward compatible with Pasolink neo series ODU Low Power consumption: adoption of high efficient RF components iPASOLINK Introduction 15 FEATURES-3 ADVANCED QoS FUNCTION - 400 •Enhanced QoS functions Class mapping (4 or 8 Class queues for QoS control) (802.1p, IPv4 Precedence, IPv4/IPv6 DSCP. MPLS EXP) ETHERNET / VLAN - 400 • VLAN table size 256 group or option-4094 group (VLAN 1 ~4094) • Redundancy Function :RSTP(IEEE802.1W) for redundancy loop prevention Packet classification functions based on header information Bandwidth Management (Traffic shaping, CIR/PIR policing per port/VLAN) Flexible Scheduling (Deficit-weighted round robin or strict Priority) • Support Jumbo frame (FE < 2000 , GbE < 9600) Congestion avoidance mechanism (WTD or WRED) • VLAN functions on layer 2 based carrier network • Port based VLAN, tag based (IEEE 802.1Q), Provider bridge (IEEE802.1ad) • Link aggregation (IEEE802.3 ad) with LACP iPASOLINK Introduction FEATURES-4 HYBRID SWITCHING FUNCTION-400 •TDM Cross connect: max 168 x 168 E1 left and right hand routes •Support SNCP •Packet Switching: up to 40 Gbps Note : The number of E1 channels depend on modulation scheme and TDM capacity 16 iPASOLINK Introduction 17 FEATURES-3 VERSATILE RADIO SECTION • High system gain using LDPC FEC and Linearizer techniques • cross polarization interference canceller. (XPIC) • High modulation up to 256 QAM for Native ether and native TDM • Adaptive modulation Radio (AMR) •Double transmission capacity up to 920 mbps in 56 MHz BW • Enhanced system gain with new ODU (IHG) FREQUENCY AGILITY AND EASY TUNING • Field tunable local oscillators (Synthesizer) • RF Point Frequency can be changed through Local Craft Terminal (LCT) • ODU Sub-band changeable by simply replacing the RF Filter. HYBRID SWITCHING FUNCTION-400 •TDM Cross connect: max 168 x 168 E1 left and right hand routes •Support SNCP •Packet Switching: up to 40 Gbps Note : The number of E1 channels depend on modulation scheme and TDM capacity iPASOLINK Introduction 18 FEATURES-4 SUPERB OAM FUNCTIONALITIES •Loopback capability Near end, far end and IF loop-backs •Ethernet OAM (IEE802.1ag / ITU-T Y.1731) NETWORK MANAGEMENT SYSTEM •Three management systems are supported (PNMSj, PC-MG, MS5000) •Web based local craft terminal for local and remote NE access SYNCHRONIZATION •High Accuracy clock supply for clock synchronization •Support both native TDM and synchronous Ethernet for clock reference •Support external clock input / output PROTECTION SCHEMES •E1 Ring Protection •RSTP and Ether Ring protection •Timing source protection Priority or Quality •Automatic Protection switching (APS) for STM-1 •Hot Standby and Twin path for radio protection •Fault detection, fault localization/isolation, Performance measurement iPASOLINK Introduction 19 iPASOLINK 400 Features PWE PDH Ring Ether Ring 6 – 38 GHz AMR Ether OAM 16-32 xE1 1X STM1 10/100/1000Base-T Super PDH TDM Ring Ether Ring QPSK – 256 QAM Hitless AMR (1+0)/(1+1) 4way Nodal Ether OAM 16-64 xE1 2xSTM1 XPIC ATM AGGREGATION SYNC ETHER VLAN NEO/c Mode Modem GbE(SFP) (1+1) HS / SD iPASOLINK Introduction 20 iPasolink 200/400 Radio Configurations VERSATILE PLATFORM CONFIGURATION • Redundancy Configurations in one IDU (1+0) No Protection ( up to 4 ) (1+1) Hot Standby (up to two groups ) (1+1) Hot Standby with Space Diversity (1+1) Twin Path (Frequency Diversity) (two groups) • Other Configurations in one IDU (1+1) HS (2+0) CCDP (XPIC) (1+0) x 2 (1+0) • 1U Single IDU provide the following radio configuration (2+0) x Dual Polarization with XPIC (1+0) up to two groups (2+0) x Dual Polarization with XPIC (1+1) one group (1+0) x 4 Nodal 400 400 (1+1) Twin Path iPASOLINK Introduction 21 Radio Configurations (Redundancy) iPaso 400 iPaso 400 iPASOLINK Introduction 22 Radio Configurations (XPIC) iPaso 400 iPaso 400 iPASOLINK Introduction 23 Radio Configurations - Nodal 4 way Nodal Configurations in one IDU (iPASOLINK 400) NEO/c iPASOLINK 400 modem : standard operate with iPASOLINK : Optional modem operate with NEO/c (compatible with NEO/c radio frame) iPaso 400 Optional Modem NEO/c mode iPaso 400 iPaso 200 iPaso 400 2 way Nodal Configurations in one IDU iPASOLINK 200) Site-A Site-B Site-C Site-D Site-E Site-F iPASOLINK Introduction 24 Baseband Configurations Super PDH 16 x E1 STM-1 (63E1) 16 x E1 STM-1 (63E1) 79 E1 PWE 16 x E1 16 x E1 MSC (PWE) card All IP MSC (PWE) card GbE GbE Native TDM +Native Ether 2 x STM1 STM-1 2 x STM-1 16 x E1 16 x E1 FE E1 +Ether (Dual Native) STM-1 16 x E1 16 x E1 FE iPASOLINK Introduction 25 iPasolink Radio using NEO ODU Replace NEO IDU with iPASOLINK 16 x E1 STM-1 (63E1) 16 x E1 STM-1 (63E1) 79 E1 PASOLINK NEO PDH 16 x E1 16 x E1 PDH NHG2 NHG2 NHG2 NHG2 NEO IDU Replace NEO IDU with iPASOLINK 16 x E1 STM-1 (63E1) 16 x E1 STM-1 (63E1) 79 E1 +LAN NHG2 NHG2 FE/GbE FE/GbE iPASOLINK Introduction 26 26 • Ethernet Ring protection - Protection Switching Time <2s (RSTP) < 50 ms (ITU-T G.8032v2) Ethernet Ring TDM Ring • TDM Ring protection - E1 SNCP - Protection Switching Time <50ms 63 x E1 63 x E1 Channelized STM-1 63 x E1 E1 63 x E1 (200/400) 63xE1(400) 32xE1(200) iPASOLINK Introduction 27 iPASOLINK400 IDU Block Diagram Universal slot #1 TDM SW L2 SW CPU PS PS Universal slot #2 Universal slot #3 Universal slot #4 16xE1 Alarm DSC Clock Optional Clock Native TDM Bus Native Packet Bus Control Bus Main Board - 48V - 48V Synchronous Ethernet or IEEE1588 Optional redundant Power supply 2xGbE (SFP) 16 x E1 INTFC MSE (63xE1 PWE) Modem (Neo /c mode) 2x STM-1 Modem 4 x GbE Universal Slot-Cards PS PS Auxiliary 2xFE/GbE iPASOLINK Introduction 28 iPASOLINK 400 –Slots and Module configuration OW Jack ODU Interface USB Memory Slot FE1 / FE2 ALM / SC/CLK 16 x E1 INTFC 16 x E1 TDM INTFC Channelized STM-1(or 2xSTM-1) AUX (HK Ext ALM) Power Supply-1 SFP 2 x GbE FAN Unit LCT / NMS Universal Slot-1 Universal Slot-2 Universal Slot-3 Universal Slot-4 Modem 4xGbE [2xRJ45, 2x(SFP)] Multi Service Engine Universal Slot-Cards Power Supply-2 NE / FE2 or Protect SW Call Button iPASOLINK 400 Introduction (Draft) COMPONENTS MODULE NAME Code Remarks iPASOLINK 400 CHASSIS CHASSIS WITH MAIN BOARD Required FAN-C AIR COOLING FAN NWA-055294-001 Required MAIN BOARD MC-A4 Main Card (E1×16CH + GBE (2XSFP SX / LX / T) + 2FE OR OPTIONAL 2 X GbE) NWA-055298-001 Required GbE-A 4 x GbE Interface card SFP options to select NWA-055303-001 Universal Slot MODEM-A Standard Modem (QPSK-256 QAM) AMR NWA-055300-001 Universal Slot 16E1-A E1×16ch, 75 ohm to 120 ohm software selectable NWA-055302-001 Universal Slot STM1-A 2 x STM-1 Interface Card (SFP Options to select) NWA-055304-004 Universal Slot MSE TDM PWE, ATM PWE etc. NWA-055306-001 Universal Slot AUX-S EOW, HK, NE2 option NWA-055307-001 Universal Slot CLK2M-C Clock module (for SYNCE, SNCP and Channelized STM-1) NWA-055289-001 option PS-A4 -48V DC Power Supply Unit NWA-055310-001 Required (at least one) MAIN Board FAN PS 1 2 x GbE (LX/SX) AUX: HK, 16 X E1 -48 VDC PS PWE 2FE or 2 X GbE (elect) 16- xE1 1X CH STM1 FAN 2 x STM-1 Universal Slot4 Universal Slot3 Universal Slot2 Universal Slot1 PS 2 iPASOLINK Introduction 30 iPASOLINK 400 Main Board -Indicators Port2 (Green) LAN Link Status Blink when data TX Por1 (Green) LAN Link Status Blink when data TX Port 3(Green) LAN Link Status Blink when data TX Port4(Green) LAN Link Status Blink when data TX Alarm (Red) Alarm Status Maintenance (Yellow) Maintenance ON status Blink during reset, up / down loading 1 NMS TXD(+) 2 NMS TXD (-) 3 NMS RXD (+) 4 Not Connected 5 Not Connected 6 NMS RXD (-) 7 Not Connected 8 Not Connected LCT / NMS (RJ-45) 1 Vbus 2 D (-) 3 D (+) 4 Ground (USB) Type1 1 NMS TXD(+) 2 NMS TXD (-) 3 NMS RXD (+) 4 Not Connected 5 Not Connected 6 NMS RXD (-) 7 Not Connected 8 Not Connected NE1 (RJ-45) ♦ iPASOLINK 200/400 IDU INTFC pin assignments ALM/SC/CLK (High Density D-Sub 44 Pins, Female) 1 ALM2 OUT (NO) 16 ALM2 OUT (COM) 30 ALM2 OUT (N) 2 ALM1 OUT (NO) 17 ALM1 OUT (COM) 31 ALM1 OUT (NC) 3 GROUND 18 Ground 32 Ground 4 V.11-1 Data in(+) 19 V.11-1 clock in(+) 33 V.11-1 FP input(+) 5 V.11-1Data in(-) 20 V.11-1 clock in (-) 34 V.11-1 FP input(-) 6 V.11-1 Data out(+) 21 V.11-1 clock out(+) 35 V.11-1 FP output(+) 7 V.11-1Data out(-) 22 V.11-1 clock out(-) 36 V.11-1 FP output(-) 8 V.11-2 Data in(+) 23 V.11-2 clock in(+) 37 V.11-2 FP input(+) 9 V.11-2Data in(-) 24 V.11-2 clock in (-) 38 V.11-2 FP input(-) 10 V.11-2 Data out(+) 25 V.11-1 clock out(+) 39 V.11-2 FP output(+) 11 V.11-2 Data out(-) 26 V.11-1 clock out(-) 40 V.11-2 FP output(-) 12 RS-232C-1Data in 27 Ground 41 RS-232C-2 Data in 13 RS-232C-1Data out 28 42 RS232C-2 data out 14 EXT1 CLK in(+) 29 Ground 43 EXT1 CLK in (-) 15 EXT1 CLK OUT(+) 44 EXT1 CLK OUT(-) 31 iPASOLINK Introduction 32 iPASOLINK 400 Clock Module Clock Module CLK2M-C Option module for Clock Sync and mounted on MC-A4 Main Board. Required for all stations for Network Sync 1. SNCP E1 Ring Configuration 2. Channelized STM-1 (Not required for STM-1 SPI Mode operation) 3. Sync Ether 4. External CLK In/Out 5. IEEE 1588v2(slave) *1 Not required for HOP Topology, TREE Topology, for the case Network Sync is not in use in Back-Back Connection. *2 SNCP E1 Ring Topology, Channelized STM-1,Sync E and IEEE1588v2 Software key is separately required. iPASOLINK Introduction 33 iPASOLINK 400 Modem IF IN / OUT TX frequency: 350 MHz RX frequency 140 MHz Ref Frequency: 5 MHz (XPIC) DC Power : -48V Connector: TNC (Female) Control 10 MHz Impedance: 50 Ohms XIF IN/ OUT Frequency: 140 MHz REF FREQ: 5 MHz Connector: IEC 169-29(1.0/2.3) Impedance: 75 Ohms FOR XPIC BETWEEN MASTER AND SUB MASTER TX STATUS (Green) RX STATUS (Green) Power ON (Green) Alarm ( Red ) Power ON/OFF Switch Ground iPASOLINK-400 Option Card 34 iPASOLINK Introduction iPASOLINK 400 IDU E1 Interfaces Main Board 2M IN /OUT Input / Output signal 16 x E1 Bit Rate 2.048Mpps +/_ 50ppm Interface HDB3 (ITU-T G.703) Impedance (S/W Selectable) 75 Ohms, Unbalance 120 Ohms Balance Connector MDR-68 pins Alarm (Red) Alarm Status iPASOLINK Introduction 35 iPASOLINK 400 IDU – STM-1 Card STM-1 INTFC (ELECTRICAL) -SPECIFICATIONS TYPE ITU-T G.703 BITRATE 155.520 Mbps LEVEL 1 Vp_p CODE CMI CONNECTOR IEC 169-29 (1.0/2.3) IMPEDANCE 75 Ohms (Unbalanced) STM-1 INTFC (OPTICAL) -SPECIFICATIONS TYPE ITU-T G957 BITRATE 155.520 Mbps LEVEL L-1.1: 0 TO -8 (5)dBm (TX) / -10 TO -34 dBm (RX) S-1.1: -8 TO -15dBm (TX) / -8 TO -28 dBm (RX) CODE NRZ WAVELENGTH 1310 NM CONNECTOR LC iPASO 400 Automatic Protection Switching APS Grp-1 APS Grp1 APS Grp2 Same slot Different slot Port 1 Port2 Slot1 Port1 Slot2 port1 Slot1 port2 Slot2 port2 SFP combination No Port 1 Port 2 1 S-1.1 - 2 L-1.1 - 3 ELE - 4 S-1.1 S-1.1 5 L-1.1 L-1.1 6 ELE ELE iPASOLINK 400 iPASOLINK Introduction 36 Transparent mode of STM-1. No processing in IDU. -2 STM-1 can be handled by single module SPI mode with line redundancy (APS). The following Software Key is required -STM-1 APS Protection Key Terminating MST / RST of STM-1 and drop insert in VC-12 (E1)level Port1should be source port CLK2M-C module is required The following Software Key is required - STM-1 MUX/DEMUX Key Channelized-STM-1 mode with line redundancy (APS) CLK2M-C module is required The following Software Key is required -STM-1 MUX/DEMUX Key -STM-1 APS Protection Key 2 x STM-1 universal card (STM1-A) Alarm ( Red ) Online Status (Green) Online Status (Green) Port1 Port2 Through (SPI) Mode STM1 STM1 STM1 STM1 Port1 Port2 Through (SPI) Mode with APS STM1 STM1 STM1 Port1 Port2 Channelized Mode STM1 63 E1 - - - - Port1 Channelized Mode with APS STM1 63 E1 - - - - Port2 STM1 Transport modes of STM-1. iPASOLINK Introduction 37 iPASOLINK 400 Main Board 2M IN /OUT Input / Output signal 16 x E1 Bit Rate 2.048Mpps +/_ 50ppm Interface HDB3 (ITU-T G.703) Impedance (S/W Selectable) 75 Ohms, Unbalance 120 Ohms Balance Connector MDR-68 pins LAN Interface (Electrical) Port 1,2 Input / Output signal 10/100Base-T(X) or 10/100/1000 BASE-T Speed & Duplex 10/100 Base-T(X) / 1000 Base-T Auto Sensing or Fixed Flow Control ON or OFF (Selectable) Link Loss Forwarding Disable/Enable (Selectable) Connector RJ-45 Transmission Rate 460 Mbps Port 1 can be selected as user port1 or Management port NE Gigabit Ether Interface (Optical) 3,4 Input / Output signal 1000 BASE-SX / 1000 BASE - LX Speed & Duplex 1000 Mbits Full Duplex Auto Negotiation fixed Flow Control ON or OFF (Selectable) Link Loss Forwarding Disable/Enable (Selectable) Connector SFP Optical Interface (LC) Transmission Rate 460 Mbps SFP opticalS-1.1/L1.1 Electrical (RJ-45)* Software key Required to activate ports 3, 4 iPASOLINK Introduction 38 iPASOLINK 400 GbE Universal Slot Interface Ethernet Features VLAN Port Based VLAN/ Tag Based VLAN / Q –in Q QoS 802.1p CoS / ToS/Diffserv/MPLS EXP QoS Control 4SP, 1xSP+3xDWRR, 4xDWRR, 1xSP+7DWRR, 2xSP+6DWRR Bandwidth Management Port and class shaper, policing per VLAN or port Jumbo frame Up to 2000 bytes Protection RSTP (802.1w, ERP (ITU-T G.8032)* LACP (802.3ad)* Note *-late release LAN Interface (Electrical) Port 1,2 Input / Output signal 10/100Base-T(X)/ 1000 BASE-T Speed & Duplex 10/100 Base-T(X) / 1000 Base-T Auto Sensing or Fixed Flow Control ON or OFF (Selectable) Link Loss Forwarding Disable/Enable (Selectable) Connector RJ-45 Transmission Rate 460 Mbps Gigabit Ether Interface (Optical) 3,4 Input / Output signal 1000 BASE-SX / 1000 BASE - LX Speed & Duplex 1000 Mbits Full Duplex Auto Negotiation fixed Flow Control ON or OFF (Selectable) Link Loss Forwarding Disable/Enable (Selectable) Connector SFP Optical Interface (LC) Transmission Rate 460 Mbps Port2 (Green) LAN Link Status Blink when data TX Por1 (Green) LAN Link Status Blink when data TX Port 3(Green) LAN Link Status Blink when data TX Port4(Green) LAN Link Status Blink when data TX Alarm (Red) Alarm Status iPASOLINK Introduction 39 iPASOLINK 400 Power Supply SELV (DC IN) 4 Pin 1 -48 V (-40.5 to -57) 2 -48 V (-40.5 to -57) 3 Ground 4 Ground AMP 1-178288-4 or DK-3100S-04R Contacts: AMP:1-175218-2 Connector Cylindrical Fuse ES1-12500 (250 V / 12.5 AH iPASOLINK Introduction 40 Optional auxiliary Module support ALM / EOW / NE2 The following Interface is available ・HK ALM IN/OUT ・additional four parallel alarm outputs ・EOW B-B connection Port ・NE2 : DCN RS-485 (Async.) Back – to-back connection Interface MC-A4(main card) AUX-A (Option) Note HK ALM IN - 6 OUT 2 4 OW Jack 1 - BZ 1 - Call SW 1 - EXT IN/OUT - 2 For Back-Back connection DSC V.11 2 - Sync / Async RS-232C 2 - Async DCN LCT 1 10/100BASE-T(X) NMS 1 10/100BASE-T(X) NE 1 10/100BASE-T(X) NE2 - 1 9.6kbps Async (RS-485)DCN port USB MEM slot 1 - For F/W download, etc. EXT CLK IN / OUT (1)* - 2MHz / bps *Optional clock (CLK2M-C) module is required. Summary of the auxiliary interface ports. AUX Card – AUX-A iPASOLINK Introduction iPASOLINK 400 - AUX Card ( AUX-S / AUX-A) ALM / EOW (High Density D-Sub 44 Pins, Female) 1 EOW 1 IN(+) 16 EOW 1 IN (-) (GND) 31 CALL1 OUT 2 EOW 1 OUT(+) 17 EOW 1 OUT (-) (GND) 32 BZ2 IN 3 EOW 2 In (+) 18 EOW 2 IN(-) (GND) 33 CALL2 OUT 4 EOW 2 Out (+) 19 EOW 2 Out (-) (GND) 34 GND 5 GND 20 ALM6/HK1/C1 OUT (COM) 35 ALM6/HK1/C1 OUT (NC) 6 ALM6/HK1/C1 OUT (NO) 21 ALM5/HK2/C2 OUT (COM) 36 ALM5/HK2/C2 OUT (NC) 7 ALM5/HK2/C2 OUT (NO) 22 ALM4/HK3/C3 OUT (COM) 37 ALM4/HK3/C3 OUT (NC) 8 ALM4/HK3/C3 OUT (NO) 23 ALM3/HK4/C4 OUT(COM) 38 ALM3/HK4/C4 OUT(NC) 9 ALM3/HK4/C4 OUT(NO) 24 NE2_RXD_TERM 39 NE2_RXD (+) 10 NE2_TXD(+) 25 40 NE2_RXD(-) 11 NE2_TXD(-) 26 HK4/CLSTR3 IN (-) (GND) 41 HK6/CLSTR1 IN (-) (GND) 12 HK2 INPUT(-) (GND) 27 HK4/CLSTR3 IN (+) 42 HK6/CLSTR1 IN (+) 13 HK2 INPUT(+) 28 HK3/CLSTR4 IN (-) (GND) 43 HK5/CLSTR2 IN (-) (GND) 14 HK1 INPUT(-) (GND) 29 HK3/CLSTR4 IN (+) 44 HK5/CLSTR2 IN (+) 15 HK1 INPUT(+) 30 BZ 1 IN iPASOLINK Introduction 42 In case the FAN alarm occurs, replace the FAN unit immediately. The FAN unit can be replaced under power-on condition (hot-swappable). iPASOLINK Introduction 43 PERFORMANCE – iPASOLINK 400 IDU ITEM IDU Transmission Capacity and Channel spacing Channel Spacing 7 MHZ 14 MHz (13.75 MHz ) 28 MHz (27.5 MHz) 56 MHz (55 MHz) QPSK 14 28 57 114 16 QAM 28 56 114 229 32 QAM 35 71 143 287 64 QAM 45 85 172 345 128 QAM 49 99 200 402 256 QAM - 114 229 460 [Band width within parenthesis is Channel Spacing at 18 Ghz band ] [capacity is physical layer maximum throughput at 64 bytes packet size] Main Signal Interface E1 16xE1 (G703) MDR 68 connector in main board (64 E1 with additional 16 E1 Universal Cards) LAN 2 x 10/100 Base-T(X) RJ-45 connector (up to 2 x 10/100/1000 Base –T available with software upgrade) 2 x 1000 SX or LX with SFP modules (connector type LC) STM-1 1or 2 x STM-1 (S 1.1 or L 1.1 ) option card with software selectable channelized STM-1 (connector type – LC) Inter facility Link (IDU-ODU) Connector Type : TNC female Cable length : Nominal 300m maximum with 8D-FB-E or equivalent performance cable FUNCTION OUTLINE Native IP and Native TDM Modem has dual native (native IP and native TDM) signal processing circuit Adaptive Modulation Radio (AMR) QPSK / 16 QAM/ 32 QAM / 64 QAM / 128 QAM / 256 QAM (6 modulation schemes changing adaptively) Protection Radio (1+1) Hot standby / Space diversity , (1+1) twin Path (Frequency Diversity), XPIC (1+1) E1 Ring E1 SNCP (sub network connection protection ) support LAN Ring RSTP (Rapid Spanning Tree Protocol) support / ITU-T G.8032 XPIC (CCDP) Function QPSK to 256 QAM modulation at (14 MHz/28MHz/56MHz), AMR (1+1) and XPIC combination AMR and (1+1), AMR and XPIC combination available DXC (E1 Cross Connect) Capacity Up to 168 x 168 E1 non blocking External Clock Interface 2.048 MHz or 2.048 Mbps external clock input / output, 75 or 120 Ohms selectable, D-Sub 44 pin connector iPASOLINK Introduction 44 PERFORMANCE – iPASOLINK 400 IDU ITEM IDU DCN AND SERVICE CHANNELS NMS Interface 1 Port, 10/100 Base-T, RJ-45 (in-band and Out-band connections supported) NE1 1 Ports, 10/100 Base-T(X), RJ-45 NE2 (RS-485) 1 Port Serial signal port for legacy equipment , available with optional AUX card, D-Sub 44 pin Local Craft Terminal (LCT) 1-Port, 10/100 Base-T(X), RJ -45 House Keeping and Cluster Alarms Input 6 CH, output 6 CH available with optional AUX card, D-Sub 44 pin Service Channels 2 Ports , RS -232C, 9.6 Kbps Async. D-sub -44 pin 2 Ports , V.11 ( co-direction or contra-direction) 64 Kbps Sync, D-Sub 44 pin Engineering Order Wire (EOW) (Back to Back) 2 port 4-wire voice channel, available with optional AUX card, D-Sub 44 pin Loop Back Far-End Baseband Loop Back Near-End Baseband Loop Back IF Loop Back TX Power control Mode Manual TX Power Control, Automatic TX Power Control Performance Monitor PMON Items: OFS, BBE, ES, SES, SEP, UAS Metering Items: Output Power Level (TX PWR), Received Signal Level (RSL). Bit Error Rate (BER) LAN Monitoring items: RX Unicast, RX Broadcast, RX Multicast, RX Pause, RX CRC error POWER REQUIREMENTS AND DIMENSION Power requirement -48 V DC (-40.5 to -57 VDC) conform to EN300 132-2 Power Consumption IDU without Options (1+0) : 55W, (1+1) 65 W AUX option: 5W, 16xE1 option : 5W, STM-1 option: 8W. MSE option: 10W, external Clock option: 3W Mechanical Dimensions 482 (W), 44(H), 240 (D) mm, 3 Kg approx. Environmental Condition Workable: -10 to +55 Deg. C, iPASOLINK Introduction 45 PERFORMANCE-AMR ITEM 6GHz 7-8GHz 10-11GHz 13 GHz 15 GHz 18 GHz 23 GHz 26 GHz 28GHz 32GHz 38GHz CS Transmit Power - Measured at ODU TX port QPSK 29 29 25 25 25 24 24 23 22 22 20 7MHz/ 14 MHz / 28 MHz/56MHz Receiver Threshold Measured at ODU RX port (dBm) at 10 -6 BER [BER at 10 -3 value below -1.5 dB] QPSK ( 56 MHz) -84.5 -84.5 -84.0 -83.5 -83.5 -83 -83.5 -82.5 -82.5 -82.5 -81.5 QPSK ( 28 MHz) -87.5 -87.5 -87 -86.5 -86.5 -86 -86.5 -85.5 -85.5 -85.5 -84.5 QPSK ( 14 MHz) -90.5 -90.5 -90 -89.5 -89.5 -89 -89.5 -88.5 -88.5 -88.5 -87.5 QPSK ( 7 MHz) -93.5 -93.5 -93 -92.5 -92.5 -92 -92.5 -91.5 -91.5 -91.5 -90.5 System Gain Measured at ODU RX port at 10 -6 BER [BER at 10 -3 value below +1.5 dB] QPSK ( 56 MHz) 113.5 113.5 109 108.5 108.5 107 107.5 105.5 104.5 104.5 101 QPSK ( 28 MHz) 116.5 116.5 112 111.5 111.5 110 110.5 108.5 107.5 107.5 104.5 QPSK ( 14 MHz) 119.5 119.5 115 114.5 114.5 113 113.5 111.5 110.5 110.5 107.5 QPSK ( 7 MHz) 122.5 122.5 118 117.5 117.5 116 116.5 114.5 113.5 113.5 110.5 Power Control 0 to 24 dB ( 1 dB step) Max input level - 20 dBm for BER less than 10-3 Transmit Power - Measured at ODU TX port 16 QAM 26 26 22 22 22 21 21 19 18 18 17 56 MHz 16 QAM 27 27 23 23 23 22 22 20 19 19 18 7MHz/ 14 MHz / 28 MHz Receiver Threshold Measured at ODU RX port (dBm) at 10 -6 BER [BER at 10 -3 value below -1.5 dB] 16 QAM ( 56 MHz) -78 -78 -77.5 -77 -77 -76.5 -77 -76 -76 -76 -75 16 QAM( 28 MHz) -81 -81 -80.5 -80 -80 -79.5 -80 -79 -79 -79 -78 16 QAM ( 14 MHz) -84 -84 -83.5 -83 -83 -82.5 -83 -82 -82 -82 -81 16 QAM ( 7 MHz) -87 -87 -86.5 -86 -86 -85.5 -86 -85 -85 -85 -84 System Gain Measured at ODU RX port at 10 -6 BER [BER at 10 -3 value below +1.5 dB] 16 QAM ( 56 MHz) 104 104 99.5 99 99 97.5 98 95 94 94 92 16 QAM( 28 MHz) 108 108 103.5 106 106 104.5 105 102 101 101 99 16 QAM ( 14 MHz) 111 111 106.5 106 106 104.5 105 102 101 101 99 16 QAM ( 7 MHz) 114 114 109.5 109 109 107.5 108 105 104 104 102 Power Control 0 to 24 dB ( 1 dB step) Max input level - 20 dBm for BER less than 10-3 Guaranteed TX Power 6-28 GHz +/- 1.5dB 32-38 GHz +/-2.5 dB Guaranteed Threshold Rx Threshold at 10 -6 BER 6-38 GHz +3 dB Guaranteed System Gain 6-28 GHz -3 dB 32-38 GHz -4 dB iPASOLINK Introduction 46 PERFORMANCE - AMR ITEM 6GHz 7-8GHz 10-11GHz 13 GHz 15 GHz 18 GHz 23 GHz 26 GHz 28GHz 32GHz 38GHz CS Transmit Power - Measured at ODU TX port 32 QAM 25 25 21 21 21 20 18 18 18 18 17 56 MHz 32 QAM 26 26 22 22 22 21 19 19 19 19 18 7MHz/ 14 MHz / 28 MHz Receiver Threshold Measured at ODU RX port (dBm) at 10 -6 BER [BER at 10 -3 value below -1.5 dB] 32 QAM ( 56 MHz) -75 -75 -74.5 -74 -74 -73.5 74 -73 -73 -73 -72 32 QAM( 28 MHz) -78 -78 -77.5 -77 -77 -76.5 -77 -76 -76 -76 -75 32 QAM ( 14 MHz) -81 -81 -80.5 -80 -80 -79.5 -80 -79 -79 -79 -78 32 QAM ( 7 MHz) -84 -84 -83.5 -83 -83 -82.5 -83 -82 -82 -82 -81 System Gain Measured at ODU RX port at 10 -6 BER [BER at 10 -3 value below +1.5 dB] 32 QAM ( 56 MHz) 100 100 95.5 95 95 93.5 92 91 91 91 89 32 QAM( 28 MHz) 104 104 99.5 99 99 97.5 96 95 95 95 93 32 QAM ( 14 MHz) 107 107 102.5 102 102 100.5 99 98 98 98 96 32 QAM ( 7 MHz) 110 110 105.5 105 105 103.5 102 101 101 101 99 Power Control 0 to 23 dB (1 dB step) + (5 dB additional ATT) 0 to 23 dB Transmit Power - Measured at ODU TX port 64 QAM 25 25 21 21 21 20 18 18 18 18 17 56 MHz 64 QAM 26 26 22 22 22 21 19 19 19 19 18 7MHZ/ 14MHz/ 28 MHz Receiver Threshold Measured at ODU RX port (dBm) at 10 -6 BER [BER at 10 -3 value below -1.5 dB] 64QAM ( 56 MHz) -72 -72 -71.5 -71 -71 -70.5 -71 -70 -70 -70 -69 64 QAM( 28 MHz) -75 -75 -74.5 -74 -74 -73.5 -74 -73 -73 -73 -72 64 QAM ( 14 MHz) -78 -78 -77.5 -77 -77 -76.5 -77 -76 -76 -76 -75 64 QAM ( 7 MHz) -81 -81 -80.5 -80 -80 -79.5 -80 -79 -79 -79 -78 System Gain Measured at ODU RX port at 10 -6 BER [BER at 10 -3 value below +1.5 dB] 64 QAM ( 56 MHz) 97 97 92.5 91 91.5 90.5 88.5 88 88 86.5 85.5 64 QAM( 28 MHz) 101 101 96.5 96 96 94.5 93 92 92 92 90 64 QAM ( 14 MHz) 104 104 99.5 99 99 97.5 96 95 95 95 93 64 QAM ( 7 MHz) 107 107 102.5 102 102 100.5 99 98 98 98 96 Power Control 0 to 23 dB (1 dB step) + (5 dB additional ATT) 0 to 23 dB iPASOLINK Introduction 47 PERFORMANCE - AMR ITEM 6GHz 7-8GHz 10-11GHz 13 GHz 15 GHz 18 GHz 23 GHz 26 GHz 28GHz 32GHz 38GHz CS / THROUGHPUT Transmit Power - Measured at ODU TX port 128 QAM 25 25 21 21 21 20 18 18 18 18 17 56 MHz 128 QAM 26 26 22 22 22 21 19 19 19 19 18 14 MHz/28 MHz Receiver Threshold Measured at ODU RX port (dBm) at 10 -6 BER [BER at 10 -3 value below -1.5 dB] 128 QAM ( 56 MHz) -69 -69 -68.5 -68 -68 -67.5 -68 -67 -67 -67 -66 128 QAM( 28 MHz) -72 -72 -71.5 -71 -71 -70.5 -70.5 -71 -70 -70 -69 128 QAM ( 14 MHz) -75 -75 -74.5 -74 -74 -73.5 -74 -73 -73 -73 -72 128 QAM ( 7 MHz) -77.5 -77.5 -77 -76.5 -76.5 -76 -76.5 -75.5 -75.5 -75.5 -74.5 System Gain Measured at ODU RX port at 10 -6 BER [BER at 10 -3 value below +1.5 dB] 128 QAM ( 56 MHz) 94 94 89.5 89 89 87.5 86 85 85 85 83 128 QAM( 28 MHz) 98 98 93.5 93 93 91.5 90 89 89 89 87 128 QAM ( 14 MHz) 101 101 96.5 96 96 94.5 93 92 92 92 90 128 QAM ( 7 MHz) 103 103 98 98 98.5 97.5 95.5 95 95 93.5 92.5 Power Control 0 to 20 dB (1 dB step) + (5 dB additional ATT) 0 to 20 dB Transmit Power - Measured at ODU TX port 400 MB / 256 QAM 24 24 20 20 20 19 17 17 17 17 16 200 MB / 256 QAM 25 25 21 21 21 20 18 18 18 18 17 Receiver Threshold Measured at ODU RX port (dBm) at 10 -6 BER [BER at 10 -3 value below -1.5 dB] 256QAM ( 56 MHz) -65.5 -65.5 -65 -64.5 -64.5 -64 -64.5 -63.5 -63.5 -63.5 -62.5 256 QAM( 28 MHz) -68.5 -68.5 -68 -67.5 -67.5 -67 -67.5 -66.5 -66.5 -66.5 -65.5 256 QAM( 14 MHz) -71 -71 -70.5 -70 -70 -69.5 -70 -69 -69 -69 -68 System Gain Measured at ODU RX port at 10 -6 BER [BER at 10 -3 value below +1.5 dB] 256 QAM ( 56 MHz) 89.5 89.5 85 84.5 84.5 83 81.5 80.5 80.5 80.5 78.5 256 QAM( 28 MHz) 93.5 93.5 89 88.5 88.5 87 85.5 84.5 84.5 84.5 82.5 256 QAM( 14 MHz) 96 96 91.5 91 91 89.5 88 87 87 87 85 Power Control 0 to 20 dB (1 dB step) + (5 dB additional ATT) 0 to 20 dB iPASOLINK Introduction 48 OUT DOOR UNIT iPASOLINK iPASOLINK 400 Introduction (Draft) TX RF BPF MPX RX RF BPF RF AMP UP CONV LO DC-DC CONV DOWN CONV CONTROL LNA iPASOLINK 400 Introduction (Draft) Label IF IN/OUT Turn OFF the IDU DC power before removing the IF cable RX LEV MONITOR RF IN/OUT COAXIAL TYPE (6-8 GHz) RF IN/OUT WG TYPE (6-8 GHz) HANDLE Frame Ground iPASOLINK Introduction 51 Frame Ground IF IN/OUT Turn OFF the IDU DC power before removing the IF cable RX LEV MONITOR RF IN/OUT 13 – 38 GHz HANDLE ♦ TRP-15G 1D (IHG) iPASOLINK Introduction 52 Input IF signal consists of: •350 MHz TX IF •140 MHz RX IF •10MHz Control •DC power -48V Each of the input IF signal components are separated in the MULTIPLEXER using separation filters. DC voltage is supplied to the DC-DC CONV to produce regulated DC voltages required in the ODU. The 10 MHz control signal which is ASK modulated is sent to the Control circuit, where the ODU controls like TX Power, RF Frequencies etc. are implemented. The Alarms in ODU are collected in the Control module and sent to the IDU using the ASK modulated 10 MHz signal. Output IF signal consists of: •10MHz Alarm/Response RX LEV ALM TX PWR ALM IF INPUT ALM 350 MHz TX: 350 MHz RX: 140 MHZ DC: -48V iPASOLINK 400 Introduction (Draft) NHG2 IHG iPASOLINK 200 ODU Compatibility (Existing only) (Supplied with iPaso) iPASOLINK 400 Introduction (Draft) PERFORMANCE - ODU ITEM OUT DOOR UNIT iPASOLINK High Grade (IHG) type ODU Power Consumption (1+0) (1+1) 6 – 11 GHz 30W Hot standby: 450W, Twin path: 60W 13 -26, 28, 32,and 38 GHz 23 W Hot standby: 38W, Twin path: 46W Mechanical Dimensions 6-11 GHz 237(W), 237(H), 101 (D), 3.5 Kg 13-38GHz 239(W), 247(H), 68 (D), 3 Kg EMC Conforms to EN301 489-4 Safety Conforms to EN60950-1 Environmental Condition Operation: -33 to +50deg.C, (ETSI EN301019-1-4 class 4.1), Humidity: 100% (IP66) Workable: -40 to +55 deg.C Transportation ETSI EN301019-1-2 class 2.3 Storage ETSI 201019-1-1 class 1.2 iPASOLINK 400 Introduction (Draft) 50 60 70 80 90 100 6 7 10 13 15 18 23 26 32 38 Frequncy(GHz) S y s t e m G a i n ( d B ) NEO HP with NHG2 iPASOLINK with IHG (256QAM/56MHz) Enhanced System Gain High System Gain •High System Gain achieved by Low Density Parity Check (LDPC) Forward Error Correction (FEC) technology and distortion canceling technique called linearizer allowing smaller antennas and reducing platform cost. Enhanced Radio Performances with new ODU (IHG) Page 55 iPASOLINK Introduction 56 ( J une 25, 2010 iPASOLINK 400 Introduction (Draft) CS Modulation Mode 1 7 MHz Mode 2 14 MHz Mode 3 28 MHz Mode 4 56 MHz Radio Transmission capacity Max Packet Throughput Radio Transmission capacity Max Packet Throughput Radio Transmission capacity Max Packet Throughput Radio Transmission capacity Max Packet Throughput QPSK 10 Mbps 14 Mbps 21 Mbps 28 Mbps 44 Mbps 57 Mbps 90 Mbps 114 Mbps 16 QAM 21 Mbps 28 Mbps 44Mbps 56 Mbps 89 Mbps 114 Mbps 181 Mbps 229 Mbps 32 QAM 27 Mbps 35 Mbps 55 Mbps 71 Mbps 111 Mbps 143 Mbps 226 Mbps 287 Mbps 64 QAM 33 Mbps 42 Mbps 66 Mbps 85 Mbps 134 Mbps 172 Mbps 271 Mbps 345 Mbps 128 QAM 38 Mbps 49 Mbps 77 Mbps 99 Mbps 160 Mbps 200 Mbps 316 Mbps 402 Mbps 256 QAM - - 89 Mbps 114 Mbps 180 Mbps 229 Mbps 361 Mbps 460 Mbps iPASOLINK – Adaptive Modulation Radio AMR is a technology to improve robustness mainly in the packet transmission environment by utilizing thermal threshold difference between modulation hierarchy such as QPSK and 256 QAM. On the fine day, the operator can get the 229Mbps throughput over the link which is designed for 57Mbps throughput as illustrated in the figure. iPASOLINK support hitless modulation switchover from 256QAM to QPSK as shown in table. Note: Maximum throughput at 64 byte VLAN tagged frame passed rate base iPASOLINK 400 Introduction (Draft) iPASOLINK – Adaptive Modulation Radio C/N18 dB (16Q) C/N 24 dB (64Q) 256QAM 128QAM 64QAM 16QAM C/N 30 dB (256Q) C/N 21 dB (32Q) 32QAM QPSK Modulation switching is done at BER=10 -10 . Equivalent C/N is shown C/N 27 dB (128Q) iPASOLINK 400 Introduction (Draft) iPASOLINK – Adaptive Modulation Radio “Reference modulation” is the word of definition in AMR operation, that is base condition in link budget calculation and this is related to ATPC operation. The selection of reference modulation and TX power control (MTPC/ATPC) relates to link budget of system gain and capacity. Please refer as follows. 18 19 20 21 22 23 24 QPSK 32QAM 128QAM Ref.256QAM Ref.QPSK Reference modulation effects TX power range in order to avoid interference. TX power is restricted in lower modulation scheme. Ex. TX maximum power comparison by reference modulation at 18GHz 28MHz dBm Modulation iPASOLINK Introduction 60 Adaptive Modulation Radio (AMR) QPSK 16 QAM 32 QAM 64 QAM 128 QAM 256 QAM MODULATION SCHEME Traffic Capacity 14 Mbps 28 Mbps 35 Mbps 42 Mbps 49 Mbps 7 MHz CH BW 28 Mbps 56 Mbps 71 Mbps 85 Mbps 99 Mbps 114Mbps 14 MHz CH BW 57 Mbps 114 Mbps 143 Mbps 172 Mbps 200 Mbps 229 Mbps 28 MHz CH BW 114 Mbps 229 Mbps 287 Mbps 345 Mbps 402 Mbps 460 Mbps 56 MHz CH BW 99.999% 99.996% 99.994% 99.990% 99.975% Reliability Critical Traffic Critical Traffic Voice Traffic Less Critical Less critical Data (video) Best Effort Internet / e-mail Microwave links are designed to carry traffic at 99.999% availability under all path conditions with a approx. 30 dB fade margin. With higher modulation for the same link 99.98% availability can be achieved with reduced fade margin for higher throughput. System Outage 5 min 364.91 Days 1 Year / (365 days) 126.4 min iPASOLINK 400 Introduction (Draft) Traffic Type Combinations STM-1 LAN OH STM-1 LAN OH E1 LAN OH E1 OH STM-1 LAN OH E1 STM-1 LAN OH STM-1 LAN OH E1 LAN OH E1 OH STM-1 LAN OH E1 Traffic type convergence fixed modulation Traffic type convergence AMR modulation Priority traffic iPASOLINK Introduction 62 Monitor & Control Monitor & Control 400 200 Local and remote monitor & control LAN cable WEB browser Back to back Back to back Cannot Monitor from Web LCT PNMTj Cannot Monitor iPASOLINK 400 400 NEO iPASOLINK Introduction 63 ( J une 25, 2010 iPASOLINK 400 Introduction (Draft) RNC Node-B/ BTS PRC E1 PDH TDM Backhaul (Sync Network) Clock Distribution PRC; Primary Reference Clock Core Mobile Network is synchronized by the primary clock. If there is no synchronization, 1) Data Buffer slip 2) Bit error 3) Signal hand-off failure between BTS , etc. or Synchronization by GPS receiver ( like WiMAX system , because of packet backhaul network) Synchronization by clock relay BS BS iPASOLINK 400 Introduction (Draft) Data Backhaul Clock & Data E1/ STM-1 NE Timing Recovery with Legacy TDM • clock recovery from line TDM data(Legacy Clock synchronization technique) NE E1/ STM-1 FE / GbE Sync Ether Timing Recovery with ITU-T G.8261 Synchronous Ethernet •Clock is recovered from Ethernet but does not affect the Ethernet layer •Intermediate equipments must also support Synchronous Ethernet •Very effective but limited to specific segments of the network Sync Ether Synchronous Ethernet Capable equipment FE/GbE FE/GbE NE NE Sync. Ethernet B S B S E1/ STM-1 iPASOLINK Introduction 66 Clock (Recovered from PTP Packet) PTP Server Clock (PTP Packet) FE / GbE Timing Recovery with PTP(Precision Time Protocol) (IEEE1588v2) •Clock and data use separate packet connections •Requires PTP server and dedicated PTP network for precise synchronization NE NE IEEE1588v2(slave) FE/GbE FE/GbE No phase sync information after converted to Sync Eth or E1 Clock & Data (recovered from PWE/RTP packet) E1 Clock and Data Clock (within RTP Header) T1/E1 Data (PWE/CES) CESoP FE / GbE Timing Recovery with RTP(PWE/CES): Not accurate for network synchronization •Clock and data use the same packet connection •RTP(Real-time Transport Protocol IETF RFC3551): using sequence number and timestamp information, RTP offers framework that packet receiver can recover clock and timing of the source. Backhaul NE CESoP NE E1 B S B S E1 iPASOLINK Introduction 67 G.8261 Synchronous Ethernet Sync Ether clock performance is similar to what is available in SDH and PDH timing Sync Ether clock distribution can be an extension of existing synchronization distribution system Sync Ether does not impact existing IEEE 802.3 specification Sync Ether module extract system clock and converts to Sync E clock Sync Ether module converts Sync E clock to internal synchronous clock Similar to SSM in SDH based networks Sync E provide SSM message (G.8264) Sync Ether use the physical layer of the Ethernet MAC Ethernet PHY TX CLK Conventional Ethernet line card MAC Ethernet PHY TX CLK MAC Ethernet PHY TX CLK MAC Ethernet PHY TX CLK SyncE Timing SyncE Timing G.8262 EEC LO +/- 4.6 PPM G.8262 EEC LO +/- 4.6 PPM LO +/- 100PPM LO +/- 100PPM Conventional Ethernet line card Synchronous Ethernet line card Synchronous Ethernet line card SDH Sync Ether – G.8261 PRC PRC Bit Stream Bit Stream SSM (ITU-T G.707) SSM (ITU-T G.707) SDH Overhead OAMPDU 8000/Sec 10 / Sec iPASOLINK Introduction 68 Synchronization method Synchronous Ethernet PDHLine Transmit Clk SDHLine Transmit Clk G.703 External Clk Output Radio Clk Output iPASOLINK can utilize multiple clock sources. PLL Timing Source 1 Timing Source 2 Timing Source 3 S E L S E L Modem-1 Modem-2 E1 Line CLK Option Line CLK(STM1) GbE Line CLK External CLK IN SEL External CLK OUT iPASOLINK 400 Introduction (Draft) REDUNDANCY SYSTEM CONFIGURATIONS iPASOLINK Introduction 70 Possible Configurations – Hot Standby HYB HL SW MOD DEM ODU-2 (TX) ODU-2 (RX) MOD DEM ODU-1 (TX) ODU-1 (RX) M P X F1 F1' F1 F1' HYB HL SW MOD DEM ODU-2 (TX) ODU-2 (RX) MOD DEM ODU-1 (TX) ODU-1 (RX) M P X F1 F1' F1 F1' F 1 F 1 ' M P X M P X M P X M P X M P X M P X Single Antenna HS System HL SW MOD DEM ODU-2 (TX) ODU-2 (RX) MOD DEM ODU-1 (TX) ODU-1 (RX) F1 F1' F1 F1' HL SW MOD DEM ODU-2 (TX) ODU-2 (RX) M P X MOD DEM ODU-1 (TX) ODU-1 (RX) M P X F1 F1' F1 F1' F 1 F 1 ' M P X M P X M P X M P X M P X M P X F 1 ' F 1 Two Antenna HS System Space Diversity iPASOLINK Introduction 71 Single Antenna Twin Path System Possible Configurations- Twin Path HL SW MOD DEM ODU-2 (TX) ODU-2 (RX) MOD DEM ODU-1 (TX) ODU-1 (RX) F1 F1' F2 F2' F 1 ' F 2 F 2 ' HL SW MOD DEM ODU-2 (TX) ODU-2 (RX) M P X MOD DEM ODU-1 (TX) ODU-1 (RX) M P X F1 F1' F 1 M P X M P X F2' F2 M P X M P X M P X M P X Two Antenna Twin Path System HYB HL SW MOD DEM ODU-2 (TX) ODU-2 (RX) MOD DEM ODU-1 (TX) ODU-1 (RX) M P X F1 F1' F2 F2` HYB HL SW MOD DEM ODU-2 (TX) ODU-2 (RX) MOD DEM ODU-1 (TX) ODU-1 (RX) M P X F1 F1' F 1 F 1 ' M P X M P X M P X M P X M P X M P X F2` F2 F 2 F 2 ' Frequency Diversity iPASOLINK Introduction 72 Possible Configurations OMT MOD DEM ODU-2 (TX) ODU-2 (RX) MOD DEM ODU-1 (TX) ODU-1 (RX) F1 F1' F2 F2' MOD DEM ODU-2 (TX) ODU-2 (RX) MOD DEM ODU-1 (TX) ODU-1 (RX) F1 F1' F2 F2' F1 OMT F2' F2 F1' V H V H M P X M P X M P X M P X M P X M P X M P X M P X (2+0) System using OMT HL SW MOD DEM ODU-2 (TX) ODU-2 (RX) MOD DEM ODU-1 (TX) ODU-1 (RX) F1 F1' F2 F2' F 1 F 1 ' HL SW MOD DEM ODU-2 (TX) ODU-2 (RX) MOD DEM ODU-1 (TX) ODU-1 (RX) F1 F1' F2 F2' HYB F 2 F 2 ' M P X M P X M P X M P X M P X M P X M P X M P X Hybrid Diversity System iPASOLINK 400 Introduction (Draft) AUTOMATIC TX POWER CONTROL The Automatic Transmit Power Control (ATPC) function automatically varies the TX output power according to path conditions. Fading exerts heavy influences on propagation, causing the receive signal level at the opposite station to vary. The ATPC function operates by controlling the transmit output power of the opposite station according to the variation of the received signal level at the local station. The receive signal level variation at the opposite station is informed to the local station using the ATPC bits in the overhead. To implement ATPC, the receiving level (RX IN LEV) is detected by the receiver and passed on to the CPU in the CTRL circuit of the MODEM module. The CPU then determines whether the transmit output power needs to be controlled. This is based on the transmit output power, the minimum and maximum values of the output control range, and the receiving threshold level that were previously specified using the LCT or PNMT. The function of the control signal (POWER CONT), is to maintain the RX signal level by lowering or raising the TX output power of the opposite station. This control signal is based on the result of comparison between the current receiver input level and the preset receiving threshold level. Transmission level control can be used not only for setting the same operation (ATPC-ATPC) between own station and opposite station but also for operation in combination of stations with different operation (MTPC-ATPC, ATPC-MTPC) between own station and opposite station. The station set in MTPC mode is not controlled by the information from opposite station but is fixed in its transmitting output level. Even if the station is set in the MTPC mode, the opposite station is likely to be set in the ATPC mode. Therefore setting of the RX Threshold (Receiving threshold level) is required for controlling the transmission level of the opposite station. Between the stations that are respectively set in the MTPC mode, however, the setting is disabled. Automatic Transmit Power Control Operation iPASOLINK 400 Introduction (Draft) ATPC Operation T X O U T R X L e v e l RX Threshold (-60dBm) -55dBm H y s t e r e s i s ( 5 d B F i x e d ) ATPC TX MAX ATPC TX MIN Up Mode Down Mode The ATPC Control transmits the information on the receiving level to the opposite station and controls the transmission level of its own station in accordance with the receiving level of the opposite station. The ATPC Control can be used in several configurations: ATPC - ATPC MTPC - ATPC ATPC - MTPC Station - A Station - B STN - A STN - B MTPC RX Threshold = -60dBm ATPC When RSL reaches -60dBm at STN –B STN- A starts to increase the TX power in 1 dB steps, this process continues until the ATPC TX MAX level is reached. Any RSL drop below this point is not compensated. In the UP Mode ATPC operation starts at -55dBm because of the fixed 5dB hysteresis. Fading depth deep shallow deep shallow iPASOLINK 400 Introduction (Draft) IF LOOP-BACK STM-1 NEAR-END LOOP-BACK STM-1 FAR-END LOOP-BACK E1 NEAR-END LOOP-BACK E1 FAR-END LOOP-BACK iPASOLINK 400 Introduction (Draft) TX1 RX1 O/E 550 + 50ms TIMER ALS ENB / DIS O/E 90 + 10s TX ON TIMER 2s TX ON TIMER 2/9 + 0.25s TX ON TIMER 30/60/180s TX ON TIMER DATA BUS RX2 TX2 Automatic Reset Manual Reset RLOS LCT / PNMT OPT INTFC CTRL 60s 180s 300s 90s 2s 2s A u t o m a t i c R e s e t M a n u a l R e s e t 550ms The STM-1 OPT Interface is provided with Automatic Laser Shutdown Function (ALS), if disable the laser output is always ON even if the optical cable to RX2 is disconnected. When ALS function is set to enable the OPT INTFC observe the loss of signal and start a timer (550ms) and generate a control signal to interrupt the optical output from the TX2 to RX1 subsequently the ALS function in the MUX equipment will switch OFF the laser output from TX1. When the fault at A is cleared the system can be retorted by controlling the laser output from TX2 through one of the following methods.  Automatic Control  Manual Restart Short on time (2 sec) Control  Manual Restart Long on time (90 sec) Control iPASOLINK 400 Introduction (Draft) This function does not apply to the 10/100Base-T INTFC. STM-1 INTFC RFCOH MUX STM-1 INTFC RFCOH DEMUX FSYNC MODEM ODU STM-1 OUTPUT CONTROL STM-1 OUTPUT PASOLINK PLUS STM-1 LOF LOF MODEM ODU LOS LOF RLOS RLOF RLOS RLOF MUX INPUT LOSS X MUX STATION-A STATION-B In the STM-1 configuration, when there is no STM-1 input or any fault in the radio section, or for any fault in the PASOLINK equipment, MS-AIS is sent out to the MUX equipment. STATION-A STATION-B EVENT LED LCT LED LCT STM-1 OUTPUT STM-1 OUTPUT CONTROL STM-1 Input Loss at station-A IDU ALM MAIN INTFC LOS -- UNDER EXECUTION AIS/SHUTDOWN STM-1 L0ss of Frame at station-A IDU ALM MAIN INTFC LOF -- UNDER EXECUTION AIS/SHUTDOWN RX Level down at station-B -- ODU ALM UNDER EXECUTION AIS/SHUTDOWN Loss of radio frame at station-B -- IDU ALM UNDER EXECUTION AIS/SHUTDOWN BER at station B (<= 1 E -4 ) -- IDU ALM NORMAL N/A This function is called the MS-AIS generation, and can be “enabled” or Disabled” (default enabled) When this function is “disabled”, depending on the STM-1 INTFC type used, following actions will be carried out. Electrical INTFC – output a non- frame (all “1”) signal Optical INTFC – Shutdown the output optical signal Status of this function is displayed under STM -1 INTFC ”output control” in the LCT and PNMT iPASOLINK Introduction 78 XPIC CRC A/D A/D - DEC A/D A/D DEC LO Canceling signal Canceling signal Block diagram of XPIC RX signal Intf. signal Intf. signal LO ~ ref OSC ~ IF OSC ~ IF OSC - CRC EPS XPIC EPS Error signal Error signal Carrier Recovery Carrier Recovery ~ MOD Vertical Horizontal ~ ~ TX MOD ~ ~ TX Transmit Side Receive Side iPASOLINK 400 Introduction (Draft) TITLE PARAMETER Radio Redundancy (initial key) 1+0/1+1 usage(1 pair) / (1+1) usage (2pair) Upgrade key 1+0  1+1 usage(1 pair) 1+0  (1+1) usage (2 pair) 1+1 usage(1 pair)  (1+1) usage (2pair) ETH Traffic aggregation @ N+0 radio Not available/Available Radio Bit rate (Initial key) fixed/free/AMR Radio Bit rate (upgrade Key) Fixed>Free / Fixed>AMR / Free>AMR Radio Capacity1 (initial Key) 10/20/50/100/150/200/300/400 Mbps Radio Capacity2(Initial Key) parameter Radio Capacity1 Radio Capacity3(Initial Key) parameter Radio Capacity1 Radio Capacity4(Initial Key) parameter Radio Capacity1 Radio Capacity1 (upgrade Key) 10>20/50/100/150/200/300/400 20>50/100/150/200/300/400 50>100/150/200/300/400 100>150/200/300/400 150>200/300/400 200>300/400 300>400 Radio Capacity2 , 3, 4 parameter Radio Capacity1 iPASOLINK 400 Introduction (Draft) TITLE PARAMETER XPIC function not available/available (1pair)/ available (2pair) Not available -> 1pair /Not available -> 2pair 1 pair -> 2 pair Advanced XPIC Function Not available / available Neo ODU Compatibility not available/available NEO/c IDU Compatibility Not available / available RJ45 port usage (main) 2xFE available / 2 GbE available SFP Port Usage (main) Not available / 2 GbE available SFP Port Usage (option 1) Not available / 2 GbE available SFP Port Usage (option 2) Not available / 2 GbE available SFP Port Usage (option 3) Not available / 2 GbE available SFP Port Usage (option 4) Not available / 2 GbE available Additional VLAN Table 256 Table / 4094 Table QoS Classify 4 lev Classify / 8 lev Classify LAG / LACP ( line) not available/available Ethernet Ring Protection not available/available iPASOLINK 400 Introduction (Draft) TITLE PARAMETER Ether OAM(CC/LT/LB) not available/available Ether OAM(DM/LM) not available/available E1 SNCP not available/available STM-1 APS Protection not available/available STM-1 MUX/DEMUX not available/available SYNC ETH Clock not available/available IEEE 1588v2 PTP clock not available/available Additional PWE E1 16 E1 (regular Support) / 32 E1 / 64 E1 16 E1 > 32 E1 / 16 E1 > 48 E1 / 16 E1 > 64 E1 32 E1 > 48 E1 / 32 E1 > 64 E1 48 E1 > 64 E1 ETH over MPLS not available/available TDM over MPLS not available/available ATM over MPLS not available/available ATM / IMA (ATM aggregation) not available/available iPASOLINK 400 Introduction (Draft) iPASOLINK 400 Introduction (Draft) Indication Category Descriptions Severity TXPWR ALM Alarm The TX PWR is lower than 3 dB. MJ TX INPUT ALM Alarm The TX IF signal become out of range from -29 dBm ± 5 dB. MJ RXLEV ALM Alarm The reception level become lower than -72dBm ~ -94dBm level.(It depends on the modulation system and bit rates). MJ ODU CPU / Cable Open Alarm CPU of ODU is faulty or IF CABLE between IDU - ODU of ODU is broken or is not connected. MJ MUTE STATUS Status Indicates the control status of the ODU TX power output. When the TX power is set to Mute, Status is issued. - LO REF Alarm Loss of Ref LO signal of ODU. MN TX SW Status Status Radio interface TX SW usage state in 1+1 HS Redundant configuration - ODU ALM Alarm Indicates one of the TXPWR ALM, ODU PS ALM, APC ALM, TPC ALM, ODU SELF CHECK ALM occurrence MJ ODU TOTAL ALM Alarm Indicates one of the TXPWR ALM, TX INPUT ALM, RX Level ALM, ODU CPU/CABLE OPEN ALM, LOREF, ODU ALM occurrence. Highest severity will be displayed ATPC Power Mode Status ATPC control signal fault (90sec) as well as MAX Power continuation 90sec - ODU TYPE MISMATCH Alarm Indicate connected ODU type is not supported at iPASOLINK system, or ODU type cannot use in provisioned modulation setting. MJ ODU PS ALM Alarm ALM in a case of Power supply interruption to ODU. MJ ODUPS SET STATUS Status Status indication of the protection switch for ODU power supplies - iPASOLINK 400 Introduction (Draft) Indication Category Descriptions Severity Unequipped (MODEM-A) Alarm Reserved and installed optional package is removed from optional slot. MJ Type Mismatch(MODEM-A) Alarm The equipped type of interface is different from configured type. MJ Communication FAIL(MODEM-A) Alarm Communication failure of equipment internal control communication. MJ Module(MODEM-A) Alarm Equipment fault MJ BUS ERROR TX Alarm Data communication BUS failure condition in TX direction from STM-1 Card. MJ BUS ERROR RX Alarm Data communication BUS failure condition in RX direction from STM-1 Card. MJ RXSW STATUS Status Radio interface RX SW usage state in Redundant configuration - LOSS OF FRAME Alarm Loss of Frame at radio side. MJ FRAME ID Alarm Frame ID (route differentiation ID) MJ HIBER ALM Alarm Radio signal degradation (High BER threshold detection). (Threshold :1E-3/1E-4/1E-5) MJ LOBER ALM Alarm Radio signal degradation (Low BER threshold detection). (Threshold. :1E-6/1E-7/1E-8/1E-9) MN EARLY WARNING Alarm Radio signal degradation (Early Warning threshold detection). (Threshold :1E-9) MN MOD Alarm Indicates the operating status of the MOD. When any failure occurs in the modulator section, “Alarm” is issued. MJ IF CABLE SHORT Alarm IF cable between IDU - ODU is in short condition. MJ INPHASE. Status In - Phase indicates the received signal DADE status between No.1 and No.2 MODEM interfaces are in Phase condition. In this condition, hitless switch over is available. - L2SYNC LOSS Alarm Loss of frame synchronization of GFP frames on MODEM port. MJ RDI Alarm RDI indication reception alarm on MODEM port MJ UAE. Alarm UAE alarm. Indicates the occurrence of an Unavailable state. MN TDM/AMR Range Mismatch Alarm Mismatch condition when the mapping number of E1 channels are different between TX and RX modem ports or mismatch condition of selected RX AMR modulation range and TX AMR modulation range. MJ TX SW Reverse Request Status TXSW request signal receiving condition from the opposite station: - TX SW Lock in Status Status TXSW Lockin state - Unlocked Alarm Wireless synchronization status of the local side. MJ MODEM PS OFF Status Indicate power off condition of power switch which is in front of MODEM-A card. - iPASOLINK 400 Introduction (Draft) Indication Category Descriptions Severity Unequipped (STM1-A) Alarm Reserved and installed optional package is removed from optional slot. MJ Type Mismatch(STM1-A) Alarm The equipped type of interface is different from configured type. MJ Communication FAIL(STM1-A) Alarm Communication failure of equipment internal control communication. MJ Module(STM1-A) Alarm Equipment fault MJ BUS ERROR TX Alarm Data communication BUS failure condition in TX direction from STM-1 Card. MJ BUS ERROR RX Alarm Data communication BUS failure condition in RX direction from STM-1 Card. MJ SNCP PPS-FAIL Alarm. SNCP Path Protection Failure MJ SNCP Protection Status Status SNCP Path Protection Status indication which indicates [FS, SF, SD, MS, NR] condition. - APS Protection Status Status APS Line Protection Status indication which indicates {FS,SF,SD,MS,NR} condition. - APS Lock-in Status Status APS protection Lock-in Condition. - SFP_Type Mismatch (STM1) Alarm Mismatch between SFP on LCT and installed SFP. MJ SFP Unequipped (STM1) Alarm A SFP is removed. MJ STM-1LOS Alarm LOS detection on STM-1 Optical port. MJ STM-1 TF Alarm Transmit Failure detection on STM-1 optical port. MJ RS LOF Alarm SDH Frame synchronization lost in RS (Regenerator Section) on STM-1 port. MJ RS TIM Alarm Trace Identifier Mismatch detected in RS (Regenerator Section) on STM-1 port. MJ RS EXC Alarm B1 Byte error occurrence in RS (Regenerator Section) on STM-1 port. MJ RS DEG Alarm B1 byte error in RS (Regenerator Section) (RS - Degraded) on STM-1 port. MN MS AIS Alarm AIS detection in MS (Multiplex Section) on STM-1 port. MJ MS RDI Alarm Remote Defect Indication reception in MS (Multiplex Section) on STM-1 port. MJ AU AIS Alarm AIS detection in AU (Administrative Unit) on STM-1 port. MJ iPASOLINK 400 Introduction (Draft) Indication Category Descriptions Severity AU LOP Alarm Loss of AU pointer happens on STM-1 port. MJ HP UNEQ Alarm HOP (Higher Order Path) Unequipped occurrence on STM-1 port. MJ HP TIM Alarm HOP (Higher Order Path) Trace Identifier mismatch occurrence on STM-1 port. MJ HP-PLM Alarm Payload Label Mismatch occurrence in HOP (Higher Order Path) on STM-1 port. MJ HP-RDI Alarm RDI (Remote Defect Indication) reception in HOP (Higher Order Path) on STM-1 port. MJ HP-LOM Alarm Loss of Multi-Frame on STM-1 port. MJ TU -AIS Alarm In TU (Tributary Unit), AIS detection on STM-1 port. MJ TU -LOP Alarm Loss of TU Pointer on STM-1 port. MJ LP -UNEQ. Alarm LP (Lower Order Path) Unequipped occurrence on STM-1 port. MJ LP – RDI Alarm Remote Defect Indicate reception by an LP (Lower Order Path) on STM-1 port. MJ LP – PLM Alarm Payload Label Mismatch Failure occurrence by an LP (Lower Order Path) on STM-1 port. MJ ALS Status Indication of automatic laser shutdown condition at STM-1 optical port. - RS UAS Status Status UAS status indication on STM port (Repeater Section) - STM-1 AIS Generated Status AIS generation condition on STM port. - PJE Status Pointer justification Event indication at STM port. - iPASOLINK 400 Introduction (Draft) Indication Category Descriptions Severity Unequipped (16E1) Alarm Reserved and installed optional package is removed from optional slot. MJ Type Mismatch(16E1) Alarm The equipped type of interface is different from configured type. MJ Communication FAIL(16E1) Alarm Communication failure of equipment internal control communication. MJ Module(16E1) Alarm Equipment fault MJ BUS ERROR TX Alarm Data communication BUS failure condition in TX direction from STM-1 Card. MJ BUS ERROR RX Alarm Data communication BUS failure condition in RX direction from STM-1 Card. MJ E1 LOS Alarm No signal input on E1 port MJ E1 AIS Status ALARM/Status category can change according to " AIS Received Condition Setting MJ / - Usage Error Alarm Unused E1 CH input signal detection. MN E1 AIS Generated Status AIS generation condition on every E1 Channels. - iPASOLINK 400 Introduction (Draft) Indication Category Descriptions Severity Unequipped (AUX-A) Alarm Reserved and installed optional package is removed from optional slot. MJ Type Mismatch(AUX-A) Alarm The equipped type of interface is different from configured type. MJ Communication FAIL(AUX-A) Alarm Communication failure of equipment internal control communication. MJ Module(AUX-A) Alarm Equipment fault MJ BUS ERROR TX Alarm Data communication BUS failure condition in TX direction from STM-1 Card. MJ BUS ERROR RX Alarm Data communication BUS failure condition in RX direction from STM-1 Card. MJ Item Name (Input-x) Item Name (Cluster-x) Status/ Alarm HKA Status Indication {Alarm, Normal} for every HKA input. - or Severity selectable Item Name (Output-x) Status HKC Status {Alarm, Normal} for every HKC output. - iPASOLINK 400 Introduction (Draft) Indication Category Descriptions Severity Unequipped (GBE-A) Alarm Reserved and installed optional package is removed from optional slot. MJ Type Mismatch(GBE- A) Alarm The equipped type of interface is different from configured type. MJ Communication FAIL(GBE-A) Alarm Communication failure of equipment internal control communication. MJ Module(GBE-A) Alarm Equipment fault MJ BUS ERROR TX Alarm Data communication BUS failure condition in TX direction from STM-1 Card.. MJ BUS ERROR RX Alarm Data communication BUS failure condition in RX direction from STM-1 Card.. MJ SFP_Type Mismatch (ETH) Alarm Mismatch between SFP on LCT and installed SFP. MJ SFP Unequipped (ETH) Alarm A SFP is removed. MJ LAN LINK Alarm LINK of the LAN Port is disconnected. MJ Speed & Duplex Status LAN Port setting (Speed&Duplex) - iPASOLINK 400 Introduction (Draft) Indication Category Descriptions Severity MODULE (Main Board) Alarm Equipment fault MJ BUS ERROR Alarm Data communication BUS failure condition. MJ Unequipped (PS) Alarm Installed Power Supply Module is removed from PS slot. MJ Power Supply Alarm Alarm in case of power failure. MJ FAN Fail Alarm FAN failure MJ Unequipped (FAN) Alarm Installed FAN Module is removed from FAN slot. MJ Unequipped (CLK2M) Alarm Installed CLK2M Module is removed from Main Card. MJ Type Mismatch (CLK2M) Alarm The equipped type of interface is different from configured type. MJ IDU CPU Alarm Alarm. IDU CPU Alarm MN Memory Failure Alarm Detection of memory failure MJ USB Failure Alarm USB memory failure indication MJ Temperature Alarm The temperature is over the threshold MN Maintenance Status Maintenance declaration. - CLK FAIL Alarm Reference Clock Failed. MN CLK Drift Alarm Reference Clock source Frequency drift condition MN LTI Alarm Loss of all incoming timing source MJ CLK Status Changed Status Reference clock change status (1) (Locked Ref1) (2) (Locked Ref2) (3) (Locked Ref3) (4) Holdover (5) Freerun - SSM FAIL Alarm Received Sync Status Message value is in unstable condition. MN Quality Level Status Received quality level condition of each timing source. - Squelch Status The condition of External CLK Output is in squelch condition. - iPASOLINK 400 Introduction (Draft) Indication Category Descriptions Severity EXT CLK Condition Status Condition level of External CLK output. - EXT CLK LOS Alarm Loss of Signal condition of External clock input. MN EXT CLK AIS Alarm AIS (Alarm Indication Signal) condition of External Clock input. MN EXT CLK LOF Alarm Loss of frame condition of External Clock input. MN EXT CLK Loop Alarm Indication of EXTERNAL clock input is used as EXTERNAL clock output. MJ Item Name (Input-x) Item Name (Cluster-x) Status/ Alarm HKA Status Indication {Alarm, Normal} for every HKA input. - or Severity selectable Item Name (Output-x) Status HKC Status {Alarm, Normal} for every HKC output. - E1 LOS Alarm No signal input on E1 port MJ E1 AIS Status PDH – AIS ALARM/Status category can change according to " AIS Received Condition Setting MJ / - Usage Error Alarm Unused E1 CH input signal detection. MN E1 AIS Generated Status AIS generation condition on every E1 Channels. - ETH LOS Alarm LOS detection at Optical Ethernet port. MJ ETH TF Alarm Transmit Fail detection at Optical Ethernet port. MJ SFP_Type Mismatch (ETH) Alarm Mismatch between SFP on LCT and installed SFP. MJ SFP Unequipped (ETH) Alarm A SFP is removed. MJ LAN LINK Alarm LINK of the LAN Port is disconnected. MJ Speed & Duplex Status LAN Port setting (Speed&Duplex) - ETH-OAM LOC Alarm MJ ETH-OAM Mismerge Alarm Ether OAM Mismatch Detection notice. MN ETH-OAM Unexpected Period Alarm Ether OAM Unexpected MEP and Ether OAM Unexpected Period detection notice MN ETH-OAM RDI Alarm Ether OAM RDI reception detection notice MJ iPASOLINK 400 Introduction (Draft) Indication Category Descriptions Severity RSTP New Root Bridge Detect Status The notice in which new RootBridge was detected at the time of SpanningTree processing - RSTP Topology Changed Status The notice in which a Topology change was detected at the time of SpanningTree processing - RSTP Protocol Migration Status The notice which received a Bridge protocol Data Units different in classification of RSTP/STP at the time of SpanningTree processing - RSTP Invalid BPDU Received Status Invalid BPDU message at the time of SpanningTree processing - LLF Message Timeout Status Loss of a conditional signaling in which the LLF control signal should be received continuously from the opposite radio equipment. LLF Status LLF force a LINKDOWN status. The Ethernet port under "edge" mode becomes LINKDOWN. - IDU TOTAL ALM Alarm IDU TOTAL ALM The highest Severity will be reported Total FDB Full Status The number of DynamicEntryDynamic Entry in L2Switch has reached the maximum number. FDB Full Status FDB Full indication specified per VLAN basis. iPASOLINK 400 Introduction (Draft) iPASOLINK 400 Introduction (Draft) ACAP Adjacent Channel Alternate Polarization ACCP Adjacent Channel Co-Polarization ACK Acknowledgement AGC Automatic Gain Control AIS Alarm Indication Signal ALM Alarm ALS Auto Laser Shutdown AMR Adaptive Modulation Radio ANT, Ant. Antenna APS Automatic Protection Switch ATT Attenuator ATPC Automatic Transmitter Power Control AU Administrative Unit AUX Auxiliary Ave Average BBE Background Block Error BER Bit Error Rate BPF Band Pass Filter BS Base Station BSC Base Station Controller BTS Base Transceiver Station CAPEX Capital Expenditure CBS Committed Burst Size CCDP Co-Channel Dual Polarization CCM Continuity Check Message CEPT Conference of European Postal & Telecommunication Administration CIR Committed Information Rate CKT Circuit CLK Clock CMF Channel Mismatch Failure CMI Coded Mark Inversion CONV Converter CORBA Common Object Request Broker Architecture CoS Class of Service CPU Central Processing Unit CR Critical CRC Cyclic Redundancy Check CS Channel Separation CTRL Control CV near end Code Violation CW Carrier Wave DA Destination Address DADE Differential Absolute Delay Equalizer DB Database DC Direct Current DCN Data Communication Network DEG Degraded DEI Drop Eligible Indicator DEM Demodulator Des(Dest) Destination DI Data-in DL Download DM Delay Measurement DMM Delay Measurement Message DMR Delay Measurement Reply DO Data-out DSCP Differentiated Services Code Point DUP Duplexer DXC Digital Cross Connect E1 E-carrier level 1 EBS Express Burst Size EIR Excess Information Rate EMC Electro Magnetic Compatibility EML Element Management Layer EMS Element Management System EOW C Order Wire EPS ETH-Protection Switch EQL Equalizer ERP ETH-Ring Protection Switch ES Errored Seconds ETH-CC ETH-Continuity Check function ETH-LB ETH-Loopback function ETH-LBM ETH-Loopback Message ETH-LBR ETH-Loopback Reply ETH-LB ETH-Loopback function ETH-LT ETH- Link Trace function ETH-LTM ETH-Link Trace Message ETH-LTR ETH-Link Trace Reply ETH-OAM Ethernet Operations, Administration and Maintenance iPASOLINK 400 Introduction (Draft) ETH-OAM LB ETH-OAM Loopback ETH-OAM LT ETH-OAM Link Trace ETH-RDI ETH-Remote Defect Indication function ETSI European Telecommunications Standards Institute EXC Electrical Cross Connect E-to-E. End-to-End Fail Failure F/B Front Back Ratio FCS Frame Check Sequence FDB Forwarding Database FE Fast Ethernet FEC Forward Error Correction FEBBE Far End Background Block Error FEES Far End Errored Seconds FESES Far End Severely Errored Seconds FEUAS Far End Unavailable Seconds FPGA Field Programmable Gate Array F/W Firmware GbE, GBE Gigabit Ethernet 3GPP Third Generation Partnership Project GUI Graphical User Interface H Horizontal HDB High Density Bipolar HK House Keeping HP Higher order Path HYB Hybrid H/W Hardware ID Identification IDU Indoor Unit IE Internet Explorer IEC International Electro technical Commission IEEE Institute of Electrical and Electronics Engineers I/F Interface IF Intermediate Frequency IHG iPASOLINK High Grade IN Input INTFC Interface I/O Input/Output IP Internet Protocol ITU International Telecommunication Union ITU-R Radio Communication Sector of ITU ITU-T Telecommunication Sector of ITU L2SW Layer2-Switch LAN Local Area Network LB Loopback LBM Loopback Message LCD Loss of Cell Delineation LCT Local Craft Terminal LDPC Low Density Parity Check LED Light Emitting Diode Lev. Level LLF Link Loss Forwarding LM Loss Measurement LMM Loss Measurement Message LNA Low Noise Amplifier LO Local Oscillator LOC Loss of Continuity LOF Loss of Frame LOM Loss of Multiframe LOP Loss of Pointer LO REF Local Reference Signal Loss LOS Loss of Signal LP Lower order Path LPM Link Performance Monitor LT Link Trace LTI Loss of incoming Timing Input LTM Link Trace Message MAC Media Access Control MAIN Main MAINT Maintenance MAX Maximum Mdev Mean Deviation MDCPU MODEM CPU MDI Medium Dependent Interface MDIX Medium Dependent Interface Crossover MD4 Message Digest Algorithm 4 MD5 Message Digest Algorithm 5 MEG Maintenance Entity Group MEM Memory MEP MEG End Point iPASOLINK 400 Introduction (Draft) MIN Minimum MIP Maintenance Intermediate Point MIX Mixer MJ Major MMC Multi Media Card MME Mobility Management Entity MMG Mismerge MN Minor MOD Modulator MODEM Modulator Demodulator MON Monitor MPX Multiplexer MS Multiplex Section MSC Mobile Switching Center MSDU MAC Service Data Unit MSP Multiplex Section Protection MTBF Mean Time Between Failure MTPC Manual Transmitter Power Control MUX Multiplexing Equipment N/A Not Applicable NBI Northbound Interface NE Network Element NML Network Management Layer NMS Network Management System OAM Operation Administration and Maintenance OCR Occur Octs Octets ODU Out-Door Unit OFS Out of Frame Second OMT Ortho-Mode Transducer OPEX Operational expenditure OPP Opposite OPR Operation OPT Optical OSPF Open Shortest Path First OSS Operation Support System OUT Output OW Oder Wire PA Power Amplifier PBR Pressurizable Type B, flange profile square Rectangular PCP Priority Code Point PDH Plesiochronous Digital Hierarchy PDU Protocol Data Unit PGM Program PHY Physical PIR Peak Information Rate PJE Pointer Justification Event PJE-N Pointer Justification Event Negative Stuff PJE-P Pointer Justification Event Positive Stuff PKG Package Pkts Packets PLM Payload Label Mismatch PMC PASOLINK Management Card PMON Performance Monitor PNMSj PASOLINK Network Management System Java Version PPI PDH PHY Interface ppm parts per million PPP Point-to-Point Protocol PPS Path Protection Switch PQ Priority Queuing PRM Parameter PROT Protection PS Power Supply PSC Protection Switching Counts PSD Protection Switching Duration PWR Power QAM Quadrature Amplitude Modulation QoS Quality of Service QPSK Quadrature Phase Shift Keying RCVR Recover REF Reference REM Remote RDI Remote Defect Indication RF Radio Frequency RFS Radio Frequency Systems RL Relay RMON Remote Network Monitoring RNC Radio Network Controller iPASOLINK 400 Introduction (Draft) RPL Ring Protection Link RS Regenerator Section RS-232 Recommended Standard 232 RSL Received Signal Level RST Regenerator Section Termination RSTP Rapid Spanning Tree Protocol RX Receiver SC Service Channel SD Space Diversity SDH Synchronous Digital Hierarchy SEG Segment SEP Severely Errored Period SES Severely Errored Seconds SFP Small Form factor Pluggable SGMI Security Gateway Management Interface SMS Synchronous Multiplexing System SMU Source Measure Unit SNCP Sub-network Connection Protection SNMP Simple Network Management Protocol SP Strict Priority SPD Speed SRC Source MAC Address STAT Status STD Standard STM Synchronous Transport Module STP Spanning Tree Protocol SUB Substitute SW Switch S/W Software SWG Switch Group SYNC Synchronous TCI Tag Control Information TCN Threshold Crossing Notification TDM Time Division Multiplex TDMoP TDM over Packet TEMP Temperature TERM Terminal TF Transmit Fail TIM Trace Identifier Mismatch TLV Type Length Value TM Through Mode TNC Threaded Neil Councilman ToS Type of Service TPID Tag Protocol Identifier TQC Total Quality Control TTL Time To Live TU Tributary Unit TX Transmitter UAE UAS Event UAS Unavailable Seconds UL Upload UNEQ Unequipped UNEXP Unexpected Unicast DMR Unicast Delay Measurement Reply UNM Unexpected MEP UNP Unexpected Period USB Universal Serial Bus V Vertical V Volt VC Virtual Channel VLAN Virtual LAN VP Virtual Path VPN Virtual Private Network VSWR Voltage Standing Wave Ratio WDM Wavelength Division Multiplexing Web World Wide Web WG Waveguide WR Warning WRR Weighted Round Robin WS Wayside XCTRL XPIC Control X-DEM XPIC Demodulator XFP 10(X) Gigabit Small Form Factor Pluggable XIF XPIC IF XPD Cross Polarization Discrimination Ratio XPIC Cross Polarization Interference Canceller XREF XPIC Reference iPASOLINK Introduction 98


Comments

Copyright © 2024 UPDOCS Inc.